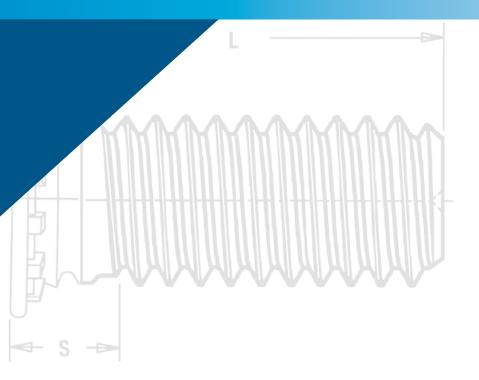
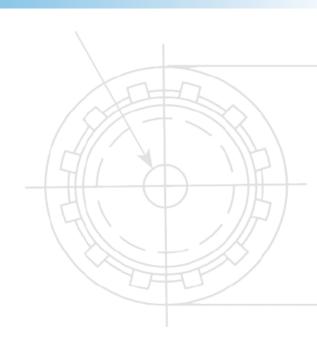

### PEM® FASTENER CATALOG






### **TABLE OF CONTENTS**


| Quick Product LocatorF                             | Pg 3              | 3           |
|----------------------------------------------------|-------------------|-------------|
| Floating Self-Clinching FastenersF                 | Pg <u>1</u>       | <u>1</u>    |
| Self-Clinching Blind FastenersF                    | Pg <u>1</u>       | <u>5</u>    |
| Concealed-Head Self-Clinching Studs and StandoffsF | Pg <u>1</u>       | 9           |
| Self-Clinching NutsF                               | Pg <u>2</u>       | <u>25</u>   |
| PEMSERT® Self-Clinching Fasteners                  | Pg <u>4</u>       | <u>11</u>   |
| Miniature Self-Clinching FastenersF                | Pg <u>4</u>       | <u> 5</u>   |
| Self-Clinching Studs and PinsF                     | Pg <u>5</u>       | <u>51</u>   |
| Fasteners for Use with P.C. BoardsF                | Pg <u>8</u>       | 33          |
| Self-Locking FastenersF                            | Pg <u>1</u>       | <u>04</u>   |
| microPEM® Fasteners F                              |                   |             |
| Captive Panel ScrewsF                              | Pg <u>1</u>       | <u>45</u>   |
| R'ANGLE® Right Angle Fasteners                     | Pg <u>1</u>       | <u>88</u>   |
| SPOTFAST® FastenersF                               | Pg <u>1</u>       | <u>96</u>   |
| Self-Clinching KEYHOLE® Fasteners                  | Pg <u>2</u>       | <u> 204</u> |
| Self-Clinching Standoffs F                         | Pg <mark>2</mark> | <u>216</u>  |
| Fasteners for Use in Stainless Steel SheetsF       | Pg <mark>2</mark> | 228         |
| SNAP-TOP® StandoffsF                               | Pg <mark>2</mark> | <u>252</u>  |
| Self-Clinching TY-D® Cable Tie-Mounts and Hooks    |                   |             |
| VARIMOUNT® Bonding Fasteners F                     | Pg <u>2</u>       | <u> 265</u> |
| Self-Locating Projection Weld Nuts                 | Pa 2              | 71          |



PEM® brand fasteners utilize self-clinching, broaching, flaring, surface mount, bonding or weld technology to provide strong, reusable, and permanent threads and mounting points in thin sheet metal, P.C. board or other rigid materials.

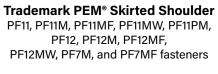






### PEM® FASTENER IDENTIFICATION MARKS

To help you identify genuine PEM® brand fasteners, most are marked by one of our trademarks or identifiers. Genuine PEM fasteners can only be purchased from one of our authorized worldwide distributors. For a complete listing of these distributors, check our web site: www.pemnet.com.




### Trademark PEM® Dimple

CFHA, CFHC, CHA, CHC, FH, FH4, FHA, FHL, FHLS, FHP, FHS, FHX, HF109, HFG8, HFE, HFH, HFHB, HFHS, HFLH, HSCB, KFH, KSSB, MPP, PF10, PF30, PF31, PF32, PF50, PF51, PF52, PF60, PF61, PF62, PF11, PF11M, PF11MF, PF11MW, PF11PM, PF12, PF12M, PF12MF, PF12MW, PF7M, PF7MF, PFC2, PFC2P, PFC4, PFHV, PFK, PFS2, PSHP, SCB, SCBJ, SCBR, SF, SFK, SFP, SFW, SGPC, SKC, SKC-F, SMTPFLSM, SMTSS, SMTSK SSA, SSC, SSS, T, T4, TFH, TFHS, THFE, TK4, TKA, TP4, TPS, TPXS, and TS fasteners

Trademark PEM® Stamp CLS, CLSS, H, HN, HNL, PSHP, S, SFN, SL, SMPP, SMPS, SS, and WN fasteners





Trademark PEM®

"Two Groove" B, BS, BSO, BSON, BSOS, CSOS, CSS,

DSO, DSOS, HSR, KF2, KFB3, KFE, KFS2,

KFSE, PF7M, PF7MF, SMTSO, SMTSOB,

SMTPFLSM, SO, SOA, SOAG, SON, SOS,

SOSG, TSO, TSOA, and TSOS fasteners





**Trademark PEM®** "Single Groove" A4, BSO4, LA4, MSO4, PFC4, SO4, SP (Select sizes), and TSO4 fasteners



"Double Squares" A4, AC, AS, LA4, LAC, and LAS fasteners

Trademark PEM®

**Trademark** PEM® C.A.P.S.® **Dot Pattern** PF11PM fastener

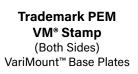




Trademark PEM® Double Notch microPEM® SMTSO fastener






PEM® Blue Nylon Ring PFC4, PFC2P, PFC2, PFS2, and PFK fasteners



Trademark PEM® Blue Nylon **Locking Element** PL, PLC and CFN fasteners



Trademark ATLAS® AE Stamp MaxTite® and Plus+Tite® products







Trademark PEM® SH Stamp SH fasteners



PEM® RT Stamp S-RT fasteners



**Trademark PEM®** SP Stamp SP fasteners



PEM® SMPP Stamp SMPP fasteners

Sc Self-clinching fasteners are pressed into sheet metal panels as this as .016" / 0.4 mm.



Flare Mounted fasteners can be installed into almost any rigid type of panel.



B Broaching fasteners are pressed into P.C. board or other plastic materials as thin as .060" / 1.53 mm.



Weld nuts are designed specially to be welded into place.



**SM** Surface Mounted fasteners on tape and reel are soldered to a PC board in the same way as other surface mount components.



(Products are listed alphabetically by type. Refer to matching color square for mounting style)

A4, AC, AS Bulletin ALA



Nuts with load-bearing, non-locking threads that permits up to .030"/0.76mm adjustment for mating hole misalignment.

SC

B, BS Bulletin B



Nuts used in applications requiring closed thread ends. Blind end limits screw penetration and excludes foreign matter.

SC

BSO, BSO4, BSOA, BSOS Bulletin SO



Blind threaded standoffs installed with their heads flush with one surface of the mounting sheets.

SC

CDS Bulletin MPF



The microPEM® ClampDisk™ fastener is a removable fastener designed to replace screws, adhesive, rivets and other small fasteners.

CFN Bulletin LN



Broaching, nylon insert, self-locking nuts for use in thinner sheet, close-to-edge applications.

CFHA, CFHC, CHA, CHC

Bulletin CH

Concealed-head studs installed into a blind milled hole where surface opposite stud must remain unmarred.

SC

CLA, CLS, CLSS Bulletin CL



Nuts that provide load-bearing threads in thin sheets with high pushout and torque-out resistances.

CSOS, CSS Bulletin CH



Concealed-head standoffs installed into a blind milled hole where surface opposite standoff must remain unmarred.

SC

DSO, DSOS Bulletin SO



Threaded standoffs for use in close-to-edge applications.

SC

F, F4 Bulletin F



PEMSERT\* flush fasteners are flush with both sides of the sheet.

SC

FE, FEO, FEOX, FEX Bulletin FE



Miniature nuts with strong threads. Available with locking or non-locking threads.

50

FH, FH4, FHA, FHP, FHS Bulletin FH



Flush-head studs with high pushout and torque-out resistances.

SC

FHL, FHLS Bulletin FH



Low-displacement head studs can be installed close to the edge of a sheet without causing the edge to bulge.

SC

Bulletin FH



Flush-head studs with X-Press™ thread profile are typically used with push-on or other plastic fasteners.

H, HNL Bulletin CL



Nuts with self-locking or non-locking threads that provide high pushout and torque-out resistances.

SC

HF109 Bulletin FH



Property class 10.9 high tensile strength studs meeting 1040 MPa minimum.

S

Bulletin FH



**HFE** 

Studs designed with an enlarged head diameter to provide high-strength in thin sheets.

SC

HFG8 Bulletin FH



Grade 8 high tensile strength studs meeting 150 ksi minimum.

\_

31

HFH, HFHB, HFHS Bulletin FH



Studs for high-strength applications with high pull through resistance.

sc

HFLH Bulletin FH



Studs are for installation into thin, harder, high-strength materials.

SC

HSCB Bulletin PF



Heat sink mounting system.

HSCB (screw), HSR (nut) and HSL (spring).

HSCB

SC B

KF2, KFS2 Bulletin K

Nuts, internally threaded, for mounting on P.C. boards.

В

KFB3 Bulletin K



Flare-mounted standoffs for mounting on P.C. boards with greater pullout performance.

В

KFE, KFSE Bulletin K



Threaded or unthreaded standoffs mounted on P.C. boards for stacking or spacing.

Е

KFH Bulletin K



Threaded studs for use as solderable connectors or as

permanently mounted studs on P.C. boards.

В

KSSB Bulletins K & SSA



SNAP-TOP® standoffs featuring a spring action to hold a P.C. Board securely without screws or threaded hardware.

SC

LA4, LAC, LAS Bulletins ALA & LN



Nuts with load-bearing, self-locking threads that permits up to .030" / 0.76 mm adjustment for mating hole misalignment.

SC

LK, LKA, LKS

Bulletin LN

Nuts with a unique PEMFLEX® self-locking feature permitting



Nuts with a unique PEMFLEX® self-locking feature permitting repeated use and effective prevailing locking torque.

SC

MPP Bulletin MPF



 $\mbox{microPEM}^{\circ}$  pins that can be installed into sheets as thin as 0.5 mm.

S

MSIB Bulletin MPF



microPEM® symmetrical designed thru-threaded inserts for plastics for use in straight or tapered holes.

Inserts

MSO4 Bulletin MPF



microPEM® standoffs that can be installed into sheets as thin as .016" / 0.4 mm.

SC

MSOFS Bulletin MPF



microPEM° flaring standoffs attached permanently in panels as thin as .008" / 0.2 mm of any hardness including stainless steel.

PEM C.A.P.S.® Bulletin PF



Colored Access Panel Screws with plastic cap. Key features include Phillips drive and MAThread® anti-cross threading feature.

PF10 Bulletin PF



Flush-mounted panel screw components. N10 (nut), PR10 (retainer) and PS10 (screw).

DC10

SC

PF11, PF11M Bulletin PF



Panel fastener assembly with knurled cap and universal slot/ Phillips recess. Available with anti cross-thread feature.

SC

PF11MF Bulletin PF



Flare-mounted captive screw assembly with anti cross-thread feature.

FΜ

PF11MW Bulletin PF



Floating captive screw assembly allows for mating hole misalignment.

FM

PF12, PF12M Bulletin PF



Panel fastener assembly with smooth cap and universal slot/ Phillips recess. Available with anti cross-thread feature.

SC

PF12MF Bulletin PF



Flare-mounted captive screw assembly with anti cross-thread feature.

FM

PF12MW Bulletin PF



Floating captive screw assembly allows for mating hole misalignment.

FM

PF30, PF31, PF32 Bulletin PF



Low-profile panel fastener assembly with large knurled head for tool or hand operation.

SC

PF50 Bulletin PF



Low-profile panel fastener assembly with large knurled cap and Phillips recess for tool or hand operation.

SC

PF60 Bulletin PF



Low-profile panel fastener assembly with large smooth cap and Phillips recess for tool or hand operation.

SC

PF7M Bulletin PF



Small, compact, and low-profile self-clinching captive panel screws designed for limited access areas.

sc

PF7MF Bulletin PF



Small, compact, and low-profile flaring captive panel screws designed for limited access areas.

FΜ

PFC2, PFS2 Bulletin PF



Spring-loaded panel fastener assembly for tool or hand operation.

SC

PFC2P Bulletin PF



Panel fastener assembly with Phillips recess for tool only operation.

SC

PFC4 Bulletin PF & SS



Panel fastener assembly for installation into stainless steel sheets with Phillips recess for tool only operation.

SC

PFHV Bulletin PF



Low-cost panel fastener assembly with universal slot/Phillips recess for tool or hand operation.

SC

В

PFK Bulletins K & PF



Panel fastener assembly for mounting on P.C. boards.

Bulletin LN



PL, PLC

PEMHEX® self-locking nuts with a nylon hexagonal element to provide a reusable prevailing torque thread lock.

SC

PSHP Bulletin K



Surface mount panel fastener screw that is used with Type SMTPR retainer.

SM

PSL2, PTL2 Bulletin PF



Spring-loaded plunger assembly. Quick lockout feature on Type PTL2 holds plunger in retracted position.

RAA



Self-tapping R'ANGLE® fasteners provide strong right angle attachment points in thin sheets.

SC

SC

**Bulletin RA** 

RAS Bulletin RA



Threaded R'ANGLE® fasteners provide strong right angle attachment points in thin sheets.

S, SS Bulletin CL



Nuts that provide load-bearing threads in thin sheets with high pushout and torque-out resistances.

SC

S-RT Bulletin CL



Free-running locknuts with a thread form that creates a lock when clamp load is applied.

SC

Bulletin PF



**SCB** 

The spinning clinch bolt with axial float installs captive in panel and still spins freely.

Bulletin PF



**SCBJ** 

The spinning clinch bolt with jacking feature installs captive in panel and still spins freely.

SC

sc

SCBR Bulletin PF



The spinning clinch bolt with axial float utilizes self-retracting spring.

SC

SF, SFP Bulletin SF



SpotFast\* self-clinching fasteners create a permanent, flush joining of two sheets of metal.

SC

SFK Bulletin SF



SpotFast\* self-clinching fasteners create a permanent, flush joining of metal to PCB or plastic panels.

SC B

SFN Bulletin SFN



Spinning flare nut is a one-piece, flanged hex nut that is permanently captive and still spins freely in the sheet.

FM

Bulletin CL



SH

Nuts are for installation into thin, harder, high-strength materials.

SC

SFW Bulletin SF



SpotFast® self-clinching fasteners create a permanent, flush joining of two sheets of metal. The washer allows for consistent pivoting of the two metal panels.

SGPC Bulletin FH



Install into most panel material, provide strong torque-out resistance and are suitable for close centerline-to-edge situations.

SKC Bulletin SK



KEYHOLE® standoffs designed for a board to be quickly slipped into place and removed by sliding it sideways and lifting it off.

SC

SKC-F Bulletin SK



KEYHOLE® sheet joining fasteners designed to quickly join two sheets flat against each other and then can be removed.

SC

Bulletins CL & LN



SL

Locknuts designed with a unique TRI-DENT® locking feature, which meets demanding locking performance requirements.

SC

SMPS, SMPP Bulletin CL



Nuts that feature a lower profile and can be mounted closer to the edge of a sheet than standard self-clinching nuts.

SC

**SMTPFLSM Bulletin K** 



Surface mount spring-loaded captive panel screws.

SM

**SMTPR Bulletin K** 



Surface mount panel fastener retainer that is used with Type PSHP screw.

**SMTRA Bulletin K** 



Surface mount R'ANGLE® fasteners provide strong re-usable threads at right angle to PC board.

SM

**SMTSK Bulletin K** 



Surface mount KEYHOLE® standoffs that eliminate the need for attaching screws.

SMTSO, SMTSOB **Bulletin K** 



Surface mount spacers and nuts are available threaded and unthreaded.

SM

**SMTSS Bulletin K** 



Surface mount standoffs that eliminate the need for attaching

SM

SO, SO4, SOA, SOS **Bulletin SO** 



their heads flush with one surface of the mounting sheets.

Thru-hole threaded and unthreaded standoffs installed with

SOAG, SOSG **Bulletin SO** 



Grounding standoffs for clinching into metal chassis with "gripping teeth" at opposite end to firmly contact mating board. SC

SP **Bulletins CL & SS** 



Specially hardened self-clinching nuts for installation into stainless steel sheets.

SC

SSA, SSC, SSS **Bulletin SSA** 



SNAP-TOP® standoffs featuring a spring action to hold a P.C. board securely without screws or threaded hardware.

SC

T, T4 **Bulletin MPF** 



microPEM® TackPin® fasteners for compact electronic assemblies enable sheet-to-sheet attachment.

TD. TDS **Bulletin TD** 



TY-D® self-clinching tie-mounts provide secure attachment points for mounting wires to electronic chassis or enclosure.

**TDO Bulletin TD** 



TY-D° self-clinching hooks enable users to easily attach, remove, and return tie-bundled wires to their mounting points. SC

**TFH, TFHS Bulletin FH** 

Non-flush studs for sheets as thin as .020" / 0.51 mm.

THFE **Bulletin FH** 



Heavy-duty studs for sheets as thin as .031" / 0.8 mm.

SC

TK4, TKA **Bulletin MPF** 



microPEM® TackSert® pins designed to hold a top panel to a bottom panel by broaching into the bottom panel.

TPS, TP4 **Bulletin FH** 



Flush-mounted pilot pins with chamfered end to make mating hole location easy.

sc

**TPXS Bulletin FH** 



Alignment pin for ATCA® faceplate fastening solutions.

**Bulletin MPF** 



TS

TackScrew® fasteners enable cost-effective sheet-to-sheet attachment by simply pressing into place. Can be removed by simply unscrewing.

**TS04 Bulletin SO** 

Standoffs for installation into ultra-thin stainless steel sheets as thin as .025" / 0.63 mm.

sc

TSO, TSOA, TSOS **Bulletin SO** 



Standoffs provide permanent threads in ultra-thin sheets.

sc

**Bulletin FE** U, UL



Miniature nuts with strong threads. Available with locking or non-locking threads.

sc

WN, WNS **Bulletin WN** 



Self-locating projection weld nuts. The engineered projections prevent burn-outs in thin sheets.

### **SELF-CLINCHING FASTENER INSTALLATION DOS AND DON'TS**

"Dos"

**Do** provide mounting hole of specified size for each fastener.

**Do** install fastener into punch side of sheet.

**Do** make certain that shank (or pilot) is within hole before applying installation force.

**Do** apply squeezing force between parallel surfaces.

**Do** apply sufficient force to totally embed clinching ring around entire circumference and to bring shoulder squarely in contact with sheet. For some fasteners, installation will be complete when the head is flush with the panel surface.

### "Don'ts"

Don't attempt to install a 300 series stainless steel fastener into a stainless steel sheet.

**Don't** install steel or stainless steel fasteners in aluminum panels before anodizing or finishing.

**Don't** deburr mounting holes on either side of sheet before installing fasteners – deburring will remove metal required for clinching fastener into sheet.

**Don't** install fastener closer to edge of sheet than minimum edge distance indicated by manufacturer – unless a special fixture is used to restrict bulging of sheet edge.

**Don't** over-squeeze. It will crush the head, distort threads, and buckle the sheet. Approximate installation forces are listed in performance data tables. Use this info as a guide. Be certain to determine optimum installation force by test prior to production runs.

**Don't** attempt to insert fastener with a hammer blow – under any circumstances. A hammer blow won't permit the sheet metal to flow and develop an interlock with the fastener's contour.

**Don't** install screw in the head side of fastener. Install from opposite side so that the fastener load is toward sheet. The clinching force is designed only to hold the fastener during handling and to resist torque during assembly.

**Don't** install fastener on pre-painted side of panel.

PennEngineering offers a wide range of technical support assistance. Let us put our expertise to work for you. We can provide:

### **Training**

- ▶ On customer site group or individual training by a technical representative and/or PEM® factory personnel
- ► Tutorial materials on website

### **Global Network of Engineering Representatives to:**

- ► Provide local company liaison
- ► Provide application review/product selection
- ► Provide technical materials
- Provide on-site product training and new product updates
- Assist with quotations
- ► The representative nearest you can be found on our website. rep/distributor locator

### **Application Engineering Services and Online Tools**

- ► Application analysis/review
- Custom solutions
- Online technical papers
- ► Get answers to technical questions at techsupport@pemnet.com
- Customer assist performance testing
- Cost Savings Investigation (CSI)
- Custom design and product development
- Customer drawings
- ► Finite Element Analysis (FEA)
- ► Free samples on standard (catalog) products
- > 3D Models (download or direct insert free on website)
- Free design PEMspec™ APP
- Instructional videos and animations

### Stay connected to PennEngineering

Now you can follow us for the latest news releases, new products, bulletin updates, tech tips, videos and more.











Technical Lab Services - Complete testing in accordance with NASM 25027, 45938 and ASTM as well as PEM® fastener test specs and customer parameters.

- Mechanical testing
- Compression
- Micro hardness (Knoop, Rockwell and superficial)
- Image analysis

- ► Tensile strength
- ▶ In sheet performance
- ► Thermal Cycling
- Corrosion and plating issues and analysis

**Prototype Development Center** - Shop equipped with latest CNC equipment to provide prototype or short run samples and necessary installation tooling. Capabilities include:

- ► Turning► Reaming
- MillingPunching
- DrillingGrinding
- ► 3D Printing
- Assembly
- Installation

### **Installation Equipment**

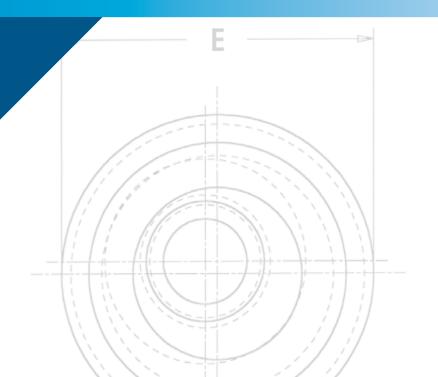
We can assess your application and recommend equipment that helps you achieve your lowest installed cost. PEMSERTER® and Haeger® systems can be developed to handle multiple fastener types simultaneously or even in-die equipment to address challenging component handling and fastener installation. For more information call us at 800-523-5321 (USA only) or 215-766-8853 or visit us at <a href="https://www.pemnet.com">www.pemnet.com</a>.

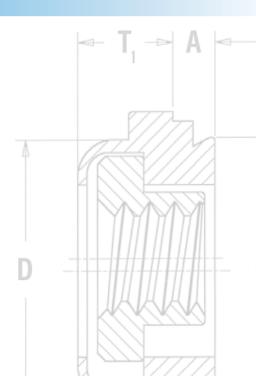


Haeger® 824 OneTouch 4e

PEMSERTER® In-Die System




PEM® floating self-clinching fasteners are available with or without locking threads.




 $ALA^{TM}$ 



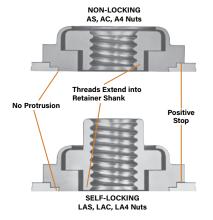
FLOATING SELF-CLINCHING FASTENERS





### FLOATING SELF-CLINCHING FASTENERS

### **Locking and Non-locking Threads**


- Provide load-bearing threads in thin sheets
- Permit a total of .030"/0.76 mm adjustment for mating hole misalignment.
- Sheet remains flush on one side, and the fastener is permanently locked in place.
- Threads of the floating nut extend into the retainer shank for extra strength and support in assembly.

### AC™/AS™/LAC™/LAS™ floating Nuts

- Designed for clinching into steel or aluminum panels and sheets.
- Available with (LAC/LAS) or without (AC/AS) locking threads.

### A4™/LA4™ floating nuts

- Provide prevailing torque locking threads with performance equivalent to applicable NASM25027 specifications<sup>(1)</sup>.
- Designed for clinching into stainless steel panels and sheets.
- Available with (LA4) or without (A4) locking threads.
- (1) To meet national aerospace standards and to obtain testing documentation, product must be ordered to US NASM45938/11 specifications. Check our web site for a complete Military Specification and National Aerospace Standards Reference Guide (Bulletin NASM). Screws for use with PEM self-clinching locking fasteners should be Class 3A/4h fit or no smaller than Class 2A/6g.



### PART NUMBER DESIGNATION 440 MD 440 **MD** MD 440 Retainer Thread Shank Finish Material Size Code Code Code Code



LAC/LAS

AC/AS

### **AXIAL STRENGTH AND TIGHTENING TORQUE - TYPES LAC/LAS/LA4**

| ED | 440<br>632 | Locknut<br>Min. Axial<br>Strength (1)<br>(lbs.) | Mating Screw<br>Strength Level<br>(1)<br>(ksi) | Mating Screw<br>Tightening Torque<br>(2)<br>(in. lbs.) |
|----|------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------------|
| E  | 440        | 1085                                            | 180                                            | 15.8                                                   |
| Z  | 632        | 1636                                            | 180                                            | 29.4                                                   |
| n  | 832        | 2522                                            | 180                                            | 53.8                                                   |
|    | 032        | 3600                                            | 180                                            | 88.9                                                   |
|    | 0420       | 5728                                            | 180                                            | 186                                                    |

| RIC | Thread<br>Code | Locknut<br>Min. Axial<br>Strength (1)<br>(kN) | Mating Screw<br>Strength Level<br>(1)<br>(MPa) | Mating Screw<br>Tightening Torque<br>(2)<br>(N-m) |
|-----|----------------|-----------------------------------------------|------------------------------------------------|---------------------------------------------------|
| ET  | М3             | 6.14                                          | 1220                                           | 2.39                                              |
| Σ   | M4             | 10.71                                         | 1220                                           | 5.57                                              |
|     | M5             | 17.3                                          | 1220                                           | 11.2                                              |
|     | М6             | 24.55                                         | 1220                                           | 19.1                                              |

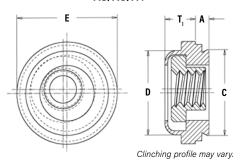


- (1) All LAC, LAS and LA4 locknuts have axial strength exceeding the minimum tensile strength of 180 ksi/Property Class 12.9 screws. Contact techsupport regarding assemble strength for higher strength screws.
- (2) Tightening torque shown will induce preload of 65% of locknut minimum axial strength with K or nut factor is equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value. All tightening torques shown are based on 180 ksi/ Property Class 12.9 screws. For lower strength screws the tightening torque is proportionately less. For example, for 120 ksi screws, torque is 67% value shown. For 900 MPa screws (Property Class 9.8) torque value is 74% of value shown.

### A NOTE ABOUT HARDENED 400 SERIES STAINLESS STEEL

In order for self-clinching fasteners to work properly, the fastener must be harder than the sheet into which it is being installed. In the case of stainless steel panels, fasteners made from 300 Series Stainless Steel do not meet this hardness criteria. It is for this reason that A4 and LA4 400 series fasteners are offered. However, while these 400 Series fasteners install and perform well in 300 Series stainless sheets they should not be used if the end product:

- Will be exposed to any appreciable corrosive presence.
- Requires non-magnetic fasteners.
- Will be exposed to any temperatures above 300°F (149°C)

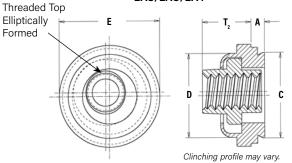

If any of the these are issues, please contact techsupport@pemnet.com for other options.

### FLOATING SELF-CLINCHING FASTENERS

Elliptically

Formed

### **NON-LOCKING** AS/AC/A4




### PEM® Double Squares registered trademark.



Float - .015"/0.38 mm minimum, in all directions from center, .030"/0.76 mm total.

### **SELF-LOCKING** LAS/LAC/LA4



### All dimensions are in inches.

|     |                     |       |                         | Ту                      | pe    |                         |                                                |        |       |         |       |                 |              |      |       |      |      |               |                     |
|-----|---------------------|-------|-------------------------|-------------------------|-------|-------------------------|------------------------------------------------|--------|-------|---------|-------|-----------------|--------------|------|-------|------|------|---------------|---------------------|
|     | Thread              |       | Non-Locking             | <u> </u>                |       | Self-Locking            | <u>'                                      </u> | Thread | Shank | A       | Min.  | Hole<br>Size in | С            | D    | E     | T,   | T.   | Min.<br>Dist. |                     |
|     | Size                |       | Fastener Mate           |                         | l l   | Fastener Mate           |                                                | Code   | Code  | (Shank) | Sheet | Sheet           | Max.         | Max. | ±.015 | Max. | Max. | Hole          |                     |
|     |                     | Steel | 300 Series<br>Stainless | 400 Series<br>Stainless | Steel | 300 Series<br>Stainless | 400 Series<br>Stainless                        |        |       |         | Max.  | Thickness       | +.003<br>000 |      |       |      |      |               | <b>⊈</b> To<br>Edge |
|     | .112-40             | AS    | AC                      | A4                      | LAS   | LAC                     | LA4                                            | 440    | 1     | .038    | .038  | .290            | .289         | .290 | .360  | .130 | .190 | .30           |                     |
|     | (#4-40)             | 7.0   | 7.0                     | 7(1                     | LAG   | LAO                     | L/( !                                          | 110    | 2 (1) | .054    | .054  | 1200            | 1200         | 1200 | .000  |      |      | .00           |                     |
| IED | .138-32             | AS    | AC                      | A4                      | LAS   | LAC                     | LA4                                            | 632    | 1     | .038    | .038  | .328            | .327         | .335 | .390  | .130 | .200 | .32           |                     |
| Ξ.  | (#6-32)             |       |                         |                         |       |                         |                                                |        | 2 (1) | .054    | .054  |                 |              |      |       |      |      |               |                     |
| HF  | .164-32             | AS    | AC                      | A4                      | LAS   | LAC                     | LA4 832                                        | 832    | 1     | .038    | .038  | .368            | .367         | .365 | .440  | .130 | .210 | .34           |                     |
| N O | (#8-32)             | 7.0   | 7.0                     | 7                       | 27.10 | 27.0                    |                                                | 002    | 2 (1) | .054    | .054  | .000            | 1007         | .000 |       |      | .2.0 |               |                     |
|     | .190-24             | AS    | AC                      | A4                      | LAS   | LAC                     | LA4                                            | 024    | 1     | .038    | .038  | .406            | .405         | .405 | .470  | .170 | .270 | .36           |                     |
|     | (#10-24)            | 7.0   | 7.0                     | 7.1                     | Litto | LAIO                    | Litti                                          | 021    | 2 (1) | .054    | .054  | 1100            | 1100         | 1100 |       |      | 1270 | .00           |                     |
|     | .190-32             | AS    | AC                      | A4                      | LAS   | LAC                     | LA4                                            | 032    | 1     | .038    | .038  | .406            | .405         | .405 | .470  | .170 | .270 | .36           |                     |
|     | (#10-32)            | 7.0   | 7.0                     | 7.1                     | Litto | LAIO                    | Litti                                          | 002    | 2 (1) | .054    | .054  | 1100            | 1100         | 1100 | 1110  |      | 1270 | .00           |                     |
|     | .250-20<br>(1/4-20) | AS    | AC                      | -                       | LAS   | LAC                     | -                                              | 0420   | 2     | .054    | .054  | .515            | .514         | .510 | .600  | .210 | .310 | .42           |                     |
|     | .250-28<br>(1/4-28) | AS    | AC                      | -                       | LAS   | LAC                     | -                                              | 0428   | 2     | .054    | .054  | .515            | .514         | .510 | .600  | .210 | .310 | .42           |                     |

### All dimensions are in millimeters.

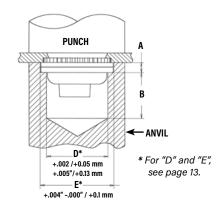
|   |            |       |                         | Ту                      | ре    |                         |                         |        |       |              |           |                 |       |       |       |      |      |                     |
|---|------------|-------|-------------------------|-------------------------|-------|-------------------------|-------------------------|--------|-------|--------------|-----------|-----------------|-------|-------|-------|------|------|---------------------|
|   | Thread     |       | Non-Locking             |                         |       | Self-Locking            |                         | Thread | Shank | ۸            | Min.      | Hole<br>Size in | c     | D     | _     | т    | т    | Min.<br>Dist.       |
|   | Size x     | ı     | Fastener Matei          | rial                    | F     | Fastener Material       |                         |        | Code  | A<br>(Shank) | Sheet     | Sheet           | Max.  | Max.  | ±0.38 | Max. | Max. | Hole                |
| ပ | Pitch      | Steel | 300 Series<br>Stainless | 400 Series<br>Stainless | Steel | 300 Series<br>Stainless | 400 Series<br>Stainless |        |       | Max.         | Thickness | +0.08           |       |       |       |      |      | <b>©</b> To<br>Edge |
| Ξ | M3 x 0.5   | AS    | AC                      | A4                      | LAS   | LAC                     | LA4                     | M3     | 1     | 0.97         | 0.97      | 7.37            | 7.35  | 7.37  | 9.14  | 3.31 | 4.83 | 7.62                |
| H | IVIO X U.O | AS    | AC                      | A4                      | LAS   | LAC                     | AC LAT                  | IVIO   | 2 (1) | 1.38         | 1.38      | 1.31            | 1.33  | 1.31  | 9.14  | 3.31 | 4.03 | 1.02                |
| Ξ | M4 x 0.7   | AS    | AC                      | A4                      | LAS   | LAC                     | LA4                     | M4     | 1     | 0.97         | 0.97      | 9,35            | 9.33  | 9,28  | 11.18 | 3.31 | 5.34 | 8.64                |
| 1 | W14 X U.7  | AS    | AC                      | Α4                      | LAS   | LAC                     | LA4                     | IVI    | 2 (1) | 1.38         | 1.38      | 3,33            | 3.33  | 3.20  | 11.10 | 3.31 | 3,34 | 0.04                |
|   | M5 x 0.8   | AS    | AC                      | A4                      | LAS   | LAC                     | LA4                     | M5     | 1     | 0.97         | 0.97      | 10.31           | 10,29 | 10.29 | 11.94 | 4.32 | 6.86 | 9.14                |
|   | IVIO X U.O | AO    | AC                      | Α4                      | LAS   | LAC                     | LA4                     | IVIO   | 2 (1) | 1.38         | 1.38      | 10.31           | 10.23 | 10.23 | 11.34 | 4.32 | 0.00 | 3.14                |
|   | M6 x 1     | AS    | AC                      | ı                       | LAS   | LAC                     | ı                       | M6     | 2     | 1.38         | 1.38      | 13.08           | 13.06 | 12.96 | 15.24 | 5.34 | 7.88 | 10.67               |

<sup>(1)</sup> This shank code is not available for A4 and LA4 nuts.

### **MATERIAL AND FINISH SPECIFICATIONS**

|          |                                                      |                                                                                                    |                             | Faster                                          | ner Materia   | als                                              |     |                                                                           | Standar                                            | d Finishes                                                               |                                                    |                                       | F II                         |                              |
|----------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------|---------------|--------------------------------------------------|-----|---------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------|------------------------------|------------------------------|
|          |                                                      | Threads                                                                                            |                             |                                                 |               |                                                  |     | Non-lo                                                                    | cking                                              |                                                                          | Self-locking                                       |                                       | For U<br>Sheet Hai           |                              |
|          | Non-locking                                          | Self-locking                                                                                       |                             | Retainer                                        |               | ı                                                | Nut | Retainer & Nut                                                            | Retainer & Nut                                     | Retainer                                                                 | Retainer                                           | Nut                                   | (2                           |                              |
| Туре     | Internal,<br>ASME<br>B1.1, 2B/<br>ASME<br>B1.13M, 6H | Internal, UNJ Class 3B<br>per ASME B1.15 /<br>MJ Class 4H6H per<br>ASME B1.21M<br>(M6 thread 4H5H) | Hardened<br>Carbon<br>Steel | Hardened<br>400<br>Series<br>Stainless<br>Steel | 300<br>Series | 300<br>Series<br>Carbon Stainless<br>Steel Steel |     | Zinc Plated<br>per ASTM B633,<br>SC1 (5µm),<br>Type III, Colorless<br>(3) | Passivated<br>and/or<br>tested per<br>ASTM<br>A380 | Zinc Plated<br>per ASTM B633,<br>SC1 (5µm),<br>Type III Colorless<br>(3) | Passivated<br>and/or<br>tested per<br>ASTM<br>A380 | Black<br>Dry-film<br>Lubricant<br>(4) | HRB 70/<br>HB 125<br>or Less | HRB 88/<br>HB 183<br>or Less |
| AS       | •                                                    |                                                                                                    | •                           |                                                 |               | •                                                |     |                                                                           |                                                    |                                                                          |                                                    |                                       |                              |                              |
| AC       | •                                                    |                                                                                                    |                             |                                                 | •             |                                                  | •   |                                                                           |                                                    |                                                                          |                                                    |                                       |                              |                              |
| A4       | •                                                    |                                                                                                    |                             |                                                 |               |                                                  |     |                                                                           |                                                    |                                                                          |                                                    |                                       |                              |                              |
| LAS      |                                                      |                                                                                                    |                             |                                                 |               |                                                  |     |                                                                           |                                                    | •                                                                        |                                                    | •                                     |                              |                              |
| LAC      |                                                      | •                                                                                                  |                             |                                                 | •             |                                                  | •   |                                                                           |                                                    |                                                                          |                                                    |                                       |                              | , and the second             |
| LA4      |                                                      | •                                                                                                  |                             | •                                               |               |                                                  | •   |                                                                           |                                                    |                                                                          | •                                                  | •                                     |                              | •                            |
| Part num | ber codes for finis                                  | hes                                                                                                |                             |                                                 |               |                                                  |     | ZI                                                                        | None                                               |                                                                          | MD                                                 |                                       |                              |                              |

- (2) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (3) See PEM Technical Support section of our web site (www.pemnet.com) for related plating standards and specifications.
- (4) Temperature limit 400° F / 204° C.


### FLOATING SELF-CLINCHING FASTENERS

### **INSTALLATION**

- Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- Place fastener into the anvil hole and place the mounting hole (preferably the punch side) over the shank of the fastener.
- With installation punch and anvil surfaces parallel, apply sufficient squeezing force until anvil contacts the mounting sheet. Drawing shows suggested tooling for applying these forces.

### PEMSERTER® Installation Tooling - AC/AS/LAC/LAS/A4/LA4 NUTS

| Thread  | Count<br>F | erbore<br>\ | Hole Depth Bel | ow Counterbore<br>3 | Anvil Part | Punch     |
|---------|------------|-------------|----------------|---------------------|------------|-----------|
| Code    | ±.001      | ±0.03       | ±.005          | ±0.13               | Number     | Part      |
| 440/M3  | .054       | 1.37        | .258           | 6.55                | 8013889    | 975200048 |
| 632     | .054 1.37  |             | .258           | 6.55                | 8013890    | 975200048 |
| 832/M4  | .054       | 1.37        | .258           | 6.55                | 8013891    | 975200048 |
| 032/M5  | .071       | 1.8         | .241           | 6.12                | 8013892    | 975200048 |
| 0420/M6 | .092       | 2.34        | .220           | 5.59                | 8021392    | 8012030   |



### **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.

### PERFORMANCE DATA<sup>(1)(2)</sup> AC/AS/LAC/LAS NUTS

|        |              |       |                        |                               | Test Sheet M                         | aterial                |                               |                                      |
|--------|--------------|-------|------------------------|-------------------------------|--------------------------------------|------------------------|-------------------------------|--------------------------------------|
|        | Thread       | Shank | 5                      | 052-H34 Aluminu               | n                                    |                        | Cold-Rolled Steel             |                                      |
|        | Code         | Code  | Installation<br>(lbs.) | Retainer<br>Pushout<br>(Ibs.) | Retainer<br>Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Retainer<br>Pushout<br>(lbs.) | Retainer<br>Torque-out<br>(in. lbs.) |
| Ω      | 440          | 1     | 1500                   | 215                           | 65                                   | 3000                   | 300                           | 85                                   |
| 3      | 440          | 2     | 2000                   | 225                           | 80                                   | 3000                   | 300                           | 150                                  |
| Ψ.     | 632          | 1     | 2000                   | 240                           | 140                                  | 3000                   | 300                           | 150                                  |
| N<br>N | 032          | 2     | 2000                   | 250                           | 150                                  | 3000                   | 300                           | 175                                  |
|        | 832          | 1     | 2000                   | 250                           | 140                                  | 3000                   | 300                           | 150                                  |
|        | 032          | 2     | 2000                   | 265                           | 150                                  | 3000                   | 400                           | 200                                  |
|        | 022          | 1     | 2000                   | 300                           | 150                                  | 3500                   | 400                           | 150                                  |
|        | 032          | 2     | 2000                   | 350                           | 175                                  | 3300                   | 450                           | 200                                  |
|        | 0420<br>0428 | 2     | 3000                   | 400                           | 325                                  | 5000                   | 500                           | 325                                  |

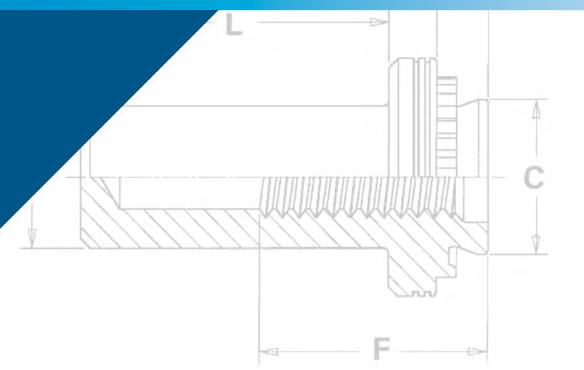
|     |        |       |                      |                            | Test Sheet M                    | aterial              |                            |                                 |
|-----|--------|-------|----------------------|----------------------------|---------------------------------|----------------------|----------------------------|---------------------------------|
|     | Thread | Shank | 5                    | 052-H34 Aluminur           | n                               |                      | Cold-Rolled Steel          |                                 |
| 2   | Code   | Code  | Installation<br>(kN) | Retainer<br>Pushout<br>(N) | Retainer<br>Torque-out<br>(N-m) | Installation<br>(kN) | Retainer<br>Pushout<br>(N) | Retainer<br>Torque-out<br>(N-m) |
| T B | М3     | 1     | 6.7                  | 956                        | 7.3                             | 13.3                 | 1334                       | 9.6                             |
| ш   |        | 2     | 8.9                  | 1000                       | 9                               | 13.3                 | 1334                       | 16.9                            |
| Σ   | M4     | 1     | 8.9                  | 1112                       | 15.8                            | 13.3                 | 1334                       | 16.9                            |
|     | IVI4   | 2     | 8.9                  | 1178                       | 16.9                            | 13.3                 | 1779                       | 22.6                            |
|     | M5     | 1     | 8.9                  | 1334                       | 16.9                            | 15.6                 | 1779                       | 16.9                            |
|     | CIVI   | 2     | 8.9                  | 1556                       | 19.7                            | 15.6                 | 2001                       | 22.6                            |
|     | M6     | 2     | 13.3                 | 1779                       | 36.7                            | 22.2                 | 2224                       | 36.7                            |

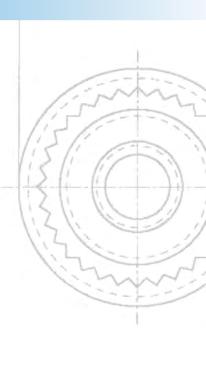
### A4/LA4<sup>(3)</sup> NUTS

|       |        | 1                      | est Sheet Materia             | I                                    |
|-------|--------|------------------------|-------------------------------|--------------------------------------|
|       | Thread | 300                    | Series Stainless S            | iteel                                |
| FIED  | Code   | Installation<br>(lbs.) | Retainer<br>Pushout<br>(lbs.) | Retainer<br>Torque-out<br>(in. lbs.) |
| UNIFI | 440    | 9000                   | 200                           | 85                                   |
|       | 632    | 10000                  | 200                           | 85                                   |
|       | 832    | 12000                  | 200                           | 85                                   |
|       | 032    | 13000                  | 250                           | 125                                  |

|       |        | 1                    | est Sheet Materia          | I                               |
|-------|--------|----------------------|----------------------------|---------------------------------|
|       | Thread | 300                  | Series Stainless S         | teel                            |
| ETRIC | Code   | Installation<br>(kN) | Retainer<br>Pushout<br>(N) | Retainer<br>Torque-out<br>(N-m) |
| M     | М3     | 40                   | 890                        | 9.6                             |
|       | M4     | 53                   | 890                        | 9.6                             |
|       | M5     | 57                   | 1100                       | 14.1                            |

(3) Specifically designed for installation into stainless steel.


(2) For LAC, LAS and LA4 nuts, thread locking performance is equivalent to applicable NASM25027 specifications. Consult document PEM-REF25027 for details.

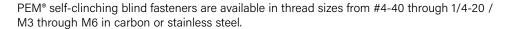

<sup>(1)</sup> Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.



PEM® self-clinching blind fasteners are used in applications requiring closed thread ends.





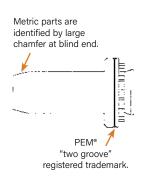


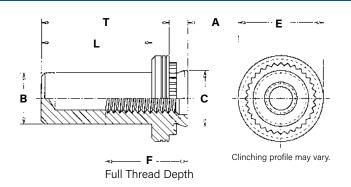

### **SELF-CLINCHING BLIND FASTENERS**

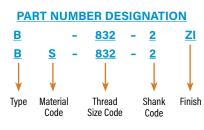
PEM® brand self-clinching blind fasteners provide permanently mounted blind threads in metal sheets as thin as .040"/1 mm.

- Provides barrier to protect threads against foreign matter.
- Limits screw penetration, protecting internal components from potential damage.
- Available on special order with free-running locking thread feature.

PEM® blind fasteners employ the proven PEM® self-clinching design and are easily installed into properly sized holes. Shanks of PEM® fasteners act as their own pilots. PEM® blind fasteners can be installed with any standard press applying squeezing forces between parallel surfaces.






### **SELF-CLINCHING BLIND FASTENERS**







### All dimensions are in inches.

|     | Thread   | Typ<br>Fastene | e<br>er Material   | Thread      | Shank | A<br>(Shank) | Min.<br>Sheet | Hole Size<br>in Sheet | В    | С    | E      | F    | L    | т      | Min. Dist.               |      |      |      |      |      |     |
|-----|----------|----------------|--------------------|-------------|-------|--------------|---------------|-----------------------|------|------|--------|------|------|--------|--------------------------|------|------|------|------|------|-----|
|     | Size     | Steel          | Stainless<br>Steel | Code<br>(1) | Code  | Max.         | Thickness     | + .003<br>000         | Max. | Max. | ± .010 | Min. | Max. | ± .010 | Hole <b>©</b><br>to Edge |      |      |      |      |      |     |
|     | .112-40  | В              | BS                 | 440         | 1     | .038         | .040          | .166                  | .150 | .165 | .250   | .210 | .335 | .380   | .19                      |      |      |      |      |      |     |
| Q   | (#4-40)  | D              | DO                 | 440         | 2     | .054         | .056          | .100                  | 1100 | .105 | .230   | .210 | .555 | .300   | .13                      |      |      |      |      |      |     |
| FIE | .138-32  | В              | DC                 | can         | 1     | .038         | .040          | 1075                  | .169 | 107  | 200    | 000  | 225  | 200    | 20                       |      |      |      |      |      |     |
| _   | (#6-32)  | В              | B2                 | 82          | BS    | RS           | BS            | B2                    | DS   | 632  | 2      | .054 | .056 | .1875  | .109                     | .187 | .280 | .230 | .335 | .380 | .22 |
| Z   | .164-32  | D              | R                  | В           | DC    | 020          | 1             | .038                  | .040 | 010  | 204    | 010  | 210  | 200    | 205                      | 440  | 07   |      |      |      |     |
|     | (#8-32)  | В              | BS                 | 832         | 2     | .054         | .056          | .213                  | .204 | .212 | .310   | .280 | .385 | .440   | .27                      |      |      |      |      |      |     |
|     | .190-32  | Ь              | DO.                | 000         | 1     | .038         | .040          | 050                   | 005  | 040  | 0.40   | 000  | 005  | 440    | 00                       |      |      |      |      |      |     |
|     | (#10-32) | В              | BS                 | 032         | 2     | .054         | .056          | .250                  | .235 | .249 | .340   | .280 | .385 | .440   | .28                      |      |      |      |      |      |     |
|     | .250-20  | Б              | DO.                | 0.400       | 1     | .054         | .056          | 044                   | 205  | 0.40 | 400    | 010  | 500  | 500    | 0.4                      |      |      |      |      |      |     |
|     | (1/4-20) | В              | BS                 | 0420        | 2     | .087         | .090          | .344                  | .305 | .343 | .430   | .310 | .500 | .560   | .34                      |      |      |      |      |      |     |

### All dimensions are in millimeters.

|     | Thread          | Typ<br>Fastene | e<br>r Material    | Thread      | Shank | A<br>(Shank) | Min.<br>Sheet | Hole Size<br>in Sheet | В    | С    | E      | F    | L    | Т      | Min. Dist.               |
|-----|-----------------|----------------|--------------------|-------------|-------|--------------|---------------|-----------------------|------|------|--------|------|------|--------|--------------------------|
|     | Size x<br>Pitch | Steel          | Stainless<br>Steel | Code<br>(1) | Code  | Max.         | Thickness     | + 0.08                | Max. | Max. | ± 0.25 | Min. | Max. | ± 0.25 | Hole <b>⊈</b><br>to Edge |
| 4.5 | Mayne           | В              | BS                 | M3          | 1     | 0.97         | 1             | 4.22                  | 3.84 | 4.0  | 6,35   | E 2  | 0.5  | 9.6    | 4.0                      |
| RIC | M3 x 0.5        | D              | DO                 | IVIO        | 2     | 1.38         | 1.4           | 4.22                  | 3.04 | 4.2  | 0.33   | 5.3  | 8.5  | 9.0    | 4.8                      |
| -   | M407            |                | DO.                |             | 1     | 0.97         | 1             | F 41                  | 5.0  | F 00 | 705    | 71   | 0.0  | 11.0   | 0.0                      |
| ΣE  | M4 x 0.7        | В              | BS                 | M4          | 2     | 1.38         | 1.4           | 5.41                  | 5.2  | 5.38 | 7.95   | 7.1  | 9.8  | 11.2   | 6.9                      |
|     | MEOO            | В              | DO.                | МЕ          | 1     | 0.97         | 1             | 0.05                  | 0.00 | 0.00 | 0.75   | 71   | 0.0  | 11.0   | 71                       |
|     | M5 x 0.8        | В              | BS                 | M5          | 2     | 1.38         | 1.4           | 6.35                  | 6.02 | 6.33 | 8.75   | 7.1  | 9.8  | 11.2   | /.1                      |
|     | MC v 1          | В              | DC                 | MG          | 1     | 1.38         | 1.4           | 0.75                  | 70   | 0.72 | 11.1   | 70   | 10.7 | 14.2   | 0.6                      |
|     | M6 x 1          | В              | BS                 | M6          | 2     | 2.21         | 2.29          | 8.75                  | 7.8  | 8.73 | 11.1   | 7.8  | 12.7 | 14.3   | 8.6                      |

<sup>(1)</sup> PEM® B™ nuts are available on special order with a free-running locking thread feature allowing mating screw to turn freely until clamp load is applied. For more information, contact PEM® Technical Support.

### MATERIAL AND FINISH SPECIFICATIONS

|               | Threads                                         | Fastene                  | r Materials                   | Stand                                        | ard Finishes                                                        | For Use in She                | et Hardness: (2)              |
|---------------|-------------------------------------------------|--------------------------|-------------------------------|----------------------------------------------|---------------------------------------------------------------------|-------------------------------|-------------------------------|
| Туре          | Internal,<br>ASME B1.1, 2B /<br>ASME B1.13M, 6H | Hardened<br>Carbon Steel | 300 Series<br>Stainless Steel | Passivated and/or<br>Tested Per<br>ASTM A380 | Zinc Plated per<br>ASTM B633, SC1 (5µm),<br>Type III, Colorless (1) | HRB 80 /<br>HB 150<br>or less | HRB 70 /<br>HB 125<br>or less |
| В             | В • •                                           |                          |                               |                                              | -                                                                   | •                             |                               |
| BS            | •                                               |                          | •                             | •                                            |                                                                     |                               | •                             |
| Part Number C | ode For Finishes                                |                          |                               | None                                         | ZI                                                                  |                               |                               |

- (1) See PEM Technical Support section of our web site for related plating standards and specifications.
- (2) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.

### **SELF-CLINCHING BLIND FASTENERS**

### **INSTALLATION**

- 1. Prepare properly sized mounting hole in the sheet. Do not perform any secondary operations such as deburring.
- Place the barrel of the fastener into the anvil hole and place the mounting hole (preferably the punch side) over the shank of the fastener.
- With the installation punch and anvil surfaces parallel, apply squeezing force until the flange contacts the mounting sheet. The sketch at the right indicates suggested tooling for applying these forces.

# Chamfer on anvil .010" +.005 -.000 / 0.25 mm +0.13 x 45° Nom. ANVIL \*For "B" and "L", see page 17. + .006" / 0.15 mm + .003" / 0.08 mm

### **PEMSERTER® Installation Tooling**

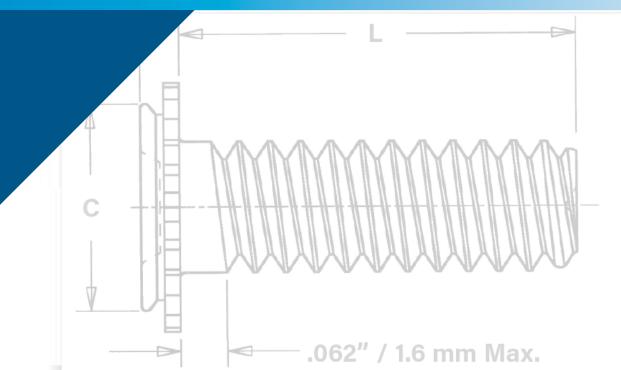
| Туре | Thread<br>Code | Anvil<br>Part<br>Number | Punch<br>Part<br>Number |
|------|----------------|-------------------------|-------------------------|
| B/BS | 440/M3         | 975200001               | 975200048               |
| B/BS | 632            | 975200002               | 975200048               |
| B/BS | 832/M4         | 975200003               | 975200048               |
| B/BS | 032/M5         | 975200004               | 975200048               |
| B/BS | 0420/M6        | 975200005               | 975200048               |

### **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for this product.

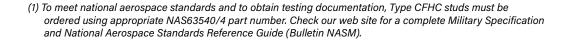
### PERFORMANCE DATA(1)

|    |        |       |                         |                             |                   | Test Sheet                   | Material                    |                   |                              |
|----|--------|-------|-------------------------|-----------------------------|-------------------|------------------------------|-----------------------------|-------------------|------------------------------|
|    | Thread | Shank | Sheet                   | 5052                        | -H34 Alum         | num                          | Col                         | d-Rolled St       | eel                          |
|    | Code   | Code  | Thick-<br>ness<br>(in.) | Install-<br>ation<br>(lbs.) | Pushout<br>(lbs.) | Torque-<br>out<br>(in. lbs.) | Install-<br>ation<br>(lbs.) | Pushout<br>(lbs.) | Torque-<br>out<br>(in. lbs.) |
|    | 440    | 1     | .040                    | 1600                        | 90                | 10                           | 2500                        | 125               | 13                           |
| ED | 440    | 2     | .056                    | 2000                        | 170               | 13                           | 3500                        | 230               | 18                           |
| 正  | 632    | 1     | .040                    | 1800                        | 95                | 17                           | 3000                        | 130               | 18                           |
| Ξ  | 032    | 2     | .056                    | 2800                        | 190               | 22                           | 4000                        | 260               | 28                           |
|    | 832    | 1     | .040                    | 2000                        | 105               | 23                           | 3500                        | 135               | 30                           |
|    | 032    | 2     | .056                    | 3000                        | 220               | 35                           | 5000                        | 285               | 45                           |
|    | 032    | 1     | .040                    | 2100                        | 110               | 32                           | 4000                        | 140               | 35                           |
|    | 032    | 2     | .056                    | 3500                        | 190               | 50                           | 5000                        | 250               | 60                           |
|    | 0420   | 1     | .056                    | 4000                        | 315               | 00                           | 6000                        | 400               | 105                          |
|    | 0420   | 2     | .090                    | 4000                        | 315               | 90                           | 0000                        | 400               | 105                          |


|     |        |       |                        |                           |                | Test Sheet              | Material                  |                |                         |
|-----|--------|-------|------------------------|---------------------------|----------------|-------------------------|---------------------------|----------------|-------------------------|
|     | Thread | Shank | Sheet                  | 5052                      | 2-H34 Alumi    | num                     | Col                       | d-Rolled St    | eel                     |
|     | Code   | Code  | Thick-<br>ness<br>(mm) | Install-<br>ation<br>(kN) | Pushout<br>(N) | Torque-<br>out<br>(N-m) | Install-<br>ation<br>(kN) | Pushout<br>(N) | Torque-<br>out<br>(N-m) |
| RIC | М3     | 1     | 1                      | 7.1                       | 400            | 1.15                    | 11.1                      | 550            | 1.5                     |
| TR  | IVIO   | 2     | 1.4                    | 9                         | 750            | 1.47                    | 14                        | 1010           | 2.05                    |
| ш   | M4     | 1     | 1                      | 8.9                       | 470            | 2.6                     | 15.6                      | 600            | 3.4                     |
| Σ   | 1014   | 2     | 1.4                    | 12.5                      | 970            | 4                       | 20                        | 1250           | 5.1                     |
|     | M5     | 1     | 1                      | 9.3                       | 480            | 3.6                     | 17.8                      | 620            | 4                       |
|     | IVIO   | 2     | 1.4                    | 14                        | 845            | 5.7                     | 25                        | 1112           | 6.8                     |
|     | M6     | 1     | 1.4                    | 17.8                      | 1400           | 10.2                    | 25.7                      | 1760           | 11.9                    |
|     | IVIO   | 2     | 2.3                    | 17.0                      | 1400           | 10.2                    | 20.7                      | 1700           | 11.9                    |

(1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.



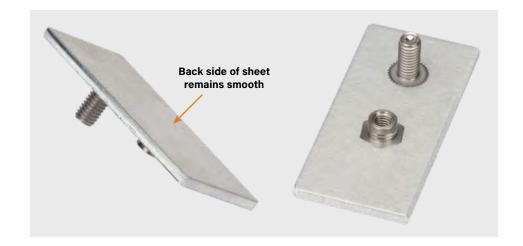

PEM® concealed-head self-clinching studs and standoffs install permanently and promote smooth designs.



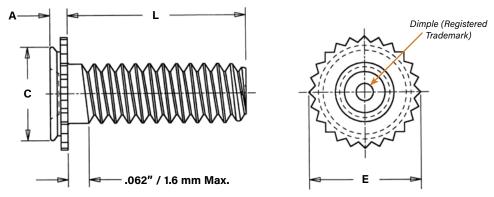


### Concealed-head self-clinching studs and standoffs install permanently and promote smooth designs:

- Install permanently in steel or aluminum sheets as thin as .062" / 1.6 mm to provide strong and reusable threads for mating hardware in a wide range of assembly applications.
- Allow the side of the sheet opposite installation to remain smooth and unmarred.
- One side installation additionally serves to satisfy strict ingress protection (IP) requirements where the sheet must remain completely sealed from air, liquid, dust, gases or other potentially infiltrating elements.
- Only require a blind milled hole to the recommended size and minimum depth.
- Install using a PEMSERTER® press or other standard press.
- CFHC<sup>™</sup> studs can be ordered to NAS63540/4 specifications.<sup>(1)</sup>







**Concealed-head Stud** 



**Concealed-head Standoff** 



### CHA™, CFHA™, CHC™ AND CFHC™ ALUMINUM AND STAINLESS STEEL STUDS



Clinching profile may vary.

### All dimensions are in inches.

|   | Thread   | Ту       | ре                 | Thread |       |      | ngth Code<br>code is in 16 | "L" ±.015<br>6ths of an in | ch)  |      | Min.<br>Sheet  | Blind<br>Mounting<br>Hole Dia. | Min.<br>Depth<br>of Blind | A               | E     | _c   | Min. Dist.               | Max.<br>Hole In   |
|---|----------|----------|--------------------|--------|-------|------|----------------------------|----------------------------|------|------|----------------|--------------------------------|---------------------------|-----------------|-------|------|--------------------------|-------------------|
|   | Size     | Aluminum | Stainless<br>Steel | Code   | .250  | .375 | .500                       | .625                       | .750 | 1.00 | Thick-<br>ness | +.003<br>000                   | Hole<br>(1)               | (Shank)<br>Max. | ±.010 | Max. | Hole <b>⊈</b><br>To Edge | Attached<br>Parts |
| Ω | .112-40  | CHA      | CHC                | 440    | 4     |      | 0                          | 10                         | 10   |      | .062           | 170                            | .043                      | .041            | 20.5  | 171  | 150                      | 105               |
| = | (#4-40)  | CFHA     | CFHC               | 440    | 4     | 6    | 8                          | 10                         | 12   | _    | .093           | .172                           | .075                      | .071            | .205  | .171 | .156                     | .135              |
| = | .138-32  | CHA      | CHC                | coo    | 632 4 |      | 0                          | 10                         | 10   | 10   | .062           | 010                            | .043                      | .041            | 050   | 010  | 100                      | 100               |
| Z | (#6-32)  | CFHA     | CFHC               | 632    | 4     | 6    | 8                          | 10                         | 12   | 16   | .093           | .213                           | .075                      | .071            | .250  | .212 | .188                     | .160              |
|   | .164-32  | CHA      | CHC                | 000    | 000   |      | 0                          | 10                         | 10   | 10   | .062           | 000                            | .043                      | .041            | 200   | 000  | 010                      | 105               |
|   | (#8-32)  | CFHA     | CFHC               | 832    | 4     | 6    | 8                          | 10                         | 12   | 16   | .093           | .290                           | .075                      | .071            | .328  | .289 | .219                     | .185              |
|   | .190-32  | CHA      | CHC                | 022    | 032 - | C    | 0                          | 10                         | 10   | 10   | .062           | 212                            | .043                      | .041            | 250   | 211  | 250                      | 210               |
|   | (#10-32) | CFHA     | CFHC               | 032    |       | 6    | 8                          | 10                         | 12   | 16   | .093           | .312                           | .075                      | .071            | .350  | .311 | .250                     | .210              |

### All dimensions are in millimeters.

|     | Thread<br>Size x | Ту       | pe                 | Thread<br>Code |   | (L |    | Code "L" ±<br>le is in mi | :0.4<br>llimeters) |    |    | Min.<br>Sheet<br>Thick- | Blind<br>Mounting<br>Hole Dia. | UI DIIIIU   | A<br>(Shank) | E<br>±0,25 | C<br>Max. | Min. Dist.<br>Hole <b>¢</b> | Max.<br>Hole In<br>Attached |
|-----|------------------|----------|--------------------|----------------|---|----|----|---------------------------|--------------------|----|----|-------------------------|--------------------------------|-------------|--------------|------------|-----------|-----------------------------|-----------------------------|
| ပ   | Pitch            | Aluminum | Stainless<br>Steel |                |   |    |    |                           |                    |    |    | ness                    | +0.08                          | Hole<br>(1) | Max.         |            |           | To Edge                     | Parts                       |
| I B | M3 x 0.5         | CHA      | CHC                | M3             | 6 | 8  | 10 | 12                        | 16                 | 20 | _  | 1.6                     | 4.37                           | 1.1         | 1.04         | 5.21       | 4.35      | 4                           | 3.6                         |
| 12  |                  | CFHA     | CFHC               |                |   |    |    |                           |                    |    |    | 2.4                     |                                | 1.91        | 1.8          |            |           |                             |                             |
| Σ   | M4 x 0.7         | CHA      | CHC                | M4             | 6 | 0  | 10 | 10                        | 16                 | 20 | 25 | 1.6                     | 7.37                           | 1.1         | 1.04         | 8.33       | 7.35      | 5.6                         | 4.6                         |
|     | W4 X U.7         | CFHA     | CFHC               | IVI4           | 0 | b  | 10 | 12                        | 10                 | 20 | 25 | 2.4                     | 1.31                           | 1.91        | 1.8          | 8.33       | 7.35      | 5.0                         | 4.0                         |
|     | MENOO            | CHA      | CHC                | ME             |   |    | 10 | 10                        | 10                 | 20 | 25 | 1.6                     | 702                            | 1.1         | 1.04         | 0.00       | 70        | 6.4                         | F.C.                        |
|     | M5 x 0.8         | CFHA     | CFHC               | M5             | _ | _  | 10 | 12                        | 16                 | 20 | 25 | 2.4                     | 7.93                           | 1.91        | 1.8          | 8.89       | 7.9       | 6.4                         | 5.6                         |

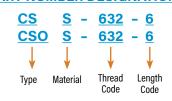
<sup>(1)</sup> Blind holes may be deeper than minimums except where sheet material is at or near minimum thickness. Fasteners should always be installed so the flange is flush with the surface of the sheet.

### **PART NUMBER DESIGNATION**

### CSS™ AND CSOS™ STAINLESS STEEL STANDOFFS

## Style #1 Style #2 Style #3 TYPE CSS TYPE CSOS A L L H H H H Clinching profile may vary.

### All dimensions are in inches.


|     | Thread   | Туре               | Thread |                  | (                |                  | th Code "<br>code is ir                                                                 |      | 005<br>f an inch | )                 |                   | Min.<br>Sheet  | Blind<br>Mounting<br>Hole Dia. | Min.<br>Depth<br>of  | Min.<br>Depth<br>Full | A<br>(Shank) | B<br>Max. | .c   | Н    | Min.<br>Dist.            |
|-----|----------|--------------------|--------|------------------|------------------|------------------|-----------------------------------------------------------------------------------------|------|------------------|-------------------|-------------------|----------------|--------------------------------|----------------------|-----------------------|--------------|-----------|------|------|--------------------------|
|     | Size     | Stainless<br>Steel | Code   | .187             | .250             | .312             | .375                                                                                    | .500 | .625             | .750              | 1.00              | Thick-<br>ness | +.003                          | Blind<br>Hole<br>(4) | Thread<br>F           | Max.         | (5)       | Max. | Nom. | Hole <b>©</b><br>To Edge |
|     | .112-40  | CSS                | 440    | 3(1)             | 4(2)             | 5 <sup>(2)</sup> | 6 <sup>(2)</sup>                                                                        | 8(3) | 10(3)            | 12 <sup>(3)</sup> | 16 <sup>(3)</sup> | .062           | .213                           | .043                 | .188                  | .041         | .165      | .212 | .250 | .188                     |
| E D | (#4-40)  | CSOS               | 440    | J**              | 4'-'             | 2,-7             | 07                                                                                      | 0.07 | .093 .0          | .075              | .100              | .072           | .103                           | ،۲۱۲                 | .230                  | 100          |           |      |      |                          |
| 표   | .138-32  | CSS                | 632    | 3(1)             | 4(1)             | 5 <sup>(2)</sup> | 6(2)                                                                                    | Q(3) | 10(3)            | 12(3)             | 16(3)             | .062           | .290                           | .043                 | .250                  | .041         | ,213      | .289 | .312 | ,219                     |
| Z   | (#6-32)  | CSOS               | 032    | J**              | 4.7              | יני ט            | 6 <sup>(2)</sup> 8 <sup>(3)</sup> 10 <sup>(3)</sup> 12 <sup>(3)</sup> 16 <sup>(3)</sup> | 10.3 | .093             | .230              | .075              | .230           | .072                           | .213                 | .203                  | .312         | .213      |      |      |                          |
|     | .164-32  | CSS                | 832    | 3(1)             | 4 <sup>(1)</sup> | 5 <sup>(2)</sup> | 6 <sup>(2)</sup>                                                                        | 8(3) | 10(3)            | 12 <sup>(3)</sup> | 16 <sup>(3)</sup> | .062           | .312                           | .043                 | .250                  | .041         | .245      | .311 | .344 | .250                     |
|     | (#8-32)  | CSOS               | 032    | J**              | 4."              | יני ט            | 0                                                                                       | 0.07 | 10.5             | IZ                | 10.5              | .093           | .312                           | .075                 | .230                  | .072         | .240      | .311 | .344 | .230                     |
|     | .190-32  | CSS                | 032    | 3 <sup>(1)</sup> | 4 <sup>(1)</sup> | 5 <sup>(1)</sup> | 6 <sup>(1)</sup>                                                                        |      | .062             | .344              | .043              | .375           | .041                           | .290                 | .343                  | .375         | ,281      |      |      |                          |
|     | (#10-32) | CSOS               | 032    | 3"               | 4."              | ס"               | 0"                                                                                      | 8.7  | 10.57            | IZ                | 10.07             | .093           | .344                           | .075                 | .3/3                  | .072         | .290      | .343 | .3/3 | .201                     |
|     | .250-20  | CSS                | 0420   | 3(1)             | 4 <sup>(1)</sup> | 5 <sup>(1)</sup> | 6 <sup>(1)</sup>                                                                        | 8(2) | 10(2)            | 12 <sup>(3)</sup> | 16 <sup>(3)</sup> | .062           | .390                           | .043                 | .375                  | .041         | .354      | .389 | .438 | .375                     |
|     | (1/4-20) | CSOS               | 0420   | 3"/              | 40               | טייי             | 0"                                                                                      | 8,27 | 10(2)            | 12(3)             | 10(3)             | .093           | .390                           | .075                 | .3/5                  | .072         | .334      | .309 | .438 | .3/3                     |

### All dimensions are in millimeters.

|     | Thread<br>Size x<br>Pitch | Type Stainless Steel | Thread<br>Code |                  |                  | Lengt<br>(Length | th Code '<br>1 code is | 'L" +0.05<br>in millir | -0.13<br>neters)  |       |                   | Min.<br>Sheet<br>Thick-<br>ness | Blind<br>Mounting<br>Hole<br>Diameter<br>+0.08 | Min.<br>Depth<br>of<br>Blind<br>Hole<br>(4) | Min.<br>Depth<br>Full<br>Thread<br>F | A<br>(Shank)<br>Max. | B<br>Max.<br>(5) | C<br>Max. | H<br>Nom. | Min.<br>Dist.<br>Hole <b>©</b><br>To Edge |
|-----|---------------------------|----------------------|----------------|------------------|------------------|------------------|------------------------|------------------------|-------------------|-------|-------------------|---------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------|----------------------|------------------|-----------|-----------|-------------------------------------------|
| RIC | M3 x 0.5                  | CSS<br>CSOS          | М3             | 4 <sup>(1)</sup> | 6 <sup>(1)</sup> | 8 <sup>(2)</sup> | 10 <sup>(3)</sup>      | 12(3)                  | 16 <sup>(3)</sup> | 20(3) | 25 <sup>(3)</sup> | 1.6<br>2.4                      | 5.41                                           | 1.1<br>1.91                                 | - 5                                  | 1.04<br>1.83         | 4.2              | 5.39      | 6.35      | 4.8                                       |
| F   |                           | CSUS                 |                |                  |                  | 07               |                        |                        |                   |       |                   | 2.4                             |                                                | 1.31                                        |                                      |                      |                  |           |           |                                           |
| ш   | M4 x 0.7                  | CSS                  | M4             | 4 <sup>(1)</sup> | 6 <sup>(1)</sup> | 8 <sup>(2)</sup> | 10 <sup>(2)</sup>      | 12 <sup>(3)</sup>      | 16 <sup>(3)</sup> | 20(3) | 25 <sup>(3)</sup> | 1.6                             | 7,92                                           | 1.1                                         | 6.5                                  | 1.04                 | 6,23             | 7.9       | 8.74      | 6.4                                       |
| Σ   | W14 X U.7                 | CSOS                 | WIT            | ۲                | U                | o l              | 10 <sup>(3)</sup>      | 12                     | 10                | 20    | 23                | 2.4                             | 1.52                                           | 1.91                                        | 0.5                                  | 1.83                 | 0.23             | 7.5       | 0.74      | 0.4                                       |
|     | 145 00                    | CSS                  | M5             | 4 <sup>(1)</sup> | 6 <sup>(1)</sup> | 8(1)             | 10 <sup>(2)</sup>      | 12(2)                  | 16 <sup>(3)</sup> | 20(3) | 25 <sup>(3)</sup> | 1.6                             | 8,74                                           | 1.1                                         | 9.6                                  | 1.04                 | 7.37             | 8.72      | 9,53      | 7.2                                       |
|     | M5 x 0.8                  | CSOS                 | CIVI           | 4                | 000              | 8"               | 10(2)                  | 12(2)                  | 10(0)             | 20(0) | 25(9)             | 2.4                             | 8.74                                           | 1.91                                        | 9.0                                  | 1.83                 | 1.31             | 8.72      | 9.53      | 1.2                                       |
|     | M6 x 1                    | CSOS                 | M6             | 4 <sup>(1)</sup> | 6 <sup>(1)</sup> | 8 <sup>(1)</sup> | 10 <sup>(2)</sup>      | 12 <sup>(2)</sup>      | 16 <sup>(3)</sup> | 20(3) | 25 <sup>(3)</sup> | 2.4                             | 9.9                                            | 1.91                                        | 9.6                                  | 1.83                 | 9                | 9.89      | 11.11     | 9.5                                       |

- (1) Style #1. Minimum thread length is equal to barrel length "L". Screw might not pass through shank end. Screws with lengths exceeding "L" should not be used or they may cause "jacking-out" of standoff from the sheet.
- (2) Style #2. Screw might not pass through unthreaded end. Screws with lengths exceeding "L" should not be used or they may cause "jacking-out" of standoff from the sheet.
- (3) Style #3. Blind.
- (4) Blind mounting holes may be deeper than minimums except where sheet material is at or near minimum thickness. Fasteners should always be installed so the flange is flush with the surface of the sheet.
- (5) If standoff is used as a bushing, the hole in attached part must not exceed "B" plus .020" / 0.51 mm.

### PART NUMBER DESIGNATION



### MATERIAL AND FINISH SPECIFICATIONS

|      | Thre                                           | eads                                           | Fastener | Materials                     | Fin       | iish                                            | For Use In Shee               | et Hardness (1)              |
|------|------------------------------------------------|------------------------------------------------|----------|-------------------------------|-----------|-------------------------------------------------|-------------------------------|------------------------------|
| Туре | External,<br>ASME B1.1 2A /<br>ASME B1.13M, 6g | Internal,<br>ASME B1.1 2B /<br>ASME B1.13M, 6H | Aluminum | 300 Series<br>Stainless Steel | No Finish | Passivated<br>and/or<br>tested per<br>ASTM A380 | HRB 70 /<br>HB 125<br>or Less | HRB 50 /<br>HB 89<br>or Less |
| CHA  |                                                |                                                |          |                               | •         |                                                 |                               |                              |
| CFHA |                                                |                                                |          |                               |           |                                                 |                               | •                            |
| CHC  | •                                              |                                                |          |                               |           | •                                               |                               |                              |
| CFHC | •                                              |                                                |          | •                             |           | •                                               | •                             |                              |
| CSS  |                                                |                                                |          |                               |           | •                                               |                               |                              |
| CSOS |                                                | •                                              |          | •                             |           | •                                               | •                             |                              |

(1) HRB - Hardness Rockwell "B" Scale. HB - Hardness Brinell.

### **INSTALLATION**

- 1. Mill a round blind hole to the correct minimum depth.\*
- 2. Place fastener into anvil hole.
- 3. Place the mounting hole over the shank of the fastener.
- 4. With punch and anvil surfaces parallel, apply squeezing force until the flange is flush with the mounting sheet.

### **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.

### **END MILL INFORMATION**

Double-ended, two-flute H.S.S. center-cutting end mills are available from stock.

PennEngineering does not manufacture center-cutting end mills, but we do keep a supply in stock for your convenience.



| Thread   | Fastener Type              | Required Size | PEM      |
|----------|----------------------------|---------------|----------|
| Code     |                            | End Mill      | Part No. |
| 440, M3  | CFHC, CHC, CFHA, CHA Studs | .172"         | CHM-172  |
|          | CSOS, CSS Standoffs        | .213"         | CHM-213  |
| 632      | CFHC, CHC, CFHA, CHA Studs | .213"         | CHM-213  |
|          | CSOS, CSS Standoffs        | .290"         | CHM-290  |
| 832, M4  | CFHC, CHC, CFHA, CHA Studs | .290"         | CHM-290  |
|          | CSOS, CSS Standoffs        | .312"         | CHM-312  |
| 032, M5  | CFHC, CHC, CFHA, CHA Studs | .312"         | CHM-312  |
|          | CSOS, CSS Standoffs        | .344"         | CHM-344  |
| 0420, M6 | CSOS Standoffs             | .390"         | CHM-390  |

### CFHA, CFHC, CHC, CHA csos, css Concealed-head studs Concealed-head standoffs PUNCH **PUNCH** L + .250"/ L + .250"/ 6.35 mm 6.35 mm ANVIL ANVIL

- D →

### **PEMSERTER® Installation Tooling**

D

All dimensions are in inches.

|    | Туре                    | Thread<br>Code | D<br>+.003000 | Punch<br>Part Number | Anvil<br>Part Number |
|----|-------------------------|----------------|---------------|----------------------|----------------------|
|    | CHA / CHC / CFHA / CFHC | 440            | .127          | 975200048            | 970200006300         |
| Q  | CHA / CHC / CFHA / CFHC | 632            | .139          | 975200048            | 970200007300         |
| ш. | CHA / CHC / CFHA / CFHC | 832            | .179          | 975200048            | 970200008300         |
| ш  | CHA / CHC / CFHA / CFHC | 032            | .205          | 975200048            | 970200009300         |
| Ξ  | CSS / CSOS              | 440            | .170          | 975200048            | 970200014300         |
|    | CSS / CSOS              | 632            | .218          | 975200048            | 970200015300         |
|    | CSS / CSOS              | 832            | .250          | 975200048            | 970200016300         |
|    | CSS / CSOS              | 032            | .295          | 975200048            | 970200017300         |
|    | CSS / CSOS              | 0420           | .358          | 975200048            | 970200018300         |

### All dimensions are in millimeters.

|   | Туре                    | Thread<br>Code | D<br>+0.08 | Punch<br>Part Number | Anvil<br>Part Number |
|---|-------------------------|----------------|------------|----------------------|----------------------|
| ပ | CHA / CHC / CFHA / CFHC | M3             | 3.4        | 975200048            | 970200229300         |
| = | CHA / CHC / CFHA / CFHC | M4             | 4.4        | 975200048            | 970200019300         |
| H | CHA / CHC / CFHA / CFHC | M5             | 5.4        | 975200048            | 970200020300         |
| ш | CSS / CSOS              | M3             | 4.33       | 975200048            | 970200014300         |
| Σ | CSS / CSOS              | M4             | 6.36       | 975200048            | 970200016300         |
|   | CSS / CSOS              | M5             | 7.5        | 975200048            | 970200017300         |
|   | CSS / CSOS              | M6             | 9.13       | 975200048            | 970200018300         |

<sup>\*</sup> End mills available from PennEngineering. See chart below.

### PERFORMANCE DATA(1)

|        |              |                |                              |                        | Test She          | et Material            |                   |
|--------|--------------|----------------|------------------------------|------------------------|-------------------|------------------------|-------------------|
|        |              |                | Max.<br>Tightening           | Cold-roll              | ed Steel          | 5052-H34               | Aluminum          |
|        | CSS CSOS CHC | Thread<br>Code | Torque<br>Ref.<br>(in. lbs.) | Installation<br>(lbs.) | Pullout<br>(lbs.) | Installation<br>(lbs.) | Pullout<br>(lbs.) |
|        |              |                | Concea                       | aled-head Sta          | ndoffs            |                        |                   |
|        |              | 440            | 4.75                         | 4,000                  | 300               | 2,800                  | 200               |
|        | 000          | 632            | 8.75                         | 4,500                  | 350               | 3,000                  | 240               |
|        | LSS          | 832            | 18                           | 4,800                  | 400               | 4,000                  | 270               |
|        |              | 032            | 32                           | 5,500                  | 450               | 5,000                  | 290               |
|        |              | 440            | 4.75                         | 4,300                  | 330               | 2,900                  | 220               |
|        |              | 632            | 8.75                         | 5,000                  | 360               | 3,200                  | 240               |
|        | CSOS         | 832            | 18                           | 5,300                  | 440               | 4,000                  | 300               |
|        |              | 032            | 32                           | 6,000                  | 600               | 5,000                  | 400               |
| ЕЪ     |              | 0420           | 64                           | 6,500                  | 650               | 5,500                  | 430               |
| Ξ      |              |                | Conc                         | ealed-head S           | tuds              |                        |                   |
| =      |              | 440            | 4.75                         | 1,800                  | 240               | 1,400                  | 130               |
| Z<br>O | CHC          | 632            | 8.75                         | 2,500                  | 260               | 1,800                  | 160               |
|        | CHC          | 832            | 18                           | 4,000                  | 270               | 2,800                  | 180               |
|        |              | 032            | 32                           | 5,000                  | 290               | 4,000                  | 210               |
|        |              | 440            | 4.75                         | 2,000                  | 240               | 1,500                  | 200               |
|        | CFHC         | 632            | 8.75                         | 2,700                  | 350               | 2,500                  | 260               |
|        | CFIIC        | 832            | 18                           | 3,300                  | 440               | 3,000                  | 310               |
|        |              | 032            | 32                           | 4,000                  | 680               | 3,500                  | 360               |
|        |              | 440            | 2.85                         | (2)                    | (2)               | 1,400                  | 125               |
|        | CHA          | 632            | 5.4                          | (2)                    | (2)               | 1,800                  | 135               |
|        | СПА          | 832            | 10.8                         | (2)                    | (2)               | 2,800                  | 145               |
|        |              | 032            | 19.2                         | (2)                    | (2)               | 4,000                  | 170               |
|        |              | 440            | 2.85                         | (2)                    | (2)               | 1,500                  | 190               |
|        | CFHA         | 632            | 5.4                          | (2)                    | (2)               | 2,500                  | 220               |
|        | CFHA         | 832            | 10.8                         | (2)                    | (2)               | 3,000                  | 240               |
|        |              | 032            | 19.2                         | (2)                    | (2)               | 3,500                  | 300               |

|     |      |                | Max.                    |                      | Test She       | et Material          |                |
|-----|------|----------------|-------------------------|----------------------|----------------|----------------------|----------------|
|     |      |                | Max.<br>Tightening      | Cold-roll            | ed steel       | 5052-H34             | Aluminum       |
|     | Туре | Thread<br>Code | Torque<br>Ref.<br>(N•m) | Installation<br>(kN) | Pullout<br>(N) | Installation<br>(kN) | Pullout<br>(N) |
|     |      |                | Concea                  | aled-head Sta        | ndoffs         |                      |                |
|     |      | M3             | 0.55                    | 17.8                 | 1330           | 12.5                 | 890            |
|     | CSS  | M4             | 2                       | 21.3                 | 1775           | 17.8                 | 1200           |
|     |      | M5             | 3.6                     | 24.5                 | 2000           | 22.2                 | 1290           |
|     |      | М3             | .55                     | 19.2                 | 1465           | 12.9                 | 975            |
|     | CSOS | M4             | 2                       | 23.6                 | 1955           | 17.8                 | 1335           |
| ပ   | C202 | M5             | 3.6                     | 26.7                 | 2665           | 22.2                 | 1775           |
| - H |      | M6             | 7.2                     | 28.9                 | 2860           | 24.4                 | 1915           |
| ΕT  |      |                | Conc                    | ealed-head S         | tuds           |                      |                |
| Σ   |      | M3             | 0.55                    | 8                    | 1065           | 6.2                  | 575            |
|     | CHC  | M4             | 2                       | 17.8                 | 1200           | 12.5                 | 800            |
|     |      | M5             | 3.6                     | 22.2                 | 1290           | 17.8                 | 930            |
|     |      | M3             | 0.55                    | 8.9                  | 1065           | 6.7                  | 890            |
|     | CFHC | M4             | 2                       | 14.7                 | 1955           | 13.3                 | 1375           |
|     |      | M5             | 3.6                     | 17.8                 | 3020           | 15.6                 | 1600           |
|     |      | M3             | 0.3                     | (2)                  | (2)            | 6.2                  | 555            |
|     | CHA  | M4             | 1.2                     | (2)                  | (2)            | 12.5                 | 645            |
|     |      | M5             | 2.16                    | (2)                  | (2)            | 17.8                 | 755            |
|     |      | M3             | 0.3                     | (2)                  | (2)            | 6.7                  | 845            |
|     | CFHA | M4             | 1.2                     | (2)                  | (2)            | 13.3                 | 1065           |
|     |      | M5             | 2.16                    | (2)                  | (2)            | 15.6                 | 1330           |

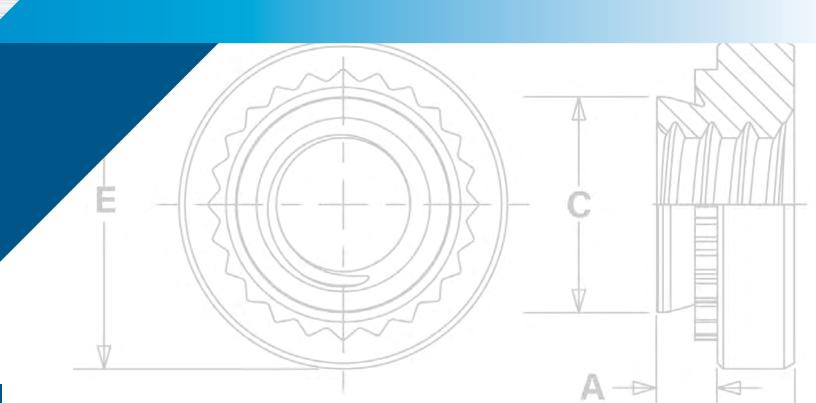
- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/ or samples for this purpose.
- (2) Not recommended.







PEM® brand self-clinching nuts install permanently in aluminum, steel or stainless steel sheets.










SELF-CLINCHING NUTS



Self-clinching nuts are installed by placing them in properly sized holes in sheets and applying a parallel squeezing force to the head of the nut. The sheet metal surrounding the head cold flows into an undercut thereby making the fastener an integral part of the sheet. A serrated clinching ring prevents the fastener from rotating after installation.



### S™/SS™/CLA™/CLS™/CLSS™ nuts

provide load-bearing threads in thin sheets with high pushout and torque-out resistance - PAGES 28 and 29



**SP™, PEM 300® nuts** provide strong load-bearing threads in stainless steel sheets as thin as .030"/0.8 mm - PAGES 28 and 29



PEM RT® free-running locknuts are free-running until clamp load is induced

free-running until clamp load is induced. A modified thread angle on the loaded flank provides the vibration resistant locking feature- PAGE 30



SL™ self-locking nuts are designed with a unique and economical TRI-DENT® locking feature, meeting 3 cycle locking performance requirements - PAGE 31



### H™ (non-locking) and HNL™ (locking)

**nuts** have threads that provide high pushout and torque-out resistance - PAGE 32



SH™ hard panel nuts install into thin, harder, high strength steel materials - PAGE 32



SMPS™/SMPP™ nuts are for thinner sheet/close-to-edge applications - PAGE 33



Material and finish specifications - PAGE 33

Installation - PAGES 34 and 35

Performance data - PAGES 36 - 39

Many PEM self-clinching nuts in this bulletin are dimensionally equivalent to nuts manufactured to NASM45938/1 specifications. Consult our Marketing department for a complete Military Specifications and National Aerospace Standards guide (Bulletin NASM) on our website.

Screws for use with PEM self-clinching locking fasteners should be Class 3A/4h fit or no smaller than Class 2A/6g.







### PEM® SELF-CLINCHING NUT SELECTOR GUIDE

|            |                         |                    |                  |                   | Applica                | tion Req           | uires:                         |                          |                         |              |
|------------|-------------------------|--------------------|------------------|-------------------|------------------------|--------------------|--------------------------------|--------------------------|-------------------------|--------------|
| PEM<br>Nut | Recommended panel       | Thinnest<br>sheet  | Locking          | Threads           | Closest centerline-to- | Superior corrosion | Recommended for installation   | Compatible with aluminum | Harder<br>high strength |              |
| Туре       | material <sup>(1)</sup> | .025" /<br>0.64 mm | Free-<br>running | Prevailing torque | edge distance          | resistance         | into stainless<br>steel sheets | anodizing                | steel material          | Non-magnetic |
| S/SS/H     | steel / aluminum        |                    |                  |                   |                        |                    |                                |                          |                         |              |
| CLS/CLSS   | steel / aluminum        |                    |                  |                   |                        | •                  |                                |                          |                         | •            |
| CLA        | aluminum                |                    |                  |                   |                        | •                  |                                | •                        |                         | •            |
| SP         | stainless steel         |                    |                  |                   |                        | •                  | •                              |                          |                         | •            |
| PEM RT°    | steel / aluminum        |                    | •                |                   |                        |                    |                                |                          |                         |              |
| SL         | steel / aluminum        |                    |                  |                   |                        |                    |                                |                          |                         |              |
| HNL        | aluminum                |                    |                  |                   |                        |                    |                                |                          |                         |              |
| SH         | hardened alloy steel    |                    |                  |                   |                        |                    |                                |                          |                         |              |
| SMPS       | steel / aluminum        | •                  |                  |                   |                        |                    |                                |                          |                         | •            |
| SMPP       | stainless steel         | •                  |                  |                   | •                      | •                  |                                |                          |                         | •            |

<sup>(1)</sup> Describes "best practice" for typical applications. Fasteners can be used in other panel materials not listed here if specified hardness limits are met. In all cases "For Use in Sheet Hardness" information is shown in chart on page 31.

### **THREAD MASKING**

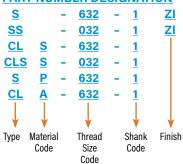
PEM® PreTect™ thread masking solution provides protection for PEM® internally threaded fasteners. They reduce labor and protect threads from paint and powder coating processes. Fasteners are shipped with plugs and film (where applicable) already in place. Click here for more information.

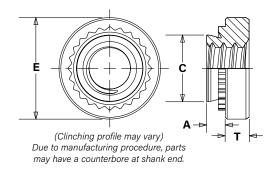
Thread mask is available for applications where hardware is installed prior to painting. During assembly, the threads of the mating hardware will remove paint, electro deposited automotive under coatings, and weld spatter upon application of torque. PEM® nuts can be specially ordered with thread mask applied. Click here for more information.



Thread mask color may vary.

"BC" suffix will be added to part number to designate thread mask to fastener.


### **AVAILABLE PEM® VARIMOUNT® FASTENING SYSTEM**


The PEM® VariMount® fastening system (see PEM® Bulletin VM) utilizes a self-clinching nut paired with a round steel or stainless steel base plate to offer a clean and ready-made assembly for mounting into any rigid material or panel, including composites, plastics, and metals. Multiple radial holes in the base plate and a generous footprint provide effective mounting of the assembly. Mounting can be performed either on the front or through the

back of a panel.

- S/SS nuts are recommended for use in steel or aluminum sheets HRB 80 / HB 150 or less.
- CLS/CLSS nuts are recommended for use in steel or aluminum sheets HRB 70 / HB 125 or less.
- SP nuts are recommended for use in stainless steel sheets HRB 90 / HB 192 or less.
- CLA nuts are recommended for use in steel or aluminum sheets HRB 50 / HB 82 or less.

### **PART NUMBER DESIGNATION**





### S™/SS™/CLS™/CLSS™/SP™ NUTS All dimensions are in inches.

|   |                      |                 | Туре               |                             |        |       |                 | Doo                | IIala Cisa            |      |       |       | Min. Dist.    |
|---|----------------------|-----------------|--------------------|-----------------------------|--------|-------|-----------------|--------------------|-----------------------|------|-------|-------|---------------|
|   | Thread               |                 | Fastener Mate      | erial                       | Thread | Shank | A<br>(Shank)    | Rec.<br>Min. Sheet | Hole Size<br>In Sheet | С    | E     | T     | Hole <b>⊈</b> |
|   | Size                 | Carbon<br>Steel | Stainless<br>Steel | Hardened<br>Stainless Steel | Code   | Code  | (Shank)<br>Max. | Thickness (1)      | +.003000              | Max. | ±.010 | ±.010 | To Edge       |
|   | .086-56              |                 |                    |                             |        | 0     | .030            | .030               |                       |      |       |       |               |
|   | (#2-56)              | S               | CLS                | SP                          | 256    | 11    | .038            | .040               | .166                  | .165 | .250  | .070  | .19           |
|   |                      |                 |                    |                             |        | 2     | .054            | .056               |                       |      |       |       |               |
|   | .099-48              | S               | CLS                | _                           | 348    | 0     | .030            | .030               | 100                   | 105  | .250  | 070   | 10            |
|   | (#3-48)              | 5               | LLS                | _                           | 348    | 2     | .038<br>.054    | .040               | .166                  | .165 | .250  | .070  | .19           |
|   |                      |                 |                    |                             |        | 0     | .030            | .030               |                       |      |       |       |               |
|   | .112-40              |                 |                    |                             |        | 1     | .038            | .040               | 1                     |      |       |       |               |
|   | (#4-40)              | S               | CLS                | SP                          | 440    | 2     | .054            | .056               | .166                  | .165 | .250  | .070  | .19           |
|   | , ,                  |                 |                    |                             |        | 3 (2) | .087            | .090               | 1                     |      |       |       |               |
|   |                      |                 |                    |                             |        | 0     | .030            | .030               |                       |      |       |       |               |
|   | .138-32              | S               | CLS                | SP                          | 632    | 1     | .038            | .040               | .1875                 | .187 | .280  | .070  | .22           |
|   | (#6-32)              | 3               | ULS                | JI JI                       | 032    | 2     | .054            | .056               | .1073                 | .107 | .200  | .070  | .22           |
|   |                      |                 |                    |                             |        | 3 (2) | .087            | .090               |                       |      |       |       |               |
|   | 104.00               |                 |                    |                             |        | 0     | .030            | .030               |                       |      |       |       |               |
|   | .164-32<br>(#8-32)   | S               | CLS                | SP                          | 832    | 2     | .038            | .040               | .213                  | .212 | .310  | .090  | .27           |
|   | (#8-32)              |                 |                    |                             |        | 3 (2) | .054            | .056<br>.090       | -                     |      |       |       |               |
|   |                      |                 |                    |                             |        | 0     | .030            | .030               |                       |      |       |       |               |
|   | .190-24              |                 |                    |                             |        | 1     | .038            | .040               |                       |      |       |       |               |
|   | (#10-24)             | SS              | CLSS               | SP                          | 024    | 2     | .054            | .056               | .250                  | .249 | .340  | .090  | .28           |
|   | (                    |                 |                    |                             |        | 3 (2) | .087            | .090               | 1                     |      |       |       |               |
| Q |                      |                 |                    |                             |        | 0     | .030            | .030               |                       |      |       |       |               |
| ш | .190-32              | SS              | CLSS               | SP                          | 032    | 1     | .038            | .040               | .250                  | .249 | .340  | .090  | .28           |
| Ξ | (#10-32)             | 33              | UL33               | JI JI                       | 052    | 2     | .054            | .056               | .230                  | .243 | .540  | .030  | .20           |
| Z |                      |                 |                    |                             |        | 3 (2) | .087            | .090               |                       |      |       |       |               |
| 5 | .216-24              |                 | 01.0               | _                           | 1004   | 1     | .038            | .040               | 077                   | 070  | 070   | 100   | 01            |
|   | (#12-24)             | S               | CLS                | _                           | 1224   | 3     | .054<br>.087    | .056<br>.090       | .277                  | .276 | .370  | .130  | .31           |
|   |                      |                 |                    |                             |        | 0     | .045            | .090               |                       |      |       |       |               |
|   | .250-20              |                 |                    |                             |        | 1     | .054            | .056               | -                     |      |       |       |               |
|   | (1/4-20)             | S (3)           | CLS                | SP                          | 0420   | 2     | .087            | .090               | .344                  | .343 | .440  | .170  | .34           |
|   |                      |                 |                    |                             |        | 3 (2) | .120            | .125               |                       |      |       |       |               |
|   | .250-28              |                 |                    |                             |        | 1     | .054            | .056               |                       |      |       |       |               |
|   | (1/4-28)             | S               | CLS                | -                           | 0428   | 2     | .087            | .090               | .344                  | .343 | .440  | .170  | .34           |
|   | (1) 1 20)            |                 |                    |                             |        | 3     | .120            | .125               |                       |      |       |       |               |
|   | .313-18              | 0 (3)           | 01.0               | 0.0                         | 0510   | 1     | .054            | .056               | 410                   | 410  | 500   | 000   |               |
|   | (5/16-18)            | S (3)           | CLS                | SP                          | 0518   | 3 (2) | .087<br>.120    | .090<br>.125       | .413                  | .412 | .500  | .230  | .38           |
|   |                      |                 |                    |                             |        | 1     | .054            | .056               |                       |      |       |       |               |
|   | .313-24              | S               | CLS                | SP                          | 0524   | 2     | .087            | .090               | .413                  | .412 | .500  | .230  | .38           |
|   | (5/16-24)            |                 | 020                | Oi Oi                       | 0021   | 3 (2) | .120            | .125               | 1110                  | 1112 |       | 1200  | .00           |
|   | 075 10               |                 |                    |                             |        | 1     | .087            | .090               |                       |      |       |       |               |
|   | .375-16<br>(3/8-16)  | S               | CLS                | SP                          | 0616   | 2     | .120            | .125               | .500                  | .499 | .560  | .270  | .44           |
|   | (3/0-10)             |                 |                    |                             |        | 3 (2) | .235            | .250               |                       |      |       |       |               |
|   | .375-24              |                 |                    |                             |        | 1     | .087            | .090               |                       |      |       |       |               |
|   | (3/8-24)             | S               | CLS                | SP                          | 0624   | 2     | .120            | .125               | .500                  | .499 | .560  | .270  | .44           |
|   |                      |                 |                    |                             |        | 3 (2) | .235            | .250               |                       |      |       |       |               |
|   | .438-20<br>(7/16-20) | S               | -                  | _                           | 0720   | 1     | .087            | .092               | .562                  | .561 | .687  | .311  | .562          |
|   | .500-13<br>(1/2-13)  | S               | CLS                | _                           | 0813   | 1     | .120            | .125               |                       |      |       |       |               |
|   | .500-20              |                 |                    |                             |        | 2     | .235<br>.120    | .250<br>.125       | .656                  | .655 | .810  | .360  | .63           |
|   | (1/2-20)             | S               | CLS                | _                           | 0820   | 2     | .235            | .250               |                       |      |       |       |               |
|   | (., = ==)            |                 |                    |                             |        |       | iLUU            | ,ZJU               |                       |      |       |       |               |

- (1) For maximum performance, we recommend that you use the maximum shank length for your sheet thickness.
- (2) This shank code not available for SP nuts.
- (3) This thread size S nut, with a -2 shank code, can be installed successfully without the need to pre punch a mounting hole in a separate operation. See page 42 for more information.

The increased hardness of stainless steel panels requires careful consideration when installing selfclinching fasteners. See page 39 or refer to Fastener Installation <a href="Dos and Don'ts">Dos and Don'ts</a> on our website.

### S<sup>TM</sup>/SS<sup>TM</sup>/CLS<sup>TM</sup>/CLSS<sup>TM</sup>/SP<sup>TM</sup> NUTS

(See drawing at top of page 28) All dimensions are in millimeters.

|     |               |                 | Туре               |                             |        |        |                 |                    |                       |       |       |       |                          |
|-----|---------------|-----------------|--------------------|-----------------------------|--------|--------|-----------------|--------------------|-----------------------|-------|-------|-------|--------------------------|
|     | Thread        |                 | Fastener Mate      | rial                        | Thread | Shank  | A<br>(Shank)    | Rec.<br>Min. Sheet | Hole Size<br>In Sheet | c     | E     | т     | Min. Dist.               |
|     | Size          | Carbon<br>Steel | Stainless<br>Steel | Hardened<br>Stainless Steel | Code   | Code   | (Snank)<br>Max. | Thickness<br>(1)   | +0.08                 | Max.  | ±0.25 | ±0.25 | Hole <b>⊈</b><br>To Edge |
|     |               |                 |                    |                             |        | 0 (2)  | 0.77            | 0.8                |                       |       |       |       |                          |
|     | M2 x 0.4      | S               | CLS                | SP                          | M2     | 1      | 0.97            | 1                  | 4.22                  | 4.2   | 6.35  | 1.5   | 4.8                      |
|     |               |                 |                    |                             |        | 2      | 1.38            | 1.4                |                       |       |       |       |                          |
|     | M2.5 x 0.45   | s               | CLS                | SP                          | M2.5   | 0      | 0.77<br>0.97    | 0.8                | 4.22                  | 4.2   | 6.35  | 1.5   | 4.8                      |
|     | IVIZ.3 X U.43 | 3               | LLS                | or .                        | G.ZIVI | 2      | 1.38            | 1.4                | 4.22                  | 4.2   | 0.55  | 1.5   | 4.0                      |
|     |               |                 |                    |                             |        | 0      | 0.77            | 0.8                |                       |       |       |       |                          |
|     | M3 x 0.5      | S               | CLS                | SP                          | М3     | 1      | 0.97            | 1                  | 4.22                  | 4.2   | 6.35  | 1.5   | 4.8                      |
|     |               |                 |                    |                             |        | 2      | 1.38            | 1.4                |                       |       |       |       |                          |
| 2   |               |                 |                    |                             |        | 0      | 0.77            | 0.8                |                       |       |       |       |                          |
| - E | M3.5 x 0.6    | S               | CLS                | _                           | M3.5   | 1      | 0.97            | 1                  | 4.75                  | 4.73  | 7.11  | 1.5   | 5.6                      |
| ΕT  |               |                 |                    |                             |        | 2      | 1.38            | 1.4                |                       |       |       |       |                          |
| Ξ   |               |                 |                    |                             |        | 0      | 0.77            | 0.8                |                       |       |       | _     |                          |
|     | M4 x 0.7      | S               | CLS                | SP                          | M4     | 1      | 0.97            | 1                  | 5.41                  | 5.38  | 7.87  | 2     | 6.9                      |
|     |               |                 |                    |                             |        | 0      | 1.38            | 1.4                |                       |       |       |       |                          |
|     | M5 x 0.8      | SS              | CLSS               | SP                          | M5     | 1      | 0.77<br>0.97    | 0.8                | 6.35                  | 6.33  | 8.64  | 2     | 7.1                      |
|     | IVIO X U.O    | 33              | CLSS               | Jr.                         | IVIO   | 2      | 1.38            | 1.4                | 0.55                  | 0.33  | 0.04  |       | 7.1                      |
|     |               |                 |                    |                             |        | 00 (2) | 0.89            | 0.92               |                       |       |       |       |                          |
|     | M01           | S (3)           | CLS                | SP                          | M6     | 0 (2)  | 1.15            | 1.2                | 8,75                  | 0.70  | 11.10 | 400   | 0.0                      |
|     | M6 x 1        | 2 (3)           | LLS                | 2b                          | Mp     | 1      | 1.38            | 1.4                | 8./5                  | 8.73  | 11.18 | 4.08  | 8.6                      |
|     |               |                 |                    |                             |        | 2      | 2.21            | 2.29               |                       |       |       |       |                          |
|     | M8 x 1.25     | S (3)           | CLS                | SP                          | M8     | 1      | 1.38            | 1.4                | 10.5                  | 10.47 | 12.7  | 5,47  | 9.7                      |
|     | INO A ILLO    | Ü               | OLO                | 01                          | IIIO   | 2      | 2.21            | 2.29               | 1010                  | 10.17 | 12.7  | 0.17  | 0.7                      |
|     | M10 x 1.5     | S               | CLS                | SP                          | M10    | 1      | 2.21            | 2.29               | 14                    | 13.97 | 17.35 | 7.48  | 13.5                     |
|     | MO 475        |                 |                    |                             | 140    | 2 (2)  | 3.05            | 3.18               | 47                    | 40.05 | 00.57 | 2.5   | 40                       |
|     | M12 x 1.75    | S               | _                  | -                           | M12    | 1      | 3.05            | 3.18               | 17                    | 16.95 | 20.57 | 8.5   | 16                       |

### $\pmb{\mathsf{CLA}}^{\mathsf{TM}} \pmb{\;\mathsf{NUTS}\;}$ (See drawing at top of page 28) All dimensions are in inches.

|   | Thread<br>Size      | Type Fastener Material Aluminum | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min. Sheet<br>Thickness<br>(1) | Hole Size<br>In Sheet<br>±.003000 | C<br>Max. | E<br>±.010 | T<br>±.010 | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|---|---------------------|---------------------------------|----------------|---------------|----------------------|--------------------------------|-----------------------------------|-----------|------------|------------|----------------------------------------|
|   | .086-56<br>(#2-56)  | CLA                             | 256            | 1 2           | .038<br>.054         | .040<br>.056                   | .166                              | .165      | .250       | .070       | .19                                    |
| Q | .112-40<br>(#4-40)  | CLA                             | 440            | 1 2           | .038                 | .040                           | .1875                             | .187      | .250       | .090       | .22                                    |
| Ξ | .138-32             | CLA                             | 632            | 1 2           | .038                 | .040<br>.056                   | .213                              | .212      | .280       | .090       | .27                                    |
| N | .164-32             | CLA                             | 832            | 1 2           | .038                 | .040                           | .234                              | .233      | .310       | .130       | .28                                    |
|   | .190-24<br>(#10-24) | CLA                             | 024            | 1 2           | .038                 | .040                           | .296                              | .295      | .370       | .160       | .31                                    |
|   | .190-32<br>(#10-32) | CLA                             | 032            | 1 2           | .038<br>.054         | .040<br>.056                   | .296                              | .295      | .370       | .160       | .31                                    |
|   | .250-20<br>(1/4-20) | CLA                             | 0420           | 1<br>2<br>3   | .054<br>.087<br>.120 | .056<br>.091<br>.125           | .344                              | .343      | .440       | .170       | .34                                    |

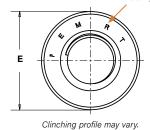
### (See drawing at top of page 30) All dimensions are in millimeters.

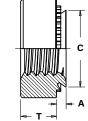
|     | Thread<br>Size x<br>Pitch | Type Fastener Material Aluminum | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min. Sheet<br>Thickness<br>(1) | Hole Size<br>In Sheet<br>+0.08 | C<br>Max. | E<br>±0.25 | T<br>±0.25 | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|-----|---------------------------|---------------------------------|----------------|---------------|----------------------|--------------------------------|--------------------------------|-----------|------------|------------|----------------------------------------|
|     | M2 x 0.4                  | CLA                             | M2             | 1 2           | 0.98<br>1.38         | 1 1.4                          | 4.22                           | 4.2       | 6.35       | 1.5        | 4.8                                    |
| RIC | M3 x 0.5                  | CLA                             | M3             | 1 2           | 0.98<br>1.38         | 1<br>1.4                       | 4.75                           | 4.73      | 6.35       | 2          | 5.6                                    |
| MET | M3.5 x 0.6                | CLA                             | M3.5           | 1 2           | 0.98<br>1.38         | 1<br>1.4                       | 5.41                           | 5.38      | 7.11       | 2          | 6.9                                    |
| _   | M4 x 0.7                  | CLA                             | M4             | 1 2           | 0.98<br>1.38         | 1<br>1.4                       | 5.94                           | 5.92      | 7.8        | 3          | 7.1                                    |
|     | M5 x 0.8                  | CLA                             | M5             | 1 2           | 0.98<br>1.38         | 1<br>1.4                       | 7.52                           | 7.49      | 9.4        | 3.8        | 7.9                                    |
|     | M6 x 1                    | CLA                             | M6             | 1 2           | 1.38<br>2.21         | 1.4<br>2.3                     | 8.75                           | 8.73      | 11.18      | 4.08       | 8.6                                    |

- (1) For maximum performance, we recommend that you use the maximum shank length for your sheet thickness.
- (2) This shank code not available for SP nuts.
- (3) This thread size S nut, with a -2 shank code, can be installed successfully without the need to pre punch a mounting hole in a separate operation. See page 39 for more information.

### PEM RT® FREE-RUNNING LOCKNUTS




Free-running locking feature allows screw to turn freely until clamp load is applied. If the tightening force is removed, these nuts no longer provide any torsional resistance to rotation until clamp load is reapplied. PEM RT® Stamp (Registered Trademark)


- Resistant to vibrational loosening.
- Back side of panel is flush or sub-flush for screw installation.
- Locking feature reusability is not affected by number of on/off cycles.
- Uses same mounting hole and installation tooling as standard S™ nuts.
- Recommended for use in steel or aluminum sheets HRB 80 / HB 150 or less.

### PART NUMBER DESIGNATION



PEM RT® free-running locking feature can be added to other PEM® internally threaded nuts.



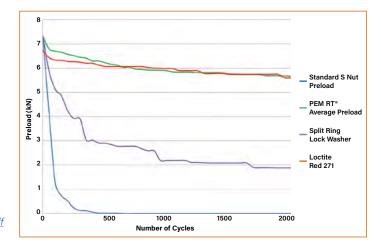


All dimensions are in inches.

|          | Thread<br>Size | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Rec.<br>Min. Sheet<br>Thickness (1) | Hole Size<br>In Sheet<br>+.003000 | C<br>Max. | E<br>±.010 | T<br>±.010 | Min. Dist<br>Hole <b>⊈</b><br>To Edge |
|----------|----------------|------|----------------|---------------|----------------------|-------------------------------------|-----------------------------------|-----------|------------|------------|---------------------------------------|
|          | .112-40        |      |                | 0             | .030                 | .030                                |                                   |           |            |            |                                       |
|          | (#4-40)        | S    | RT440          | 1             | .038                 | .040                                | .166                              | .165      | .250       | .070       | .19                                   |
|          | (#4-40)        |      |                | 2             | .054                 | .056                                |                                   |           |            |            |                                       |
|          | .138-32        |      |                | 0             | .030                 | .030                                |                                   |           |            |            |                                       |
| Q        | (#6-32)        | S    | RT632          | 1             | .038                 | .040                                | .1875                             | .187      | .280       | .070       | .22                                   |
| ш        | (#0-32)        |      |                | 2             | .054                 | .056                                |                                   |           |            |            |                                       |
| <b>—</b> | .164-32        |      |                | 0             | .030                 | .030                                |                                   |           |            |            |                                       |
|          | (#8-32)        | S    | RT832          | 1             | .038                 | .040                                | .213                              | .212      | .310       | .090       | .27                                   |
| Z        | (#0-32)        |      |                | 2             | .054                 | .056                                |                                   |           |            |            |                                       |
|          | .190-32        |      |                | 0             | .030                 | .030                                |                                   |           |            |            |                                       |
|          | (#10-32)       | SS   | RT032          | 1             | .038                 | .040                                | .250                              | .249      | .340       | .090       | .28                                   |
|          | (#10-32)       |      |                | 2             | .054                 | .056                                |                                   |           |            |            |                                       |
|          | .250-20        |      |                | 0             | .045                 | .047                                |                                   |           |            |            |                                       |
|          | (1/4-20)       | S    | RT0420         | 1             | .054                 | .056                                | .344                              | .343      | .440       | .170       | .34                                   |
|          | (1/4-20)       |      |                | 2             | .087                 | .090                                |                                   |           |            |            |                                       |
|          | .313-18        | S    | RT0518         | 1             | .054                 | .056                                | .413                              | .412      | .500       | .230       | .38                                   |
|          | (5/16-18)      | 3    | N10310         | 2             | .087                 | .090                                | 412                               | .412      | .500       | ,230       | .30                                   |

### All dimensions are in millimeters

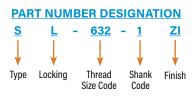
|          | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Rec.<br>Min. Sheet<br>Thickness (1) | Hole Size<br>In Sheet<br>+0.08 | C<br>Max. | E<br>±0.25 | T<br>±0.25 | Min. Dist<br>Hole <b>位</b><br>To Edge |
|----------|---------------------------|------|----------------|---------------|----------------------|-------------------------------------|--------------------------------|-----------|------------|------------|---------------------------------------|
|          |                           |      |                | 0             | 0.77                 | 0.8                                 |                                |           |            |            |                                       |
|          | M3 x 0.5                  | S    | RTM3           | 1             | 0.97                 | 1                                   | 4.22                           | 4.2       | 6.35       | 1.5        | 4.8                                   |
|          |                           |      |                | 2             | 1.38                 | 1.4                                 |                                |           |            |            |                                       |
|          |                           |      |                | 0             | 0.77                 | 0.8                                 |                                |           |            |            |                                       |
| 2        | M4 x 0.7                  | S    | RTM4           | 1             | 0.97                 | 1                                   | 5.41                           | 5.38      | 7.87       | 2          | 6.9                                   |
| <b>~</b> |                           |      |                | 2             | 1.38                 | 1.4                                 |                                |           |            |            |                                       |
| ЕТ       |                           |      |                | 0             | 0.77                 | 0.8                                 |                                |           |            |            |                                       |
| ΙΞ       | M5 x 0.8                  | SS   | RTM5           | 1             | 0.97                 | 1                                   | 6.35                           | 6.33      | 8.64       | 2          | 7.1                                   |
| -        |                           |      |                | 2             | 1.38                 | 1.4                                 |                                |           |            |            |                                       |
|          |                           |      |                | 00            | 0.89                 | 0.92                                |                                |           |            |            |                                       |
|          | M6 x 1                    | s    | RTM6           | 0             | 1.15                 | 1.2                                 | 8.75                           | 8.73      | 11.18      | 4.08       | 8.6                                   |
|          | IVIO X I                  | 3    | niwo           | 1             | 1.38                 | 1.4                                 | 0.75                           | 0.73      | 11.10      | 4.00       | 0.0                                   |
|          |                           |      |                | 2             | 2.21                 | 2.29                                |                                |           |            |            |                                       |
|          | M8 x 1.25                 | S    | RTM8           | 1             | 1.38                 | 1.4                                 | 10,5                           | 10.47     | 12.7       | 5,47       | 9.7                                   |
|          | CZ.I A OIWI               | 3    | n I IVIO       | 2             | 2.21                 | 2.29                                | 10.5                           | 10.47     | 12.7       | 5,47       | 3.7                                   |

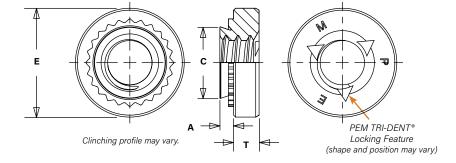

(1) For maximum performance, we recommend that you use the maximum shank length for your sheet thickness.

The graph represents the clamp load of the joint versus the amount of cycles during transverse vibration testing for an PEM RT® free-running locknut, a standard S nut, a split ring lock washer and Loctite Red 271.

### **Testing conditions:**

Transverse vibration testing. M6 thread size nuts, average of 30 pieces. Clamp load applied using metric property class 12.9 screws. Nuts tested until loss of clamp load or 2,000 cycles is reached.


Details on PEM RT® vibration resistant thread technology can be found on our web site at: https://www.pemnet.com/files/design\_info/techsheets/RT\_Thread\_Form.pdf




### SL™ TRI-DENT® PREVAILING TORQUE LOCKNUTS

Prevailing torque locking feature produces friction between threads of mated components thereby increasing the force needed to tighten as well as loosen the nut. Prevailing torque locknuts provide essentially the same torque value regardless of the amount axial load applied.

- 3 cycle locking performance. (1)
- Resistant to vibrational loosening.
- Back side of panel is flush or sub-flush for screw installation.
- Uses same mounting hole and installation tooling as standard S™ nuts.
- Recommended for use in sheets HRB 80 / HB 150 or less.

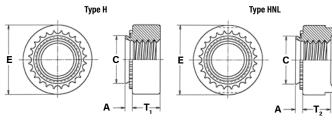




### All dimensions are in inches.

|    | Thread<br>Size | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min. Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | C<br>Max. | E<br>±.010 | T<br>±.010 | Min. Dist.<br>Hole <b>⊄</b><br>to Edge |
|----|----------------|------|----------------|---------------|----------------------|-------------------------|-----------------------------------|-----------|------------|------------|----------------------------------------|
|    | .112-40        | 01   | 440            | 1             | .038                 | .040                    | 100                               | 105       | 050        | 070        | 10                                     |
|    | (#4-40)        | SL   | 440            | 2             | .054                 | .056                    | .166                              | .165      | .250       | .070       | .19                                    |
|    | .138-32        | 01   | 000            | 1             | .038                 | .040                    | 1075                              | 107       | 200        | 070        | 00                                     |
| ED | (#6-32)        | SL   | 632            | 2             | .054                 | .056                    | .1875                             | .187      | .280       | .070       | .22                                    |
| Ξ  | .164-32        | 01   | 000            | 1             | .038                 | .040                    | .213                              | .212      | 210        | 000        | 07                                     |
| Z  | (#8-32)        | SL   | 832            | 2             | .054                 | .056                    | .213                              | .212      | .310       | .090       | .27                                    |
|    | .190-32        | 01   | 000            | 1             | .038                 | .040                    | 050                               | 040       | 240        | 000        | 00                                     |
|    | (#10-32)       | SL   | 032            | 2             | .054                 | .056                    | .250                              | .249      | .340       | .090       | .28                                    |
|    | .250-20        | 01   | 0.400          | 1             | .054                 | .056                    | 0.4.4                             | 0.40      | 440        | 170        | 0.4                                    |
|    | (1/4-20)       | SL   | 0420           | 2             | .087                 | .091                    | .344                              | .343      | .440       | .170       | .34                                    |
|    | .313-18        | 01   | 0510           | 1             | .054                 | .056                    | 410                               | 410       | 500        | 000        | 00                                     |
|    | (5/16-18)      | SL   | 0518           | 2             | .087                 | .091                    | .413                              | .412      | .500       | .230       | .38                                    |

### All dimensions are in millimeters.


|     | Thread<br>Size x<br>Pitch | Туре   | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min. Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>Max.   | E<br>±0.25 | T<br>±0.25 | Min. Dist<br>Hole <b>⊈</b><br>To Edge |
|-----|---------------------------|--------|----------------|---------------|----------------------|-------------------------|--------------------------------|-------------|------------|------------|---------------------------------------|
|     | M3 x 0.5                  | SL     | M3             | 1             | 0.98                 | 1                       | 4.22                           | 4.2         | 6.35       | 1.5        | 4.8                                   |
|     | INIO Y O'O                | JL.    | IVIS           | 2             | 1.38                 | 1.4                     | 4.22                           | 4.2         | 0.55       | 1.0        | 4.0                                   |
|     |                           |        |                | 1             | 0.98                 | 1                       | 4.75                           | 4.73        | 7.11       | 1.5        | 5.6                                   |
|     | M3.5 x 0.6                | SL     | M3.5           | 2             | 1.38                 | 1.4                     | 4.75                           | 4.73        | 7.11       | 1.5        | 5.0                                   |
| ၁   | M4 x 0.7                  | SL     | M4             | 1             | 0.98                 | 1                       | 5.41                           | 5.38        | 7.87       | 2          | 6.9                                   |
| TRI | W4 X U.7                  | 3L     | IVI4           | 2             | 1.38                 | 1.4                     | 5.41                           | 0.50        | 7.07       | 2          | 0.9                                   |
| ш   | M5 x 0.8                  | SL     | M5             | 1             | 0.98                 | 1                       | 6.35                           | 6.33        | 8.64       | 2          | 7.1                                   |
| Σ   | INIO Y O'O                | JL.    | WIS            | 2             | 1.38                 | 1.4                     | 0.55                           | 0.55        | 0.04       | 2          | 7.1                                   |
|     | M6 x 1                    | SL     | M6             | 1             | 1.38                 | 1.4                     | 8.75                           | 8.73        | 11.18      | 4.08       | 8.6                                   |
|     | IVIOXI                    | JL.    | IVIO           | 2             | 2.21                 | 2.3                     | 0.75                           | 6.73        | 11.10      | 4.00       | 0.0                                   |
|     | M8 x 1.25                 | SL     | M8             | 1             | 1.38                 | 1.4                     | 10.5                           | 10.47       | 12.7       | 5.47       | 9.7                                   |
|     | IVIO A 1.23               | JL     | IVIO           | 2             | 2.21                 | 2.3                     | 10.5                           | 10.47       | 12.7       | 5.47       | 3.7                                   |
|     | M10 x 1.5                 | SL M10 | M10            | 1             | 2.21                 | 2.29                    | 14                             | 13.97 17.35 | 17.35      | 7.48       | 13.5                                  |
|     | C.I X UIW                 | JL     | IVIIU          | 2             | 3.05                 | 3.18                    | 14                             | 15.97       | 11,33      | 1,40       | 13.5                                  |

(1) Achieved using steel socket head cap screws, 180 ksi / property class 12.9 with standard finish of thermal oxide and light oil.

### H™ NUTS AND HNL™ PREVAILING TORQUE LOCKNUTS

- Meets prevailing torque requirements for IFI 100/107 Grade B (unified) and ANSI B18.16.1M (metric) locknuts.
- H nut is recommended for use in sheets HRB 80 / HB 150 or less.
- HNL nut is recommended for use in sheets HRB 60 / HB 107 or less.

### **PART NUMBER DESIGNATION** Н 0616 <u>ZI</u> H N 0616 LZ Not Locking Finish Thread Type Size Code Heattreated

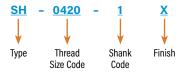


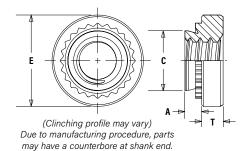
### Clinching profile may vary.

### All dimensions are in inches.

|          |                      | Ту      | ре          |        |              |            | Hole Size         |      |       | T,          | T <sub>2</sub> |                             |
|----------|----------------------|---------|-------------|--------|--------------|------------|-------------------|------|-------|-------------|----------------|-----------------------------|
|          | Thread               | Non-    | Self-       | Thread | A<br>(Shank) | Min. Sheet | In Sheet<br>+.005 | С    | E     | Non-locking | Self-locking   | Min. Dist.<br>Hole <b>⊈</b> |
| <u> </u> | Size                 | Locking | Locking (1) | Code   | `Max.´       | Thickness  | 000               | Max. | ±.010 | ±.005       | ±.010          | To Edge                     |
| E        | .250-20<br>(1/4-20)  | -       | HNL         | 0420   | .058         | .058       | .344              | .343 | .500  | .18         | 9              | .380                        |
| D        | .313-18<br>(5/16-18) | -       | HNL         | 0518   | .058         | .058       | .413              | .412 | .575  | .24         | 0              | .420                        |
|          | .375-16<br>(3/8-16)  | Н       | HNL         | 0616   | .058         | .058       | .500              | .499 | .650  | .30         | 0              | .480                        |

### All dimensions are in millimeters.


|   |          |                  | Ту      | ре          |        |              |            |                       |       |       | T,          | T <sub>2</sub> |                             |
|---|----------|------------------|---------|-------------|--------|--------------|------------|-----------------------|-------|-------|-------------|----------------|-----------------------------|
| ı | د        | Thread<br>Size x | Non-    | Self-       | Thread | A<br>(Shank) | Min. Sheet | Hole Size<br>In Sheet | c     | F     | Non-locking | Self-locking   | Min. Dist.<br>Hole <b>⊄</b> |
| ı | Ξ.       | Pitch            | Locking | Locking (1) | Code   | Max.         | Thickness  | +0.13                 | Max.  | ±0.25 | ±0.13       | ±0.25          | To Edge                     |
| ı | <u> </u> | M6 x 1           | _       | HNL         | M6     | 1.48         | 1.48       | 8.75                  | 8.72  | 12.7  | 5           |                | 10                          |
| ı | Σ        | M8 x 1.25        | _       | HNL         | M8     | 1.48         | 1.48       | 10.5                  | 10.47 | 14.6  | 6.3         | }              | 11                          |
| ı |          | M10 x 1.5        | Н       | HNL         | M10    | 1.48         | 1.48       | 12.7                  | 12.67 | 16.5  | 7.9         | 1              | 12                          |


<sup>(1)</sup> During installation, the projections on the heads of HNL self-locking nuts may be flattened. This is not detrimental in any way and will not affect self-locking or self-clinching performance.

### **SH™ HARD PANEL NUTS**

- Installs into harder, high strength steel materials (high strength steel sheets up to 975MPa tensile strength).
- Hardened nut material provides stronger thread strength.

### **PART NUMBER DESIGNATION**



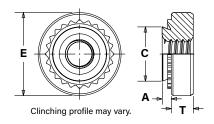


### All dimensions are in inches.

| Threa<br>Size    | <br>Type<br>Fastener Material<br>Hardened Alloy Steel | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness <sup>(1)</sup> | Hole Size<br>in Sheet<br>+.003000 | C<br>Max. | E<br>±.010 | T<br>±.010 | Min. Dist<br>Hole <b>⊈</b><br>To Edge |
|------------------|-------------------------------------------------------|----------------|---------------|----------------------|-------------------------------------------|-----------------------------------|-----------|------------|------------|---------------------------------------|
| .250-2           | <br>SH                                                | 0420           | 1 2           | .054<br>.087         | .056<br>.090                              | .344                              | .343      | .440       | .170       | .34                                   |
| .313-1           | <br>SH                                                | 0518           | 1 2           | .054<br>.087         | .056<br>.090                              | .413                              | .412      | .500       | .230       | .38                                   |
| .375-1<br>(3/8-1 | <br>SH                                                | 0616           | 1             | .087                 | .090                                      | .500                              | .499      | .623       | .270       | .44                                   |

### All dimensions are in millimeters.

| S        | Thread<br>Size x<br>Pitch | Type<br>Fastener Material<br>Hardened Alloy Steel | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness <sup>(1)</sup> | Hole Size<br>in Sheet<br>+0.08 | C<br>Max. | E<br>±0.25 | T<br>±0.25 | Min. Dist<br>Hole <b>⊉</b><br>To Edge |
|----------|---------------------------|---------------------------------------------------|----------------|---------------|----------------------|-------------------------------------------|--------------------------------|-----------|------------|------------|---------------------------------------|
| <u>-</u> | M6 x 1                    | SH                                                | M6             | 1             | 1.38                 | 1.4                                       | 8.75                           | 8,73      | 11,18      | 4.08       | 8.6                                   |
| ۵        | WIO X I                   | 511                                               | WIO            | 2             | 2.21                 | 2.29                                      | 6.75                           | 6.70      | 11.10      | 4.00       | 0.0                                   |
| Σ        | M8 x 1.25                 | SH                                                | M8             | 1             | 1.38                 | 1.4                                       | 10.5                           | 10.47     | 12.7       | 5.47       | 9.7                                   |
|          | WIO X 1.23                | SII                                               | IVIO           | 2             | 2.21                 | 2.29                                      | 10.5                           | 10.47     | 12.7       | J.+1       | 5.7                                   |
|          | M10 x 1.5                 | SH                                                | M10            | 1             | 2.21                 | 2.29                                      | 14                             | 13.97     | 17.35      | 7.48       | 13.5                                  |


<sup>(1)</sup> For maximum performance, we recommend that you use the maximum shank length for your sheet thickness.

### SMPS™/SMPP™ NUTS

- Installs into sheets as thin as .025"/ 0.64 mm.
- · Reduced outer dimensions and thinner sheet capabilities compared to Type S/SP thread sizes.
- SMPS nut is recommended for use in sheets HRB 70 / HB 125 or less.
- SMPP nut is recommended for use in stainless steel sheets HRB 90 / HB 192 or less.

### **PART NUMBER DESIGNATION SMPS** 440 **SMPP** <u>440</u> Type Thread

Size Code



### All dimensions are in inches.

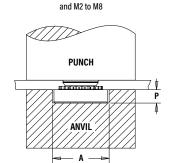
| Γ |        |                    | 1                 | Туре                        |                |                 |                         |                      |      |       |            | Min. Di | st. Hole |
|---|--------|--------------------|-------------------|-----------------------------|----------------|-----------------|-------------------------|----------------------|------|-------|------------|---------|----------|
| ı |        |                    | Fastener Material |                             |                | Α               |                         | Hole Size            | •    | _     | _          | Ф_то    | Edge     |
|   | ОШ     | Thread<br>Size     | Stainless Steel   | Hardened<br>Stainless Steel | Thread<br>Code | (Shank)<br>Max. | Min. Sheet<br>Thickness | In Sheet<br>+.003000 | Max. | ±.010 | 1<br>±.010 | SMPS    | SMPP     |
| ı | E      | .086-56<br>(#2-56) | SMPS              | SMPP                        | 256            | .024            | .025                    | .136                 | .135 | .220  | .065       | .15     | .16      |
|   | z<br>o | .112-40<br>(#4-40) | SMPS              | SMPP                        | 440            | .024            | .025                    | .166                 | .165 | .220  | .065       | .17     | .20      |
|   |        | .138-32<br>(#6-32) | SMPS              | SMPP                        | 632            | .024            | .025                    | .187                 | .186 | .252  | .065       | .20     | .22      |

### All dimensions are in millimeters.

|     | Thread          | Type Fastener Material |                             | 71             | A (0) (1)       | Million Object          | Hole Size         |      | _     | _     |      | ist. Hole<br>o Edge |
|-----|-----------------|------------------------|-----------------------------|----------------|-----------------|-------------------------|-------------------|------|-------|-------|------|---------------------|
| RIC | Size x<br>Pitch | Stainless Steel        | Hardened<br>Stainless Steel | Thread<br>Code | (Shank)<br>Max. | Min. Sheet<br>Thickness | In Sheet<br>+0.08 | Max. | ±0.25 | ±0.25 | SMPS | SMPP                |
| ij  | M2.5 x 0.45     | SMPS                   | SMPP                        | M2.5           | 0.61            | 0.64                    | 3.8               | 3.79 | 5.6   | 1.4   | 3.7  | 3.9                 |
| Σ   | M3 x 0.5        | SMPS                   | SMPP                        | М3             | 0.61            | 0.64                    | 4.24              | 4.22 | 5.6   | 1.4   | 4.3  | 5.1                 |
|     | M3.5 x 0.6      | SMPS                   | SMPP                        | M3.5           | 0.61            | 0.64                    | 4.75              | 4.73 | 6.4   | 1.4   | 5.1  | 5.5                 |

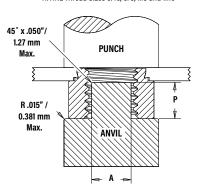
### MATERIAL AND FINISH SPECIFICATIONS

|         |                                               | Threads                                                                                            |                                        |                             |                                     | Fastener N | Materials       | 3                       |                                               |                                                    | Standard                                                                            | d Finishes                                                                                                 |                     | Optional<br>Finish                                                                 |                              | For us                       | e in Shee                    | et Hardne                    | ss (8)                       |                             |
|---------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------|-------------------------------------|------------|-----------------|-------------------------|-----------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|
| Туре    | Internal<br>ASME B1.1<br>2B/ASME<br>B1.3M, 6H | Meets Torque Requirements for IFI 100/ 107 Grade B (unified) and ANSI B18. 16.1M (metric) Locknuts | 3 Cycle<br>Locking<br>Perfor-<br>mance | Hardened<br>Carbon<br>Steel | 300<br>Series<br>Stainless<br>Steel | Aluminum   | Carbon<br>Steel | Hardened<br>Alloy Steel | Age<br>Hardened<br>A286<br>Stainless<br>Steel | Passivated<br>and/or<br>Tested<br>per ASTM<br>A380 | Zinc<br>Plated,<br>per ASTM<br>B633,<br>SCI (5µm),<br>Type III,<br>Colorless<br>(4) | Zinc Plated<br>per ASTM<br>B633, SC1<br>(5µm), Type III,<br>Colorless Plus<br>Sealant/<br>Lubricant<br>(4) | No<br>Finish<br>(3) | Zinc<br>Plated<br>per ASTM<br>B633,<br>SCI (5µm),<br>Type II,<br>Yellow<br>(1) (4) | HRC 30/<br>HB 277<br>or less | HRB 90/<br>HB 192<br>or less | HRB 80/<br>HB 150<br>or less | HRB 70/<br>HB 125<br>or less | HRB 60/<br>HB 107<br>or less | HRB 50/<br>HB 82<br>or less |
| S       |                                               |                                                                                                    |                                        |                             |                                     |            |                 |                         |                                               |                                                    | •                                                                                   |                                                                                                            |                     |                                                                                    |                              |                              |                              |                              |                              |                             |
| SS      | •                                             |                                                                                                    |                                        | •                           |                                     |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            |                     | •                                                                                  |                              |                              |                              |                              |                              |                             |
| CLS     |                                               |                                                                                                    |                                        |                             | •                                   |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            |                     |                                                                                    |                              |                              |                              |                              |                              |                             |
| CLSS    | •                                             |                                                                                                    |                                        |                             | •                                   |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            |                     |                                                                                    |                              |                              |                              | •                            |                              |                             |
| CLA     |                                               |                                                                                                    |                                        |                             |                                     |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            | <b>.</b> (2)        |                                                                                    |                              |                              |                              |                              |                              |                             |
| Н       |                                               |                                                                                                    |                                        |                             |                                     |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            |                     |                                                                                    |                              |                              |                              |                              |                              |                             |
| SP      |                                               |                                                                                                    |                                        |                             |                                     |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            |                     |                                                                                    |                              | <b>.</b> (6)(7)              |                              |                              |                              |                             |
| PEM RT  | <b>-</b> (9)                                  |                                                                                                    |                                        |                             |                                     |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            |                     |                                                                                    |                              |                              |                              |                              |                              |                             |
| SL      |                                               |                                                                                                    |                                        |                             |                                     |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            |                     |                                                                                    |                              |                              |                              |                              |                              |                             |
| HNL     |                                               | •                                                                                                  |                                        |                             |                                     |            |                 |                         |                                               |                                                    |                                                                                     | •                                                                                                          |                     |                                                                                    |                              |                              |                              |                              |                              |                             |
| SH      |                                               |                                                                                                    |                                        |                             |                                     |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            | • (5)               |                                                                                    |                              |                              |                              |                              |                              |                             |
| SMPS    |                                               |                                                                                                    |                                        |                             |                                     |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            |                     |                                                                                    |                              |                              |                              |                              |                              |                             |
| SMPP    |                                               |                                                                                                    |                                        |                             |                                     |            |                 |                         |                                               |                                                    |                                                                                     |                                                                                                            |                     |                                                                                    |                              | - (6)(7)                     |                              |                              |                              |                             |
| Part nu | nber codes                                    | for finishes                                                                                       |                                        |                             |                                     |            |                 |                         |                                               | None                                               | ZI                                                                                  | LZ                                                                                                         | Х                   | ZC                                                                                 |                              |                              | · ·                          |                              |                              |                             |


- (1) Special order with additional charge.
- (2) Part numbers for aluminum nuts have no plating suffix.
- (3) Unplated threads are sized to accept a basic go gauge after .00025" / 0.0064 mm plating.
- (4) See PEM® Technical Support section of our web site for related plating standards and specifications.
- (5) With rust preventative oil.

- (6) Panel material should be in the annealed condition.
- (7) Fasteners should not be installed adjacent to bends or other highly cold-worked areas.
- (8) HRB Hardness Rockwell "B" Scale. HRC Hardness Rockwell "C" Scale. HB - Hardness Brinell.
- (9) Modified thread form on loaded flank. Will accept a maximum material 6g/2A screw.

### INSTALLATION - S™/SL™/SMPS™/SS™/CLS™/CLSS™/CLA™/S-RT™/H™/HNL™ NUTS


- Prepare properly sized mounting hole in sheet.
   Do not perform any secondary operations such as deburring.
- Place fastener into the anvil hole and place the mounting hole (preferably the punch side) over the shank of the fastener as shown in diagram to the right.
- With installation punch and anvil surfaces parallel, apply squeezing force until the head of the nut comes into contact with the sheet material.

### COUNTERBORE ANVIL Thread Sizes #2-56 to 5/16



### PROTRUSION ANVIL (1)

CLS/S/SL/S-RT Thread Sizes 3/8, 7/16, 1/2, M10 and M12 H/HNL Thread Sizes 5/16, 3/8, M8 and M10



### **PEMSERTER® Installation Tooling**

### CLS™/CLSS™/S™/SS™/PEM RT® NUTS

|   |                | Anvil Dime | nsions (in.) |                        |                      |
|---|----------------|------------|--------------|------------------------|----------------------|
|   | Thread<br>Code | A<br>±.002 | P<br>±.005   | Anvil Part<br>Number   | Punch Part<br>Number |
|   | 256/440/RT440  | .267       | .045         | 975200034              | 975200048            |
| Ω | 632/RT632      | .298       | .045         | 975200035              | 975200048            |
| = | 832/RT832      | .330       | .070         | 975200036              | 975200048            |
| 쁘 | 024/032/RT032  | .361       | .070         | 975200037              | 975200048            |
| Z | 1224           | .415       | .080.        | 975200786300           | 975200048            |
|   | 0420/RT0420    | .454       | .150         | 975200038              | 975200048            |
|   | 0518/RT0518    | .517       | .200         | 975200039              | 975200048            |
|   | 0616           | .280       | .250         | 975200045 (1)          | 975200048            |
|   | 0720           | .338       | .295         | 8020361 <sup>(1)</sup> | 975200901400         |
|   | 0813           | .375       | .345         | 975200900300 (1)       | 975200901400         |

|   |            | Anvil Dimer | nsions (mm) |                        |              |
|---|------------|-------------|-------------|------------------------|--------------|
|   | Thread     | Α           | P           | Anvil Part             | Punch Part   |
|   | Code       | ±0.05       | ±0.13       | Number                 | Number       |
| ပ | M2/M3/RTM3 | 6.78        | 1.14        | 975200034              | 975200048    |
| - | M3.5       | 7.57        | 1.14        | 975200035              | 975200048    |
| F | M4/RTM4    | 8.38        | 1.78        | 975200036              | 975200048    |
| ш | M5/RTM5    | 9.17        | 1.78        | 975200037              | 975200048    |
| Σ | M6/RTM6    | 11.53       | 3.81        | 975200038              | 975200048    |
|   | M8/RTM8    | 13.08       | 5.08        | 975200039              | 975200048    |
|   | M10        | 7.62        | 6.35        | 8005682 <sup>(1)</sup> | 975200901400 |
|   | M12        | 9.53        | 8.76        | 975200900300 (1)       | 975200901400 |

### **CLA™ NUTS**

|     |                | Anvil Dime | nsions (in.) |                      |                      |
|-----|----------------|------------|--------------|----------------------|----------------------|
| E D | Thread<br>Code | A<br>±.002 | P<br>±.005   | Anvil Part<br>Number | Punch Part<br>Number |
| ᇤ   | 256/440        | .267       | .045         | 975200034            | 975200048            |
| _   | 632            | .298       | .045         | 975200035            | 975200048            |
| Z   | 832            | .330       | .070         | 975200036            | 975200048            |
| 7   | 024/032        | .392       | .140         | 975200782300         | 975200048            |
|     | 0420 .454      |            | .150         | 975200038            | 975200048            |

|   |                | Anvil Dimen | sions (mm) |                      |                      |
|---|----------------|-------------|------------|----------------------|----------------------|
| 0 | Thread<br>Code | A<br>±0.05  | P<br>±0.13 | Anvil Part<br>Number | Punch Part<br>Number |
| ~ | M3             | 6.78        | 1.14       | 975200034            | 975200048            |
| I | M3.5           | 7.57        | 1.14       | 975200035            | 975200048            |
| Ξ | M4             | 8.38        | 1.78       | 975200036            | 975200048            |
|   | M5             | 9.96        | 3.56       | 975200782300         | 975200048            |
|   | M6             | 11.53       | 3.81       | 975200038            | 975200048            |

(1) Large nut anvils use protrusion to locate part instead of counterbore.

### SL™ NUTS

|        |                | Anvil Dime | nsions (in.) |                      |                      |
|--------|----------------|------------|--------------|----------------------|----------------------|
| Q      | Thread<br>Code | Α          | P            | Anvil Part<br>Number | Punch Part<br>Number |
|        |                | ±.002      | ±.005        |                      |                      |
| =      | 440            | .267       | .045         | 975200034            | 975200048            |
| ш.     | 632            | .298       | .045         | 975200035            | 975200048            |
| UNIFIE | 832            | .330       | .070         | 975200036            | 975200048            |
| n      | 032            | .361       | .070         | 975200037            | 975200048            |
|        | 0420           | .454       | .150         | 975200038            | 975200048            |
|        | 0518           | .515       | .200         | 975200039            | 975200048            |

|     |                | Anvil Dimen | sions (mm) |                        |                      |
|-----|----------------|-------------|------------|------------------------|----------------------|
| ا C | Thread<br>Code | A<br>±0.05  | P<br>±0.13 | Anvil Part<br>Number   | Punch Part<br>Number |
|     | M3             | 6.78        | 1.14       | 975200034              | 975200048            |
| œ   | M3.5           | 7.57        | 1.14       | 975200035              | 975200048            |
| ΕŢ  | M4             | 8.38        | 1.78       | 975200036              | 975200048            |
| Σ   | M5             | 9.17        | 1.78       | 975200037              | 975200048            |
| _   | M6             | 11.53       | 3.81       | 975200038              | 975200048            |
|     | M8             | 13.08       | 5.08       | 975200039              | 975200048            |
|     | M10            | 7.62        | 6.35       | 8005682 <sup>(1)</sup> | 975200901400         |

### SMPS™ NUTS

| D    |                | Anvil Dimensions (in.) |            |                      |                      |  |
|------|----------------|------------------------|------------|----------------------|----------------------|--|
| FIED | Thread<br>Code | A<br>±.002             | P<br>±.005 | Anvil Part<br>Number | Punch Part<br>Number |  |
| Ξ    | 256/440        | .236                   | .045       | 975200904300         | 975200048            |  |
|      | 632            | .267                   | .045       | 975200034            | 975200048            |  |

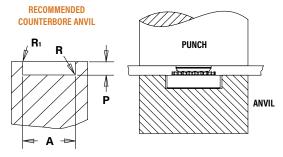
| ပ   |                | Anvil Dimensions (mm) |            |                      |                      |  |
|-----|----------------|-----------------------|------------|----------------------|----------------------|--|
| TRI | Thread<br>Code | A<br>±0.05            | P<br>±0.13 | Anvil Part<br>Number | Punch Part<br>Number |  |
| ш   | M2.5/M3        | 5.99                  | 1.14       | 975200904300         | 975200048            |  |
| Σ   | M3.5           | 6.78                  | 1.14       | 975200034            | 975200048            |  |

### H™/HNL™ NUTS

| D   | Anvil Dimens   |            | nsions (in.) |                          |                      |  |
|-----|----------------|------------|--------------|--------------------------|----------------------|--|
| FIE | Thread<br>Code | A<br>±.002 | P<br>±.005   | Anvil Part<br>Number     | Punch Part<br>Number |  |
| _   | 0420           | .517       | .200         | 975200039                | 975200048            |  |
| Z   | 0518           | .220       | .250         | 975200783300 (1)         | 975200048            |  |
| 7   | 0616           | .280       | .250         | 975201240 <sup>(1)</sup> | 8003076              |  |

| ပ   |                | Anvil Dimen | sions (mm) |                             |                      |  |
|-----|----------------|-------------|------------|-----------------------------|----------------------|--|
| RIC | Thread<br>Code | A<br>±0.05  | P<br>±0.13 | Anvil Part<br>Number        | Punch Part<br>Number |  |
| ᇤ   | M6             | 13.13       | 5.08       | 975200039                   | 975200048            |  |
| Ξ   | M8             | 5.59        | 6.35       | 975200783300 <sup>(1)</sup> | 975200048            |  |
| _   | M10            | 7.62        | 6.35       | 8005682 <sup>(1)</sup>      | 8003076              |  |

### INSTALLATION - SP™/SMPP™ NUTS (1)


- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into the recommended counterbore anvil hole and place the mounting hole (preferably the punch side) over the shank of the fastener as shown in diagram.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the head of the nut comes into contact with the sheet material.

### **PEMSERTER® Installation Tooling**

### **SP™ NUTS**

|    |                | An         | vil Dimen:     | sions (in. | )                       | Anvil          | Punch          |
|----|----------------|------------|----------------|------------|-------------------------|----------------|----------------|
| Q  | Thread<br>Code | A<br>±.002 | P +.000<br>001 | R<br>Max.  | R <sub>1</sub><br>+.005 | Part<br>Number | Part<br>Number |
| ED | 440            | .255       | .064           | .010       | .005                    | 8012821        |                |
| Ξ  | 632            | .286       | .064           | .010       | .005                    | 8012822        | 975200048      |
|    | 832            | .317       | .082           | .010       | .005                    | 8012823        | 9/3200046      |
| Z  | 024/032        | .348       | .082           | .010       | .005                    | 8012824        |                |
| П  | 0420           | .443       | .163           | .010       | .005                    | 8012825        |                |
|    | 0518           | .505       | .230           | .010       | .005                    | 8015359        | 8003076        |
|    | 0616/0624      | .570       | .263           | .010       | .005                    | 8015863        |                |

|     |                | An         | vil Dimens | sions (mr | n)                      | Anvil          | Punch          |  |
|-----|----------------|------------|------------|-----------|-------------------------|----------------|----------------|--|
|     | Thread<br>Code | A<br>±0.05 | P<br>-0.03 | R<br>Max. | R <sub>1</sub><br>+0.13 | Part<br>Number | Part<br>Number |  |
|     | M2             | 6.48       | 1.63       | 0.25      | 0.13                    | 8012821        |                |  |
| RIC | M2.5-0         | 6.48       | 1.42       | 0.25      | 0.13                    | 8019477        |                |  |
|     | M2.5-1,-2      | 6.48       | 1.63       | 0.25      | 0.13                    | 8012821        |                |  |
| -   | M3             | 6.48       | 1.63       | 0.25      | 0.13                    | 8012821        | 975200048      |  |
| ш   | M3.5           | 7.26       | 1.63       | 0.25      | 0.13                    | 8012822        |                |  |
| Σ   | M4             | 8.05       | 2.08       | 0.25      | 0.13                    | 8012823        |                |  |
|     | M5             | 8.84       | 2.08       | 0.25      | 0.13                    | 8012824        |                |  |
|     | M6             | 11.25      | 4.14       | 0.25      | 0.13                    | 8012825        |                |  |
|     | M8             | 12.83      | 5.41       | 0.25      | 0.13                    | 8015360        | 8003076        |  |
|     | M10            | 17.58      | 7.47       | 0.25      | 0.13                    | 8015886        |                |  |



### **SMPP™ NUTS**

| D |                | Ar         | nvil Dimen     | sions (in | Anvil       | Punch          |                |
|---|----------------|------------|----------------|-----------|-------------|----------------|----------------|
| = | Thread<br>Code | A<br>±.002 | P +.000<br>001 | R<br>Max. | Rı<br>+.005 | Part<br>Number | Part<br>Number |
| Ξ | 256            | .223       | .060           | .010      | .005        | 8020023        |                |
| Z | 440            | .233       | .060           | .010      | .005        | 8021386        | 975200048      |
|   | 632            | .255       | .060           | .010      | .005        | 8020024        |                |

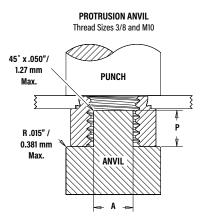
| ပ   |                | Anv        | vil Dimens | Anvil     | Punch                   |                |                |  |
|-----|----------------|------------|------------|-----------|-------------------------|----------------|----------------|--|
| BIG | Thread<br>Code | A<br>±0.05 | P<br>-0.03 | R<br>Max. | R <sub>1</sub><br>+0.13 | Part<br>Number | Part<br>Number |  |
|     | M2.5           | 5.66       | 1.27       | 0.25      | 0.13                    | 8020025        |                |  |
| ΙΞ  | M3             | 5.9        | 1.27       | 0.25      | 0.13                    | 8021474        | 975200048      |  |
|     | M3.5           | 6.48       | 1.27       | 0.25      | 0.13                    | 8020026        |                |  |

(1) For best results, we recommend using the installation punch and anvil shown. Deviations from recommended installation tooling may result in sheet distortion and reduced performance.

NOTE: Variations in hole preparation, installation tooling, installation force, and sheet material type, thickness, and hardness will affect both performance and tooling life.

### **INSTALLATION - SH™ NUTS**

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into the anvil hole and place the mounting hole (preferably the punch side) over the shank of the fastener as shown in diagram to the right.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the head of the nut comes into contact with the sheet material.


### **PEMSERTER® Installation Tooling**

| D  |                | Anvil Dimer | isions (in.) |                        |                      |  |
|----|----------------|-------------|--------------|------------------------|----------------------|--|
| FE | Thread<br>Code | A<br>±.002  | P<br>±.005   | Anvil Part<br>Number   | Punch Part<br>Number |  |
| _  | 0420           | .454        | .150         | 975200038              | 975200048            |  |
| Z  | 0518           | .517        | .200         | 975200039              | 975200048            |  |
| ٦  | 0616           | .280        | .250         | 8020084 <sup>(1)</sup> | 9752000901400        |  |

| ပ   |                | Anvil Dimer | isions (mm) |                        |                      |
|-----|----------------|-------------|-------------|------------------------|----------------------|
| B C | Thread<br>Code | A<br>±0.05  | P<br>±0.13  | Anvil Part<br>Number   | Punch Part<br>Number |
| I₩  | M6             | 11.53       | 3.81        | 975200038              | 975200048            |
| ΙΞ  | M8             | 13.13       | 5.08        | 975200039              | 975200048            |
|     | M10            | 7.62        | 6.35        | 8005682 <sup>(1)</sup> | 975200901400         |

(1) Large nut anvils use protrusion to locate part instead of counterbore.

### COUNTERBORE ANVIL Thread Sizes 1/4-20 to 5/16 and M5 to M8 PUNCH . ΔΝΛΙΙ



### **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® press for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.

### PERFORMANCE DATA(1)

Axial Strength and Mating Screw Recommended Tightening Torque data is available at: www.pemnet.com/design\_info/tightening-torque/

### S™/CLS™/CLSS™ NUTS

|        | Туре     | Thread<br>Code | Shank<br>Code | Test Sheet<br>Material <sup>(2)</sup> | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
|--------|----------|----------------|---------------|---------------------------------------|------------------------|-------------------|--------------------------|
|        |          |                | 0             |                                       |                        | 63                | 8                        |
|        |          |                | 1             | 5052-H34                              | 1500-2000              | 90                | 10                       |
|        | _        | 256            | 2             | Aluminum                              | 1000 2000              | 170               | 13                       |
|        | S        | 348            | 3             |                                       |                        | 170               | 13                       |
|        | CLS      | 440            | 0             | Cold-rolled                           |                        | 105               | 13<br>15                 |
|        |          |                | 2             | Steel                                 | 2500-3500              | 125<br>230        | 18                       |
|        |          |                | 3             | 31661                                 |                        | 230               | 18                       |
|        |          |                | 0             |                                       |                        | 63                | 16                       |
|        |          |                | 1             | 5052-H34                              | 0500 0000              | 95                | 17                       |
|        |          |                | 2             | Aluminum                              | 2500-3000              | 190               | 22                       |
|        | S        | 632            | 3             |                                       |                        | 190               | 22                       |
|        | CLS      | 002            | 0             |                                       |                        | 110               | 16                       |
|        |          |                | 1             | Cold-rolled                           | 3000-6000              | 130               | 20                       |
|        |          |                | 2             | Steel                                 | 0000 0000              | 275               | 28                       |
|        |          |                | 3             |                                       |                        | 275               | 28                       |
|        |          |                | 0             | 5052-H34                              |                        | 68<br>105         | 21<br>23                 |
|        |          |                | 2             | Aluminum                              | 2500-3000              | 220               | 35                       |
|        | S        |                | 3             | 7.10.11.11.10.11                      |                        | 220               | 35                       |
|        | CLS      | 832            | 0             |                                       |                        | 110               | 26                       |
|        |          |                | 1             | Cold-rolled                           | 4000-6000              | 145               | 35                       |
|        |          |                | 2             | Steel                                 | 1000 0000              | 285               | 45                       |
|        |          |                | 3             |                                       |                        | 285               | 45                       |
|        |          |                | 0             | 5052-H34                              |                        | 68                | 26                       |
|        |          |                | 2             | Aluminum                              | 2500-3500              | 110<br>190        | 32<br>50                 |
|        | SS       | 024            | 3             | Alullillulli                          |                        | 225               | 50                       |
|        | CLSS     | 032            | 0             |                                       |                        | 120               | 32                       |
| E D    |          |                | 1             | Cold-rolled                           | 4000-9000              | 180               | 40                       |
| Ξ.     |          |                | 2             | Steel                                 | 4000 3000              | 320               | 60                       |
| UNIFIE |          |                | 3             |                                       |                        | 320               | 60                       |
| 2      |          | 1224           | 1             | 5052-H34                              | 2500-6500              | 120               | 63                       |
|        | S        |                | 3             | Aluminum                              | 2500-6500              | 285<br>285        | 70<br>70                 |
|        | CLS      |                | 1             |                                       |                        | 200               | 74                       |
|        | OLO      |                | 2             | Cold-rolled                           | 5000-6500              | 350               | 80                       |
|        |          |                | 3             | Steel                                 |                        | 350               | 80                       |
|        |          |                | 0             |                                       |                        | 220               | 70                       |
|        |          |                | 1             | 5052-H34                              | 4000-7000              |                   | 90                       |
|        |          |                | 2             | Aluminum                              |                        | 360               | 125                      |
|        | S<br>CLS | 0420           | <u>3</u><br>0 |                                       |                        | 315               | 115                      |
|        | ULS      |                | 1             | Cold-rolled                           |                        | 313               | 113                      |
|        |          |                | 2             | Steel                                 | 6000-8000              | 400               | 150                      |
|        |          |                | 3             |                                       |                        |                   |                          |
|        |          |                | 1             | 5052-H34                              |                        |                   | 120                      |
|        |          |                | 2             | Aluminum                              | 4000-7000              | 380               | 160                      |
|        | S        | 0518           | 3             |                                       |                        |                   |                          |
|        | CLS      | 0524           | 2             | Cold-rolled                           | 6000-8000              | 420               | 165                      |
|        |          |                | 3             | Steel                                 | 0000 0000              | 720               | 180                      |
|        |          |                | 1             |                                       |                        |                   |                          |
|        |          |                | 2             | 5052-H34                              | 5000-8000              | 400               | 270                      |
|        | S        | 0616           | 3             | Aluminum                              |                        |                   |                          |
|        | CLS      | 0624           | 1             | Cold-rolled                           | 7000 #**               |                   | 000                      |
|        |          |                | 3             | Steel                                 | 7000-11000             | 460               | 320                      |
|        |          |                | J             | Cold-rolled                           |                        |                   |                          |
|        | S        | 0720           | 1             | Steel                                 | 9000-13000             | 450               | 340                      |
|        |          |                | 1             | 5052-H34                              | 7000                   | ,                 | 055                      |
|        | S        | 0813           | 2             | Aluminum                              | 7000-9000              | 475               | 350                      |
|        | CLS      | 0820           | 1             | Cold-rolled                           | 10000-15000            | 1050              | 735                      |
|        |          |                | 2             | Steel                                 | .0000 10000            | 1000              | , 55                     |

|          | Туре       | Thread<br>Code | Shank<br>Code | Test Sheet<br>Material <sup>(2)</sup>        | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N•m) |
|----------|------------|----------------|---------------|----------------------------------------------|----------------------|----------------|---------------------|
|          |            |                | 0             | 5052-H34<br>Aluminum                         |                      | 280            | 0.9                 |
|          | S<br>CLS   | M2             | 1             |                                              | 6.7-8.9              | 400            | 1.13                |
|          |            | M2.5<br>M3     | 2             |                                              |                      | 750            | 1.47                |
|          |            |                | <u> </u>      | Cold-rolled<br>Steel                         | 11.2-15.6            | 470<br>550     | 1.47<br>1.7         |
|          |            |                | 2             |                                              |                      | 1010           | 2,03                |
|          |            |                | 0             |                                              |                      | 280            | 1.8                 |
|          | S<br>CLS   | M3.5           | 1             | 5052-H34<br>Aluminum                         | 11.2-13.5            | 400            | 1.92                |
|          |            |                | 2             |                                              |                      | 840            | 2.5                 |
|          |            |                | 0             | Cold-rolled<br>Steel                         | 13.4-26.7            | 480            | 1.8                 |
|          |            |                | 1             |                                              |                      | 570            | 2.3                 |
|          |            |                | 2             |                                              |                      | 1210           | 2.3                 |
|          |            | M4             | 0             | 5052-H34<br>Aluminum                         | 1 11 2 12 /          | 300            | 2.37                |
|          |            |                | 1             |                                              |                      | 470            | 2.6                 |
|          | S          |                | 2             |                                              |                      | 970            | 4                   |
|          | CLS        |                | 0             | Cold-rolled<br>Steel                         | 18-27                | 490            | 2.95                |
|          |            |                | 2             |                                              |                      | 645<br>1250    | 5.1                 |
|          |            |                | 0             |                                              |                      | 300            | 3                   |
| ပ        |            | M5             | 1             | 5052-H34<br>Aluminum                         | 11.2-15.6            | 480            | 3.6                 |
| В        | SS<br>CLSS |                | 2             |                                              |                      | 845            | 5.7                 |
| $\vdash$ |            |                | 0             | Cold-rolled<br>Steel                         | 18-38                | 530            | 3,6                 |
| ш        |            |                | 1             |                                              |                      | 800            | 4.5                 |
| Σ        |            |                | 2             |                                              |                      | 1420           | 6.8                 |
|          | S<br>CLS   | M6             | 00            | 5052-H34<br>Aluminum<br>Cold-rolled<br>Steel | 18-32<br>27-36       | 750            | 6.5                 |
|          |            |                | 0             |                                              |                      | 970            | 7.9                 |
|          |            |                | 1             |                                              |                      | 1580           | 10.2                |
|          |            |                | 2             |                                              |                      |                | 14.1                |
|          |            |                | 00            |                                              |                      | 900            | 10                  |
|          |            |                | 0             |                                              |                      | 1380           | 13                  |
|          |            |                | 2             |                                              |                      | 1760           | 17                  |
|          | S<br>CLS   | M8             | 1             | 5052-H34                                     | 18-32                | 1570           | 13.6                |
|          |            |                | 2             | Aluminum                                     | 10-32                | 1570           | 18.1                |
|          |            |                | 1             | Cold-rolled                                  | 27-36                | 1870           | 18.7                |
|          |            |                | 2             | Steel                                        |                      |                | 20.3                |
|          | S<br>CLS   | M10            | 1 2           | 5052-H34<br>Aluminum                         | 22-36                | 1760           | 32.7                |
|          |            |                | 1 2           | Cold-rolled<br>Steel                         | 32-50                | 2020           | 36.2                |
|          | S          | M12            | 1             | 5052-H34<br>Aluminum                         | 31-40                | 2113           | 39.5                |
|          |            |                | 1             | Cold-rolled<br>Steel                         | 44-67                | 4670           | 83.1                |

### **CLA™ NUTS**

| UNIFIED | Туре | Thread<br>Code | Shank<br>Code | Test Sheet<br>Material | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
|---------|------|----------------|---------------|------------------------|------------------------|-------------------|--------------------------|
|         | CLA  | 440            | 1             | 5052-H34 Aluminum      | 800 - 1500             | 100               | 6                        |
|         |      |                | 2             | 5052-H34 Aluminum      | 800 - 1500             | 120               | 9                        |
|         | CLA  | 632            | 1             | 5052-H34 Aluminum      | 1000 - 1500            | 110               | 21                       |
|         |      |                | 2             | 5052-H34 Aluminum      | 1200 - 1700            | 155               | 24                       |
|         | CLA  | 832            | 1             | 5052-H34 Aluminum      | 1000 - 1500            | 120               | 27                       |
|         |      |                | 2             | 5052-H34 Aluminum      | 1300 - 1800            | 170               | 29                       |
|         | CLA  | 032            | 1             | 5052-H34 Aluminum      | 1700 - 2200            | 130               | 34                       |
|         |      |                | 2             | 5052-H34 Aluminum      | 2600 - 3100            | 200               | 50                       |

| ပ   | Туре | Thread<br>Code | Shank<br>Code | Test Sheet<br>Material | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) |
|-----|------|----------------|---------------|------------------------|----------------------|----------------|---------------------|
| - H | CLA  | M2             | 2             | 5052-H34 Aluminum      | 3.56 - 6.67          | 500            | 0.4                 |
| Ë   | CLA  | M3             | 1             | 5052-H34 Aluminum      | 3.56 - 6.67          | 445            | 0.68                |
| ш   |      |                | 2             | 5052-H34 Aluminum      | 3.56 - 6.67          | 534            | 1.02                |
| Σ   | CLA  | M4             | 1             | 5052-H34 Aluminum      | 4.45 - 6.67          | 534            | 3.05                |
|     |      |                | 2             | 5052-H34 Aluminum      | 5.78 - 8.01          | 756            | 3.27                |

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.
- (2) See <u>tech sheet</u> on our website for performance data of PEM® Type S™ nuts installed into copper sheets.

## **PERFORMANCE DATA**

Axial Strength and Mating Screw Recommended Tightening Torque data is available at: <a href="https://www.pemnet.com/design\_info/tightening-torque/">www.pemnet.com/design\_info/tightening-torque/</a>

## PEM RT® NUTS

|      | Туре    | Thread<br>Code | Shank<br>Code | Test Sheet<br>Material  | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
|------|---------|----------------|---------------|-------------------------|------------------------|-------------------|--------------------------|
|      |         |                | 0             | 5052-H34                |                        | 63                | 8                        |
|      |         |                | 1             | Aluminum                | 1500-2000              | 90                | 10                       |
|      | S       | RT440          | 2             | Aldillillalli           |                        | 170               | 13                       |
|      | Ů       |                | 0             | Cold-rolled             |                        | 105               | 13                       |
|      |         |                | 1             | Steel                   | 2500-3500              | 125               | 15                       |
|      |         |                | 2             |                         |                        | 230               | 18                       |
|      |         |                | 0             | 5052-H34                | 2500-3000              | 63                | 16                       |
|      |         |                | 1             | Aluminum                | 2500-3000              | 95                | 17<br>22                 |
|      | S RT632 | RT632          | 2<br>0        |                         |                        | 190<br>110        | 16                       |
|      |         |                | 1             | Cold-rolled             | 3000-6000              | 130               | 20                       |
|      |         |                | 2             | Steel                   | 3000-0000              | 275               | 28                       |
|      |         |                | 0             |                         | 2500-3000              | 68                | 21                       |
|      | S       | RT832          | 1             | 5052-H34                |                        | 105               | 23                       |
| E D  |         |                | 2             | Aluminum                | 2300-3000              | 220               | 35                       |
| _    |         |                | 0             |                         |                        | 110               | 26                       |
| Ε.   |         |                | 1             | Cold-rolled<br>Steel    | 4000-6000              | 145               | 35                       |
| UNIF |         |                | 2             | Steel                   |                        | 285               | 45                       |
|      |         |                | 0             | 5052-H34<br>Aluminum    | 2500-3500              | 68                | 26                       |
|      |         |                | 1             |                         |                        | 110               | 32                       |
|      | SS      | RT032          | 2             | Alullillulli            |                        | 190               | 50                       |
|      | აა      | N1032          | 0             | Cold-rolled             |                        | 120               | 32                       |
|      |         |                | 1             | Steel                   | 4000-9000              | 180               | 40                       |
|      |         |                | 2             | Oloci                   |                        | 320               | 60                       |
|      |         |                | 0             | 5052-H34                |                        | 220               | 70                       |
|      |         |                | 1             | Aluminum                | 4000-7000              | 360               | 90                       |
|      | S       | RT0420         | 2             |                         |                        |                   | 125                      |
|      |         |                | 0             | Cold-rolled             | 6000-8000              | 315               | 115                      |
|      |         |                |               | Steel                   | 0000-8000              | 400               | 150                      |
|      |         |                | 2             |                         |                        |                   |                          |
|      |         |                | 1             | 5052-H34                | 4000-7000              | 380               | 120                      |
|      | S       | RT0518         | 2             | Aluminum<br>Cold-rolled |                        |                   | 160                      |
|      | 5       |                | 1 2           | Steel                   | 6000-8000              | 420               | 165<br>180               |
|      |         |                |               | ડાઇઇા                   |                        |                   | 100                      |

|    | Туре | Thread<br>Code | Shank<br>Code | Test Sheet<br>Material | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) |
|----|------|----------------|---------------|------------------------|----------------------|----------------|---------------------|
|    |      |                | 0             | 5052-H34               |                      | 280            | 0.9                 |
|    |      |                | 1             | Aluminum               | 6.7-8.9              | 400            | 1.13                |
|    | S    | RTM3           | 2             | / (Idillillidill       |                      | 750            | 1.47                |
|    | ۰    | 1111110        | 0             | Cold-rolled            | 11.2-15.6            | 470            | 1.47                |
|    |      |                | 1             | Steel                  |                      | 550            | 1.7                 |
|    |      |                | 2             |                        |                      | 1010           | 2.03                |
|    |      |                | 0             | 5052-H34               |                      | 300            | 2.37                |
|    |      |                | 1             | Aluminum               | 11.2-13.4            | 470            | 2.6                 |
|    | S    | RTM4           | 2             | 71101111110111         |                      | 970            | 4                   |
|    | Ů    |                | 0             | Cold-rolled            |                      | 490            | 2.95                |
|    |      |                | 1             | Steel                  | 18-27                | 645            | 4                   |
| ပ  |      |                | 2             | 0.00.                  |                      | 1250           | 5.1                 |
| _  |      | RTM5           | 0             | 5052-H34<br>Aluminum   |                      | 300            | 3                   |
| В  | SS   |                | 1             |                        | 11.2-15.6            | 480            | 3.6                 |
| ΕT |      |                | 2             | 7.114111114111         |                      | 845            | 5.7                 |
| Σ  |      |                | 0             | Cold-rolled<br>Steel   |                      | 530            | 3.6                 |
| _  |      |                | 1             |                        | 18-38                | 800            | 4.5                 |
|    |      |                | 2             |                        |                      | 1420           | 6.8                 |
|    |      |                | 00            |                        |                      | 750            | 6.5                 |
|    |      |                | 0             | 5052-H34               | 18-32                | 970            | 7.9                 |
|    |      |                | 1             | Aluminum               | 10-32                | 1580           | 10.2                |
|    | S    | RTM6           | 2             |                        |                      | 1500           | 14.1                |
|    | ۰    | 1111110        | 00            |                        |                      | 900            | 10                  |
|    |      |                | 0             | Cold-rolled            | 27-36                | 1380           | 13                  |
|    |      |                | 1             | Steel                  | 2, 00                | 1760           | 17                  |
|    |      |                | 2             |                        |                      |                |                     |
|    |      |                | 1             | 5052-H34               | 10 22                | 1690           | 13.6                |
|    | g    | RTMR           | 2             | Aluminum               | 18-32                | 1030           | 18.1                |
|    | S    | RTM8           | 1             | Cold-rolled            | 27-36                | 1865           | 18.7                |
|    |      |                | 2             | Steel                  | 21-30                | 1000           | 20.3                |

## **SL™ NUTS**

|   |        |       | Prevailing Torque            | Specifications (1)           |                        |                   | Test She                 | et Material            |                   |                          |  |
|---|--------|-------|------------------------------|------------------------------|------------------------|-------------------|--------------------------|------------------------|-------------------|--------------------------|--|
|   | Thread | Shank | Max. Torque                  | Min. Torque                  | 5                      | 5052-H34 Aluminum |                          |                        | Cold-rolled Steel |                          |  |
|   | Code   | Code  | (1st thru 3rd)<br>(in. lbs.) | (1st thru 3rd)<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(Ibs.) | Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |  |
|   | 440    | 1     | 5.75                         | 0.4                          | 1500 - 2000            | 90                | 10                       | 2500 - 3500            | 125               | 15                       |  |
| ۵ | 440    | 2     | 5.75                         | 0.4                          | 1300 - 2000            | 170               | 13                       | 2300 - 3300            | 230               | 18                       |  |
| ш | 632    | 1     | 10.5                         | 0.8                          | 2500 - 3000            | 95                | 17                       | 3000 - 6000            | 130               | 20                       |  |
| ᇤ | 032    | 2     | 1010                         | 0.0                          | 2300 3000              | 190               | 22                       | 3000 0000              | 275               | 28                       |  |
| Ξ | 832    | 1     | 18                           | 1,2                          | 2500 - 3000            | 105               | 23                       | 4000 - 6000            | 145               | 35                       |  |
| 2 | 002    | 2     | 10                           | 112                          | 2000 0000              | 220               | 35                       | 1000 0000              | 285               | 45                       |  |
| _ | 032    | 1     | 21                           | 1.65                         | 2500 - 3000            | 110               | 32                       | 4000 - 9000            | 180               | 40                       |  |
|   | 002    | 2     | E1                           | 1100                         | 2000 0000              | 190               | 50                       | 1000 3000              | 250               | 60                       |  |
|   | 0420   | 1     | 35                           | 3.75                         | 4000 - 7000            | 360               | 90                       | 6000 - 9000            | 400               | 150                      |  |
|   | 0420   | 2     | 30                           | 3.73                         | 1000 7000              | 360               | 125                      | 6000 - 9000            | 400               | 150                      |  |
|   | 0518   | 1     | 53                           | 4.75                         | 4000 - 7000            | 380               | 120                      | 6000 - 8000            | 420               | 165                      |  |
|   | 0310   | 2     | 33                           | 4.75                         | 4000 - 7000            | 380               | 160                      | 0000 - 8000            | 420               | 180                      |  |

|          |        |       | Prevailing Torque       | Specifications (1)      |                      |                   | Test Shee           | et Material          |                   |                     |
|----------|--------|-------|-------------------------|-------------------------|----------------------|-------------------|---------------------|----------------------|-------------------|---------------------|
|          | Thread | Shank | Max. Torque             | Min. Torque             |                      | 5052-H34 Aluminun | n                   |                      | Cold-rolled Steel |                     |
|          | Code   | Code  | (1st thru 3rd)<br>(N-m) | (1st thru 3rd)<br>(N-m) | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N-m) | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N-m) |
|          | M3     | 1     | 0.67                    | 0.04                    | 6.7 - 8.9            | 400               | 1.13                | 11.2 - 15.6          | 550               | 1.7                 |
|          | IVIS   | 2     | 0.07                    | 0.04                    | 0.7 - 0.5            | 750               | 1.47                | 11.2 - 13.0          | 1010              | 2.03                |
| U        | M3.5   | 1     | 1.2                     | 0.08                    | 11.2 - 13.5          | 400               | 1.92                | 13.4 - 26.7          | 570               | 2.3                 |
| =        | IVIOIO | 2     | 1.Z                     | 0.00                    | 11.2 15.5            | 840               | 2.5                 | 13.4 20.7            | 1210              | 2.3                 |
| ۳.       | M4     | 1     | 2,1                     | 0.13                    | 11.2 - 13.4          | 470               | 2.6                 | <u> </u>             | 645               | 4                   |
| <u> </u> | IWIT   | 2     | Lil                     | 0.13                    | 11.2 15.4            | 970               | 4                   |                      | 1250              | 5.1                 |
| ΙΞ       | M5     | 1     | 2.4                     | 0.18                    | 11.2 - 15.6          | 480               | 3.6                 | 18 - 38              | 800               | 4.5                 |
|          | iiio   | 2     | 211                     | Ollo                    | 1112 1010            | 845               | 5.7                 | 10 00                | 1112              | 6.8                 |
|          | M6     | 1     | 4                       | 0.3                     | 18 - 32              | 1580              | 10.2                | 27 - 36              | 1760              | 17                  |
|          | iiio   | 2     | '                       | 0.0                     | 10 02                | 1580              | 14.1                | 21 00                | 1760              | 17                  |
|          | M8     | 1     | 6                       | 0.5                     | 18 - 32              | 1570              | 13.6                | 27 - 36              | 1870              | 18.7                |
|          | 0      | 2     | 3                       | 0.0                     | 10 02                | 1570              | 18.1                | 21 - 30              | 1870              | 20.3                |
|          | M10    | 1     | 12                      | 0.8                     | 22 - 36              | 1760              | 32.7                | 32 - 50              | 2020              | 36.2                |
|          | 10     | 2     |                         | 5.0                     |                      | 1760              | 32.7                | 32 00                | 2020              | 36.2                |

<sup>(1) 3</sup> cycle locking performance. Max. on / Min. off torque for 1st through 3rd cycles.

# **PERFORMANCE DATA**

Axial Strength and Mating Screw Recommended Tightening Torque data is available at: <a href="https://www.pemnet.com/design\_info/tightening-torque/">www.pemnet.com/design\_info/tightening-torque/</a>

## **SP™ NUTS**

|    | Туре | Thread<br>Code | Shank<br>Code | Test Sheet<br>Material | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
|----|------|----------------|---------------|------------------------|------------------------|-------------------|--------------------------|
|    |      |                | 0             | 00404-1-1              | 8000                   | 130               | 14                       |
|    | SP   | 256            | 1             | 304 Stainless          | 9000                   | 165               | 17                       |
|    |      |                | 2             | Steel                  | 10000                  | 290               | 18                       |
|    |      |                | 0             | 004 04-1-1             | 8000                   | 130               | 14                       |
|    | SP   | 440            | 1             | 304 Stainless          | 9000                   | 165               | 17                       |
|    |      |                | 2             | Steel                  | 10000                  | 290               | 18                       |
|    |      | 632            | 0             | 0040111                | 8500                   | 140               | 18                       |
|    | SP   |                | 1             | 304 Stainless          | 9500                   | 170               | 24                       |
| Ω  |      |                | 2             | Steel                  | 10500                  | 340               | 28                       |
| ш. | SP   | 832            | 0             | 00404-1-1              | 9000                   | 145               | 30                       |
| ш. |      |                | 1             | 304 Stainless<br>Steel | 10000                  | 180               | 37                       |
| Z  |      |                | 2             | Steel                  | 11000                  | 360               | 45                       |
| 5  |      | 024/032        | 0             | 304 Stainless<br>Steel | 9500                   | 180               | 35                       |
|    | SP   |                | 1             |                        | 10500                  | 230               | 45                       |
|    |      |                | 2             | Steel                  | 11500                  | 400               | 60                       |
|    | SP   | 0420           | 1             | 304 Stainless          | 13500                  | 450               | 150                      |
|    | 25   | 0420           | 2             | Steel                  | 13500                  | 600               | 170                      |
|    | SP   | 0518           | 1             | 304 Stainless          | 14800                  | 470               | 170                      |
|    | عد ا | 0318           | 2             | Steel                  | 14800                  | 750               | 250                      |
|    | SP   | 0524           | 1             | 304 Stainless          | 14800                  | 470               | 170                      |
|    | J.   | 0324           | 2             | Steel                  | 14800                  | 750               | 250                      |
|    | SP   | 0616/0624      | 1             | 304 Stainless          | 16000                  | 600               | 300                      |
|    | 35   | 0010/0024      | 2             | Steel                  | 20000                  | 700               | 370                      |

|          | Туре | Thread<br>Code | Shank<br>Code | Test Sheet<br>Material | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) |
|----------|------|----------------|---------------|------------------------|----------------------|----------------|---------------------|
|          | O.D. | M2             | 1             | 304 Stainless          | 40                   | 725            | 1.92                |
|          | SP   | IVIZ           | 2             | Steel                  | 44.5                 | 1290           | 2.03                |
|          |      |                | 0             | 304 Stainless          | 35.6                 | 575            | 1.58                |
|          | SP   | M2.5           | 1             | Steel                  | 40                   | 725            | 1.92                |
|          |      |                | 2             | Steel                  | 44.5                 | 1290           | 2.03                |
|          | SP   |                | 0             | 304 Stainless          | 35.6                 | 575            | 1.58                |
| ပ        |      | M3             | 1             | Steel                  | 40                   | 725            | 1.92                |
| _        |      |                | 2             | Sieei                  | 44.5                 | 1290           | 2.03                |
| <b>«</b> | SP   | M4             | 0             | 304 Stainless<br>Steel | 40                   | 645            | 3.38                |
| <u> </u> |      |                | 1             |                        | 44.5                 | 800            | 4.18                |
| M        |      |                | 2             |                        | 49                   | 1600           | 5.08                |
| _        |      |                | 0             | 304 Stainless          | 42.3                 | 800            | 3.95                |
|          | SP   | M5             | 1             | Steel                  | 46.7                 | 1025           | 5.08                |
|          |      |                | 2             | Sieei                  | 51.2                 | 1775           | 6.77                |
|          | CD   | M6             | 1             | 304 Stainless          | 60                   | 2000           | 17                  |
|          | SP   | IVIO           | 2             | Steel                  | 60                   | 2600           | 19                  |
|          | SP   | M8             | 1             | 304 Stainless          | 66                   | 2100           | 19                  |
|          | JP   | IVIO           | 2             | Steel                  | 80                   | 4500           | 23                  |
|          | SP   | M10            | 1             | 304 Stainless<br>Steel | 80                   | 2150           | 38                  |

## H™ NUTS

| UNIFIED | Type Thread<br>Code |      | Test Sheet Thickness<br>and Sheet Material | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
|---------|---------------------|------|--------------------------------------------|------------------------|-------------------|--------------------------|
| Ħ       | Н 06                |      | .090" 5052-H34 Aluminum                    | 4900                   | 380               | 190                      |
|         | - 11                | 0010 | .088" Cold-rolled Steel                    | 7400                   | 460               | 240                      |

| RIC | Туре    | Thread<br>Code | Test Sheet Thickness<br>and Sheet Material | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) |
|-----|---------|----------------|--------------------------------------------|----------------------|----------------|---------------------|
| ET  | H   M10 |                | 2.29 mm 5052-H34 Aluminum                  | 22                   | 1760           | 21.5                |
| Σ   |         |                | 2.24 mm Cold-rolled Steel                  | 33                   | 2020           | 27.1                |

## SH™ NUTS

|     | Thread<br>Code | Shank<br>Code | Test Sheet Thickness and Material (in.) | Sheet<br>Hardness HRC | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
|-----|----------------|---------------|-----------------------------------------|-----------------------|------------------------|-------------------|--------------------------|
| E D | 0420           | 1             | .098" S700MC                            | 23                    | 11700                  | 950               | 150                      |
| E   | 0420           | 2             | .098" S700MC                            | 23                    | 12900                  | 1000              | 170                      |
| Z   | 0518           | 1             | .098" S700MC                            | 23                    | 12600                  | 1050              | 265                      |
|     | 0310           | 2             | .098" S700MC                            | 23                    | 12900                  | 1100              | 265                      |
|     | 0616           | 1             | .098" S700MC                            | 23                    | 15300                  | 1200              | 500                      |

|          | Thread<br>Code | Shank<br>Code | Test Sheet Thickness<br>and Material (mm) | Sheet<br>Hardness HRC | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) |
|----------|----------------|---------------|-------------------------------------------|-----------------------|----------------------|----------------|---------------------|
| <u> </u> | M6             | 1             | 2.5 mm S700MC                             | 23                    | 52.1                 | 4200           | 17                  |
| <u>۳</u> | E I WIO        | 2             | 2.5 mm S700MC                             | 23                    | 57.4                 | 4500           | 19                  |
| Ξ.       | M8             | 1             | 2.5 mm S700MC                             | 23                    | 56.1                 | 4600           | 30                  |
| =        | WIO            | 2             | 2.5 mm S700MC                             | 23                    | 57.4                 | 4900           | 30                  |
|          | M10            | 1             | 2.5 mm S700MC                             | 23                    | 71.2                 | 5400           | 56                  |

#### **PERFORMANCE DATA**

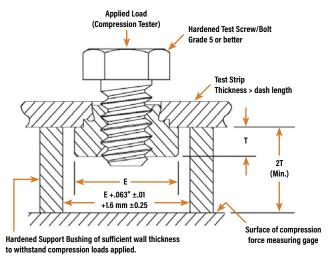
Axial Strength and Mating Screw Recommended Tightening Torque data is available at: www.pemnet.com/design\_info/tightening-torque/

#### **SMPS™ NUTS**

|      |      |        |                        | Test Sheet Material |                          |  |  |
|------|------|--------|------------------------|---------------------|--------------------------|--|--|
| Q    | Туре | Thread | Cold-rolled Steel      |                     |                          |  |  |
| FIEI | Code |        | Installation<br>(lbs.) | Pushout<br>(lbs.)   | Torque-out<br>(in. lbs.) |  |  |
| Z    | SMPS | 256    | 1500                   | 35                  | 8                        |  |  |
|      | SMPS | 440    | 1800                   | 60                  | 12                       |  |  |
|      | SMPS | 632    | 2000                   | 65                  | 14                       |  |  |

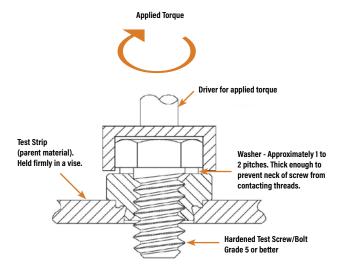
|      |      |        | Test Sheet Material  |                |                     |  |  |
|------|------|--------|----------------------|----------------|---------------------|--|--|
|      | Туре | Thread |                      |                |                     |  |  |
| TRIC |      | Code   | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) |  |  |
| ш    | SMPS | M2.5   | 6.7                  | 156            | 1.13                |  |  |
| Σ    | SMPS | M3     | 8                    | 267            | 1.35                |  |  |
|      | SMPS | M3.5   | 8.8                  | 289            | 1.58                |  |  |

#### **SMPP™ NUTS**


|      |      |        | Test Sheet Material .029" 304 Stainless Steel HRB 89 |                   |                          |  |  |  |  |  |
|------|------|--------|------------------------------------------------------|-------------------|--------------------------|--|--|--|--|--|
| 0    | Туре | Thread |                                                      |                   |                          |  |  |  |  |  |
| FIEI |      | Code   | Installation (1)<br>(lbs.)                           | Pushout<br>(Ibs.) | Torque-out<br>(in. lbs.) |  |  |  |  |  |
| Z    | SMPP | 256    | 4500                                                 | 50                | 10                       |  |  |  |  |  |
| Π    | SMPP | 440    | 4500                                                 | 75                | 15                       |  |  |  |  |  |
|      | SMPP | 632    | 6000                                                 | 75                | 20                       |  |  |  |  |  |

|          |      |        |                                   | Test Sheet Material |                     |  |  |  |  |  |
|----------|------|--------|-----------------------------------|---------------------|---------------------|--|--|--|--|--|
|          | Туре | Thread | 0.7 mm 304 Stainless Steel HRB 89 |                     |                     |  |  |  |  |  |
| L B I C  |      | Code   | Installation (1)<br>(kN)          | Pushout<br>(N)      | Torque-out<br>(N-m) |  |  |  |  |  |
| <u> </u> | SMPP | M2.5   | 20                                | 200                 | 1.35                |  |  |  |  |  |
| Σ        | SMPP | M3     | 20                                | 300                 | 1.85                |  |  |  |  |  |
|          | SMPP | M3.5   | 27                                | 300                 | 1.9                 |  |  |  |  |  |

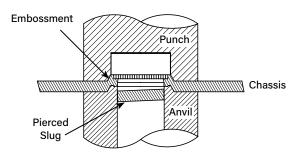
<sup>(1)</sup> Installation controlled by proper cavity depth in installation tooling.


#### **PUSHOUT TEST**

Pushout tests shall be performed from the grip or shank side of the installed fastener. An axial load shall be applied to the fastener as shown using a hardened test screw, while evenly supporting the test strip around the fastener. The typical position rate is .25" / 6.35 mm per minute. Dimensions are identified per PEM Bulletins where "E" equals head diameter and "T" (or "L") equals head height. The pushout force is measured using a force or compression tester with a range that will cover the expected forces.



#### **TORQUE-OUT TEST**


Torque-out tests shall be performed from the shoulder or head side of the installed fastener. Torque shall be applied to the fastener in the manner illustrated, using a hardened test screw and washer, while firmly holding the test strip. Test screws should be of sufficient tensile strength to resist thread stripping. A minimum of two screw threads must extend beyond the fastener.



## SELF-PIERCING, SELF-CLINCHING TOOLING

Specialized PEMSERTER® tooling allows installation of S self-clinching nuts into aluminum sheets (sizes 1/4", 5/16", M6 and M8) in one pierce/press operation.

For more information, see our web site for Tech Sheet <u>PEM® - Ref / Self-piercing, self-clinching tooling.</u>
To locate, simply type "self-piercing" in site search box.



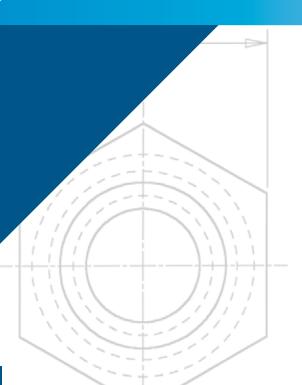
## **SELF-CLINCHING NUT INSTALLATION DOS AND DON'TS**

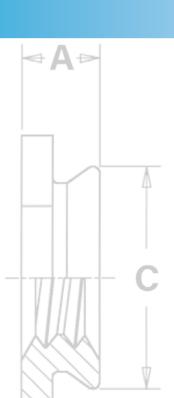
#### "DOS"

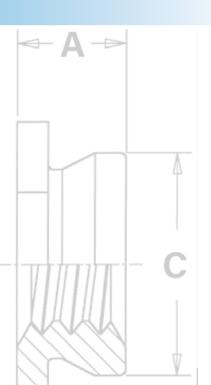
- **DO** select the proper fastener material to meet corrosion requirements.
- **DO** make certain that panel material is in the annealed condition.
- DO make certain that hole punch is kept sharp to minimize work hardening around hole.
- **DO** provide mounting hole of specified size for each fastener.
- **DO** maintain the hole punch diameter to no greater than +.001"/.025 mm over the minimum recommended mounting hole for type SP nuts into stainless steel sheets.
- **DO** install fastener into hole punch side of sheet.
- DO make certain that shank (or pilot) is within hole before applying installation force.
- DO make certain that fastener is not installed adjacent to bends or other highly cold-worked areas.
- **DO** apply squeezing force between parallel surfaces.
- **DO** utilize recommended installation tooling when installing fasteners.
- DO apply sufficient force to totally embed clinching ring around entire circumference and to bring shoulder squarely in contact with sheet.

#### "DON'TS"

- DON'T attempt to install any self-clinching nut other than types SP/SMPP fasteners into a stainless steel sheet.
- DON'T install steel or stainless steel fasteners in aluminum panels before anodizing or finishing.
- **DON'T** deburr mounting holes on either side of sheet before installing fasteners deburring will remove metal required for clinching fastener into sheet.
- **DON'T** install fastener closer to edge of sheet than minimum edge distance indicated by manufacturer unless a special fixture is used to restrict bulging of sheet edge.
- **DON'T** over-squeeze. It will crush the head, distort threads, and buckle the sheet. Approximate installation forces are listed in performance data tables. Use this info as a guide. Be certain to determine optimum installation force by test prior to production runs.
- **DON'T** attempt to insert fastener with a hammer blow under any circumstances. A hammer blow won't permit the sheet metal to flow and develop an interlock with the fastener's contour.
- **DON'T** install screw in the head side of fastener. Install from opposite side so that the fastener load is toward sheet. The clinching force is designed only to hold the fastener during handling and to resist torque during assembly.
- DON'T install fastener on pre-painted side of panel.





PEM® self-clinching flush nuts are flush with both sides of the sheet.




F

# PEMSERT® SELF-CLINCHING FASTENERS







## PEMSERT® SELF-CLINCHING FLUSH FASTENERS

## PEMSERT® self-clinching flush nuts are designed to be installed into sheets as thin as .060"/1.5 mm.

F<sup>™</sup> and F4<sup>™</sup> fasteners are ideal for applications where a thin sheet requires threads stronger than a tapped hole but still must remain flat, with no protrusions on either surface, enhancing the functional and cosmetic qualities of the entire assembly.

PEMSERT® flush nuts are installed easily by squeezing them into a round hole in metal sheets. They can be installed before bending and forming to provide threads in places which would be inaccessible for installation after chassis are formed. The hexagonal head along with the proven PEM® self-clinching design ensures high axial and torsional strength.



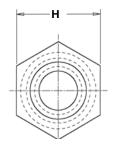
F4<sup>™</sup> flush nuts are specifically designed to be installed into stainless steel sheets.

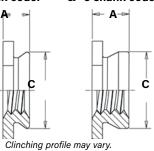
PEMSERT® F™ fasteners can be ordered to conform to US NASM45938/4 specifications.\*

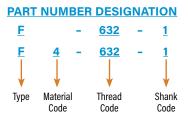
\*To meet national aerospace standards and to obtain testing documentation, product must be ordered to NASM45938/4 specifications. Consult our Marketing department for a complete Military Specification and National Aerospace Standards Reference Guide (Bulletin NASM) or check our web site.



#### A NOTE ABOUT HARDENED 400 SERIES STAINLESS STEEL


In order for self-clinching fasteners to work properly, the fastener must be harder than the sheet into which it is being installed. In the case of stainless steel panels, fasteners made from 300 Series Stainless Steel do not meet this hardness criteria. It is for this reason that 400 series F4™ fasteners are offered. However, while these 400 Series fasteners install and perform well in 300 Series stainless sheets they should not be used if the end product:


- Will be exposed to any appreciable corrosive environment.
- Requires non-magnetic fasteners.
- Will be exposed to any temperatures above 300° F (149° C)


If any of the these are issues, please contact techsupport@pemnet.com for other options.

# PEMSERT® SELF-CLINCHING FLUSH FASTENERS

Profile for -2, -3, -4, **Profile for** & -5 shank codes. -1 shank code.







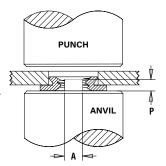
#### All dimensions are in inches.

|   | Thread              |                    | pe<br>Material              | Thread | Shank | A<br>(Shank) | Sheet     | Hole Size<br>In Sheet | С     | Н    | Min. Dist.<br>Hole <b>⊈</b> |
|---|---------------------|--------------------|-----------------------------|--------|-------|--------------|-----------|-----------------------|-------|------|-----------------------------|
|   | Size                | Stainless<br>Steel | Hardened<br>Stainless Steel | Code   | Code  | Max.         | Thickness | +.003000              | Max.  | Nom. | To Edge                     |
|   | .086-56             | F                  | F4                          | 256    | 1     | .060         | .060091   | .172                  | .171  | .188 | ,23                         |
|   | (#2-56)             |                    | 17                          | 230    | 2     | .090         | .091 Min. | .172                  | .17 1 | .100 | 123                         |
| Q | .112-40             | Е                  | F4                          | 440    | 1     | .060         | .060091   | .172                  | .171  | .188 | .23                         |
| ш | (#4-40)             | ` '                | 14                          | 770    | 2     | .090         | .091 Min. | .172                  | .17 1 | .100 |                             |
| 正 | .138-32<br>(#6-32)  | F4                 | 632                         | 1      | .060  | .060091      | .213      | .212                  | .250  | .27  |                             |
| Ξ |                     | 17                 |                             | 2      | .090  | .091 Min.    | 1213      | .212                  |       | .LI  |                             |
|   | .164-32             | Е                  | F4                          | 832    | 1     | .060         | .060091   | .290                  | .289  | .312 | .28                         |
|   | (#8-32)             |                    | 14                          | 032    | 2     | .090         | .091 Min. | .230                  | .203  | .312 | .20                         |
|   | .190-32             | Е                  | F4                          | 032    | 1     | .060         | .060091   | .312                  | .311  | .343 | .31                         |
|   | (#10-32)            |                    | 14                          | 032    | 2     | .090         | .091 Min. | 1312                  | .311  | .545 | .01                         |
|   | 050.00              |                    | F F4                        | 0420   | 3     | .120         | .125156   | .344                  |       |      |                             |
|   | .250-20<br>(1/4-20) | F                  |                             |        | 4     | .151         | .156187   |                       | .343  | .375 | .34                         |
|   | (1/4-20)            |                    |                             |        | 5     | .182         | .187 Min. |                       |       |      | .5.                         |

#### All dimensions are in millimeters.

|     | Thread      | Ty<br>Fastener                | pe<br>Material              | Thread  | Shank | A<br>(Shank) | Sheet       | Hole Size<br>In Sheet | С    | Н    | Min. Dist.<br>Hole <b>⊈</b> |  |
|-----|-------------|-------------------------------|-----------------------------|---------|-------|--------------|-------------|-----------------------|------|------|-----------------------------|--|
|     | Size        | 300 Series<br>Stainless Steel | Hardened<br>Stainless Steel | Code    | Code  | Max.         | Thickness   | +0.08                 | Max. | Nom. | To Edge                     |  |
|     | M2 x 0.4    | F                             | F4                          | M2      | 1     | 1.53         | 1.53 - 2.32 | 4.37                  | 4,35 | 4.8  | 6                           |  |
|     | IVIZ X U.4  | !                             | 14                          | IVIZ    | 2     | 2.3          | 2.32 Min.   | 4.37                  | 4.00 | 4.0  | U                           |  |
| ပ   | M2.5 x 0.45 | F                             | F4                          | M2.5    | 1     | 1.53         | 1.53 - 2.32 | 4.37                  | 4,35 | 4.8  | 6                           |  |
| _   | WZ.J X U.4J | WILLO A GITO                  | 14                          | IVIZ.IS | 2     | 2.3          | 2.32 Min.   | 4.37                  | 4.33 | 4.0  | U                           |  |
| H H | M3 v 0.5    | M3 x 0.5                      | F4                          | M3      | 1     | 1.53         | 1.53 - 2.32 | 4.37                  | 4.35 | 4.8  | 6                           |  |
| ш   | IVIO X 0.5  |                               | 14                          |         | 2     | 2.3          | 2.32 Min.   | 7.07                  |      |      | Ů                           |  |
| Σ   | M4 x 0.7    | F                             | F4                          | M4      | 1     | 1.53         | 1.53 - 2.32 | 7.37                  | 7.35 | 7.9  | 7.2                         |  |
|     | W4 X U.7    | ı                             | 14                          | WIT     | 2     | 2.3          | 2.32 Min.   | 7.37                  | 1.55 | 7.5  |                             |  |
|     | M5 x 0.8    | F                             | F4                          | M5      | 1     | 1.53         | 1.53 - 2.32 | 7.92                  | 7.9  | 8.7  | 8                           |  |
|     | WIJ X 0.0   | 1                             | 17                          | IVIO    | 2     | 2.3          | 2.32 Min.   | 1.32                  | 1.5  | 0.7  | 0                           |  |
|     |             |                               |                             |         | 3     | 3.05         | 3.18 - 3.96 |                       |      |      |                             |  |
|     | M6 x 1      | F                             | F4                          | M6      | 4     | 3.84         | 3.96 - 4.75 | 8.74                  | 8.72 | 9.5  | 8.8                         |  |
|     |             | '                             |                             |         | 5     | 4.63         | 4.75 Min.   |                       |      |      |                             |  |

## **MATERIAL AND FINISH SPECIFICATIONS**


|                | Threads                                         | Fastener                      | Materials                                 | Standard Finish                              | For Use in Sheet Hardness: (1) |                               |  |
|----------------|-------------------------------------------------|-------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------|-------------------------------|--|
| Туре           | Internal,<br>ASME B1.1, 2B /<br>ASME B1.13M, 6H | 300 Series<br>Stainless Steel | Hardened<br>400 Series<br>Stainless Steel | Passivated and/or<br>Tested Per<br>ASTM A380 | HRB 88 /<br>HB 183<br>or less  | HRB 70 /<br>HB 125<br>or less |  |
| F              | •                                               | •                             |                                           |                                              |                                | •                             |  |
| F4             |                                                 |                               | •                                         | •                                            |                                |                               |  |
| Part Number Co | de For Finishes                                 |                               |                                           | None                                         |                                |                               |  |

<sup>(1)</sup> HRB - Hardness Rockwell "B" Scale. HB - Hardness Brinell.

## PEMSERT® SELF-CLINCHING FLUSH FASTENERS

## **INSTALLATION**

- Prepare properly sized round mounting hole in sheet. Do not perform any secondary operations such as deburring.
- Place fastener onto the anvil and place the mounting hole (preferably the punch side) over the shank of the fastener as shown in the drawing.
- 3. With installation punch and anvil surfaces parallel, apply sufficient squeezing force only to embed hexagonal head flush in sheet. The metal displaced by the head flows evenly and smoothly around the back-tapered shank of the fastener, securely locking it into place with high pullout resistance while at the same time, the embedded hexagonal head provides high torque resistance.



#### **PEMSERTER® Installation Tooling**

|             | Anvil Dimer       | sions          | Anvil     | Punch     |
|-------------|-------------------|----------------|-----------|-----------|
| Thread      | Α                 | P              | Part      | Part      |
| Code        | +.002000"/+0.05mm | ±.005"/0.13mm  | Number    | Number    |
| 256/M2/M2.5 | .060" / 1.52mm    | .050" / 1.27mm | 8006193   |           |
| 440/M3      | .077" / 1.96mm    | .050" / 1.27mm | 975200040 |           |
| 632         | .092" / 2.34mm    | .050" / 1.27mm | 975200041 | 975200048 |
| 832/M4      | .124" / 3.15mm    | .050" / 1.27mm | 975200042 | 373200040 |
| 032/M5      | .139" / 3.53mm    | .050" / 1.27mm | 975200043 |           |
| 0420/M6     | .186" / 4.72mm    | .100" / 2.54mm | 975200044 |           |

#### **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our <u>website</u> for more information.
- Visit the Animation Library on our website to view the installation process for this product.

## PERFORMANCE DATA(1)

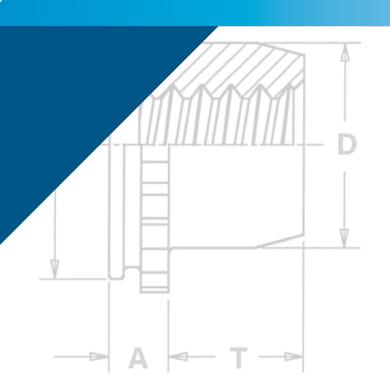
#### **F™ NUTS**

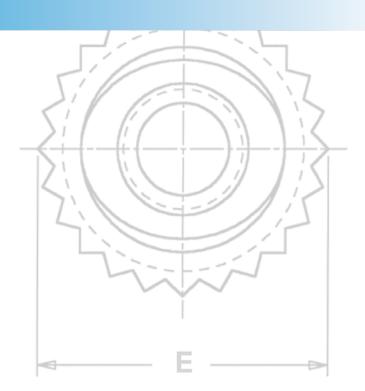
|     |        |             | Axial               | Rec.                     |                        | Test Shee         | et Material            |                   |  |
|-----|--------|-------------|---------------------|--------------------------|------------------------|-------------------|------------------------|-------------------|--|
|     | Thread | Shank       | Tensile<br>Strength | Tightening<br>Torque (3) | 5052-H34 A             | lluminum          | Cold-rolled Steel      |                   |  |
|     | Code   | Code        | (lbs.) (2)          | (in. lbs.)               | Installation<br>(lbs.) | Pushout<br>(lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) |  |
|     | 256    | 1<br>2      | 130                 | 1.50                     | 2000                   | 150               | 3000                   | 200               |  |
| IED | 440    | 1 2         | 165                 | 2.50                     | 2000                   | 150               | 3000                   | 200               |  |
| NIF | 632    | 1 2         | 190                 | 3.50                     | 2000                   | 200               | 3600                   | 200               |  |
| n   | 832    | 1 2         | 230                 | 5.25                     | 2000                   | 240               | 4000                   | 240               |  |
|     | 032    | 1 2         | 280                 | 7.50                     | 2500                   | 240               | 5000                   | 240               |  |
|     | 0420   | 3<br>4<br>5 | 1035                | 36                       | 3500                   | 640               | 6000                   | 840               |  |

|     |        |             | _Axial              | _ Rec.                   |                      | Test Shee      | et Material          |                |  |
|-----|--------|-------------|---------------------|--------------------------|----------------------|----------------|----------------------|----------------|--|
|     | Thread | Shank       | Tensile<br>Strength | Tightening<br>Torque (3) | 5052-H34 A           | lluminum       | Cold-rolled Steel    |                |  |
|     | Code   | Code        | (kN) (2)            | (N-m)                    | Installation<br>(kN) | Pushout<br>(N) | Installation<br>(kN) | Pushout<br>(N) |  |
|     | M2     | 1<br>2      | 0.57                | 0.16                     | 8.9                  | 665            | 13.3                 | 890            |  |
| RIC | M2.5   | 1<br>2      | 0.68                | 0.23                     | 8.9                  | 665            | 13.3                 | 890            |  |
| MET | М3     | 1 2         | 0.85                | 0.36                     | 8.9                  | 665            | 13.3                 | 890            |  |
| _   | M4     | 1 2         | 1                   | 0.58                     | 8.9                  | 1068           | 17.8                 | 1068           |  |
|     | M5     | 1 2         | 1.3                 | 0.88                     | 11.1                 | 1068           | 22.2                 | 1068           |  |
|     | M6     | 3<br>4<br>5 | 4.5                 | 3.7                      | 15.6                 | 2847           | 26.7                 | 3736           |  |

#### F4™ NUTS

|     |                |               | Axial<br>Tensile | Rec.<br>Tightening | Test Sheet                 |                   |  |  |
|-----|----------------|---------------|------------------|--------------------|----------------------------|-------------------|--|--|
|     | Thread<br>Code | Shank<br>Code | Strength         | Torque (3)         | 300 Series Stainless Steel |                   |  |  |
|     | Coue           | Code          | (lbs.) (2)       | (in. lbs.)         | Installation<br>(lbs.)     | Pushout<br>(lbs.) |  |  |
|     | 256            | 1             | 130              | 1.50               | 7200                       | 270               |  |  |
|     |                | 2             |                  |                    |                            |                   |  |  |
| ED  | 440            | 1             | 165              | 2.50               | 7200                       | 270               |  |  |
| _   |                | 2             |                  |                    |                            |                   |  |  |
| NIF | 632            | 1             | 190              | 3.50               | 7200                       | 290               |  |  |
|     | 002            | 2             |                  |                    |                            |                   |  |  |
| -   | 832            | 1             | 230              | 5.25               | 9000                       | 450               |  |  |
|     | 002            | 2             | 200              | 0.20               | 0000                       | 100               |  |  |
|     | 032            | 1             | 280              | 7.50               | 9000                       | 450               |  |  |
|     | 032            | 2             | 200              | 1100               | 0000                       | 100               |  |  |
|     |                | 3             |                  |                    |                            |                   |  |  |
|     | 0420           | 4             | 1035             | 36                 | 14000                      | 1000              |  |  |
|     |                | 5             |                  |                    |                            |                   |  |  |

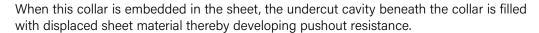

|     |        |             | Axial               | Rec.                     | Test Sheet           | Material       |  |
|-----|--------|-------------|---------------------|--------------------------|----------------------|----------------|--|
|     | Thread | Shank       | Tensile<br>Strength | Tightening<br>Torque (3) | 300 Series St        | ainless Steel  |  |
|     | Code   | Code        | (kN) (2)            | (N-m)                    | Installation<br>(kN) | Pushout<br>(N) |  |
|     | M2     | 1 2         | 0.57                | 0.16                     | 32                   | 1200           |  |
| RIC | M2.5   | 1 2         | 0.68                | 0.23                     | 32                   | 1200           |  |
| MET | М3     | 1 2         | 0.85                | 0.36                     | 32                   | 1200           |  |
| _   | M4     | 1 2         | 1                   | 0.58                     | 40                   | 2000           |  |
|     | M5     | 1 2         | 1.3                 | 0.88                     | 40                   | 2000           |  |
|     | M6     | 3<br>4<br>5 | 4.5                 | 3.7                      | 65                   | 4500           |  |


- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.
- (2) Failure occurs in screw stripping using a 60 ksi screw and the shortest shank length fastener.
- (3) Torque values shown will produce a preload of 70% of axial tensile strength with nut factor "k" equal to .2. Threads may strip or head of the F nut may bend and/or fail if screw is over-torqued beyond these values or if actual k value is less than .2.



PEM® brand miniature fasteners fit into a minimal space and provide strong, reusable threads.








## PEM® brand miniature fasteners fit into a minimal space and provide strong, reusable threads.

PEM miniature fasteners provide visual indication when proper installation has been accomplished.

A strong, knurled collar, which is embedded in the sheet, guarantees against rotation of the fastener in the sheet. The torque-out resistance of the knurl greatly exceeds the torque that can be exerted by the self-locking feature.





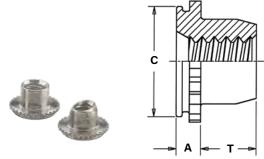
FE™/FEO™/UL™ prevailing torque locknuts provide ideal solutions to prevent mating hardware from loosening in service due to vibration or other application-related factors. A design feature of the lock nut produces friction between threads of mated components thereby increasing the force needed to tighten as well as loosen the nut. Prevailing torque locknuts provide essentially the same torque value regardless of the amount of axial load applied. Their use can save time and money compared with alternative chemical locking methods or patches.

A dry-film lubricant applied to locking FE™/FEO™/UL™ nuts provides the smooth, non-galling prevailing torque performance necessary for reliable locking and for reusability.<sup>(1)</sup> Screws for use with PEM self-clinching locking fasteners should be Class 3A/4h fit or no smaller than Class 2A/6g.

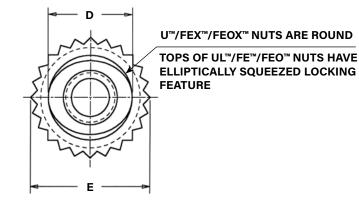
FE<sup>TM</sup>/FEO<sup>TM</sup>/UL<sup>TM</sup> elliptically squeezed nuts are **self-locking**. FE/FEO nut thread locking torque performance is equivalent to applicable NASM25027 specifications. UL self-locking nuts meet locking torque requirements specified herein. Some sizes of FE/FEO/UL nuts can be ordered to NASM45938/7 specifications <sup>(2)</sup>. For more information on NASM25027 as applied to PEM self-clinching, self-locking nuts, check our web site for tech sheet PEM® - Ref/NASM25027.



**FEX™/FEOX™/U™** non-locking nuts have class 2B/6H strong reusable threads. These fasteners can be installed into thinner sheets and closer to the edge of a sheet than standard self-clinching nuts. Some sizes of FEX/FEOX/U nuts can be ordered to NASM45938/7 specifications <sup>(2)</sup>.




- (1) Consult Bulletin LN for complete line of self-clinching, locking fasteners.
- (2) To meet national aerospace standards and to obtain testing documentation, product must be ordered using appropriate NASM45938/7 part number. Check our web site for a complete Military Specification and National Aerospace Standards Reference Guide (Bulletin NASM).


#### **PART NUMBER DESIGNATION**



## **SPECIFICATIONS**







#### All dimensions are in inches.

|   |                    | Туре               | )                |                | Chank                |                      | Chast                     | Hole Size                |                   |           |            | т            | Min.                                  | Max. Hole               |
|---|--------------------|--------------------|------------------|----------------|----------------------|----------------------|---------------------------|--------------------------|-------------------|-----------|------------|--------------|---------------------------------------|-------------------------|
|   | Thread<br>Size     | Non-<br>locking(1) | Self-<br>locking | Thread<br>Code | Shank<br>Code<br>(2) | A<br>(Shank)<br>Max. | Sheet<br>Thickness<br>(3) | In Sheet<br>+.003<br>000 | C<br>+.000<br>005 | D<br>Max. | E<br>±.005 | +.015<br>000 | Dist.<br>Hole <b>&amp;</b><br>To Edge | In<br>Attached<br>Parts |
|   | .060-80<br>(#0-80) | U                  | UL               | 080            | 0                    | .020                 | .019022                   | .110                     | .1095             | .076      | .125       | .050         | .09                                   | .080                    |
|   | .073-64<br>(#1-64) | U                  | UL               | 164            | 0                    | .020                 | .019022                   | .110                     | .1095             | .090      | .125       | .050         | .09                                   | .093                    |
| Q | .086-56            |                    |                  | 050            | 0                    | .020                 | .019022                   | 144                      | 1405              | 100       | 100        | 0.05         | -11                                   | 100                     |
| ш | (#2-56)            | U                  | UL               | 256            | 1                    | .031                 | .030036                   | .144                     | .1435             | .106      | .160       | .065         | .11                                   | .106                    |
| 쁘 | .112-40            | FEOX               | FE0              | 440            |                      | .040                 | .039045                   | .172                     | .171              | .145      | .192       | .065         | .14                                   | .132                    |
| Z | (#4-40)            | FEX                | FE               | 440            |                      | .060                 | .059070                   | .172                     | .171              | .140      | .192       | .000         | .14                                   | ١٥٤                     |
|   | .138-32            | FE0X               | FE0              | 632            |                      | .040                 | .039045                   | .213                     | .212              | .180      | .244       | .075         | .17                                   | .158                    |
|   | (#6-32)            | FEX                | FE               | 032            |                      | .060                 | .059070                   | .213                     | .212              | .180      | .244       | .0/5         | .17                                   | .138                    |
|   | .164-32            | FEOX               | FE0              | 832            |                      | .040                 | .039045                   | .290                     | .289              | ,215      | .322       | .090         | .20                                   | .184                    |
|   | (#8-32)            | FEX                | FE               | 032            |                      | .060                 | .059070                   | .230                     | .209              | .213      | .322       | .090         | .20                                   | .104                    |
|   | .190-32            | FEOX               | FE0              | FE0            |                      | .040                 | .039045                   | .290                     | .289              | .245      | .322       | .110         | .20                                   | .210                    |
|   | (#10-32)           | FEX                | FE               | 032            | 032                  | .060                 | .059070                   | .230                     | .209              | .240      | .322       | .110         | .20                                   | ۰٬۷۱۵                   |
|   | 1/4-20             | FEX                | FE               | 0420           |                      | .060                 | .059070                   | .344                     | .343              | .318      | .384       | .120         | .28                                   | .270                    |
|   | 1/4-28             | ΓĒΧ                | FE               | 0428           |                      | .000                 | .009070                   | .344                     | .343              | ააშ       | .304       | .120         | .28                                   | .270                    |

#### All dimensions are in millimeters.

|     | -, ,                      | Туре               |                  |                | <b>0</b> 1 1         |                      | a                         |                                |            |           |            |           | Min.                              | Max. Hole               |
|-----|---------------------------|--------------------|------------------|----------------|----------------------|----------------------|---------------------------|--------------------------------|------------|-----------|------------|-----------|-----------------------------------|-------------------------|
|     | Thread<br>Size x<br>Pitch | Non-<br>locking(4) | Self-<br>locking | Thread<br>Code | Shank<br>Code<br>(2) | A<br>(Shank)<br>Max. | Sheet<br>Thickness<br>(3) | Hole Size<br>In Sheet<br>+0.08 | C<br>-0.13 | D<br>Max. | E<br>±0.13 | T<br>+0.4 | Dist.<br>Hole <b>⊈</b><br>To Edge | In<br>Attached<br>Parts |
|     | M2 x 0.4                  | U                  | UL               | M2             | 1                    | 0.79                 | 0.76-0.91                 | 3.61                           | 3.6        | 2.5       | 4.07       | 1.65      | 2.8                               | 2.5                     |
| 0   | MO 05                     | FEOX               | FE0              |                |                      | 1.02                 | 0.99-1.14                 | 4.39                           |            |           | 4.00       | 10        |                                   | 0.5                     |
| T R | M3 x 0.5                  | FEX                | FE               | М3             |                      | 1.53                 | 1.5-1.78                  |                                | 4.37       | 3.96      | 4.88       | 1.9       | 3.6                               | 3.5                     |
| N   | 07                        | FEOX               | FE0              |                |                      | 1.02                 | 0.99-1.14                 | 7.39                           | 7.37       | 5,23      | 8.17       | 2.55      | 5.2                               | 4.5                     |
| =   | M4 x 0.7                  | FEX                | FE               | M4             |                      | 1.53                 | 1.5-1.78                  | 1.39                           | 7.37       | 5.23      | 0.17       |           |                                   | 4.5                     |
|     | M5 00                     | FEOX               | FE0              |                |                      | 1.02                 | 0.99-1.14                 | 7.39                           | 7.37       | 6,48      | 8.17       | 3.05      | 5.0                               |                         |
|     | M5 x 0.8                  | FEX                | FE               | M5             |                      | 1.53                 | 1.5-1.78                  | 1.33                           | 1.01       | 0.48      |            | 3.05      | 5.2                               | 5.5                     |
|     | M6 x 1                    | FEX                | FE               | M6             |                      | 1.53                 | 1.5-1.78                  | 8.74                           | 8.72       | 7.72      | 9.74       | 3.3       | 7.1                               | 6.5                     |

- (1) 2B Go Gauge may stop at barrel end but class 3A screw will pass thru with finger torque.
- (2) Shank code applicable only to U and UL fasteners.
- (3) In applications between the sheet thicknesses for your thread size, see last paragraph of installation data on page 4. Knurled collar may fracture if fastener is used in sheets thicker than the specified range and the screw is tightened beyond maximum tightening torque.
- (4) 6H Go Gauge may stop at barrel end but class 4h screw will pass thru with finger torque.

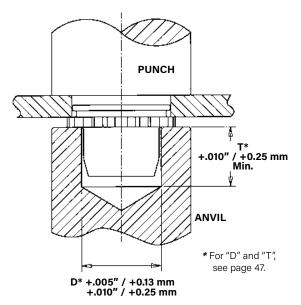
#### MATERIAL AND FINISH SPECIFICATIONS

|                |                                                 | Threads                                                                                         | Fastener<br>Material          | \$                                              | Standard Finishe                                  | s                              | For Use<br>In Sheet<br>Hardness (1) |                                 |              |                         |
|----------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------|-------------------------------------|---------------------------------|--------------|-------------------------|
| Туре           | Internal,<br>ASME B1.1, 2B /<br>ASME B1.13M, 6H | Internal, UNJ Class 3B per<br>ASME B1.15 / MJ Class 4H6H<br>per ASME B1.21M<br>(M6 thread 4H5H) | 300 Series<br>Stainless Steel | Passivated<br>and/or<br>Tested Per<br>ASTM A380 | Passivated<br>Plus Clear<br>Dry-film<br>Lubricant | Black<br>Dry-film<br>Lubricant | HRB 70 /<br>HB 125<br>or Less       | Locking<br>Temperature<br>Limit | Self-locking | Covered by M45938/7 (2) |
| U              |                                                 |                                                                                                 |                               |                                                 |                                                   |                                |                                     |                                 |              |                         |
| UL             |                                                 | •                                                                                               | •                             |                                                 | •                                                 |                                | •                                   | 400° F / 204° C                 | •            | •                       |
| FE             |                                                 | •                                                                                               |                               |                                                 |                                                   | •                              |                                     | 400° F / 204° C                 |              | •                       |
| FEX            | •                                               |                                                                                                 | •                             | •                                               |                                                   |                                | •                                   |                                 |              | •                       |
| FE0            |                                                 | •                                                                                               |                               | •                                               |                                                   | •                              |                                     | 400° F / 204° C                 |              | •                       |
| FEOX           |                                                 |                                                                                                 | •                             |                                                 |                                                   |                                | •                                   |                                 |              | •                       |
| Part number of | codes for finishes                              |                                                                                                 |                               | None                                            | CW <sup>(3)</sup>                                 | MD <sup>(4)</sup>              |                                     |                                 |              | <u> </u>                |

- (1) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (2) To meet national aerospace standards and to obtain testing documentation, product must be ordered using appropriate NASM45938 part number. Check our web site for a complete Military Specification and National Aerospace Standards Reference Guide (Bulletin NASM).
- (3) See PEM Technical Support section of our web site for related plating standards and specifications.
- (4) MD finish on stainless steel provides a minimum of 100 hours of salt spray resistance.

#### **INSTALLATION**

- **1.** Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert fastener into the anvil hole and place the mounting hole (preferably the punch side) over the shank of the fastener as shown in the drawing.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force to the knurled collar until knurled collar is flush with top of the sheet for sheets .060"/1.5mm thick and up, or until shank is flush with the bottom of the sheet for sheets .040"/1mm to .060"/1.5mm thick for FE/FEO nuts.


PEM miniature fasteners must be installed by a force applied through parallel surfaces. Since force must not be applied to the barrel, a cavity must be used in either the punch or anvil so that the installation force is applied to the knurled collar. "D" dimensions for the punch or anvil cavity are given in the tables on page 49.

#### **INSTALLATION NOTES**

- For best results we recommend using a PEMSERTER® or Haeger® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for this product.

#### **PEMSERTER® Installation Tooling**

| Туре            | Thread | Anvil Part<br>Number | Punch Part<br>Number |
|-----------------|--------|----------------------|----------------------|
| U/UL            | 080    | 8008451              |                      |
| U/UL            | 164    | 970200300300         |                      |
| U/UL            | 256/M2 | 975200020            |                      |
| FE/FE0/FEX/FE0X | 440/M3 | 975200021            |                      |
| FE/FE0/FEX/FE0X | 632    | 975200022            | 975200048            |
| FE/FE0/FEX/FE0X | 832/M4 | 975200023            |                      |
| FE/FE0/FEX/FE0X | 032/M5 | 975200024            |                      |
| FE/FE0/FEX/FE0X | 0420   | 975200025            |                      |
| FE/FE0/FEX/FE0X | М6     | 8013143              |                      |



## **INSTALLATION RECOMMENDATION**

In applications for sheet thicknesses between the two ranges (see "Sheet Thickness" on page 49) use the fastener with the larger "A" dimension. For example, if you want a #4-40 thread and your sheet thickness is between .045"/1.14 mm and .059"/1.49 mm, you should use FE or FEX nuts. This is not recommended installation practice, but in this case if it is necessary, you should install the fastener so that the bottom of the shank is flush with the underside of the sheet (instead of having the top of the knurled collar flush with the top of the sheet). When this method is used, care must be taken to protect the fastener against crushing which would damage the threads. This method will also result in reduced pushout and torque-out values.

## PERFORMANCE DATA FOR U™/UL™ FASTENERS(1)

|    |      |               |       |                        | Test Sheet Material |                          |                        |                   |                          |  |  |  |  |  |  |  |  |
|----|------|---------------|-------|------------------------|---------------------|--------------------------|------------------------|-------------------|--------------------------|--|--|--|--|--|--|--|--|
|    |      | Thread        | Shank |                        | 5052-H34 Aluminum   |                          | Cold-rolled Steel      |                   |                          |  |  |  |  |  |  |  |  |
| ED | Туре | ype Code Code |       | Installation<br>(lbs.) | Pushout<br>(lbs.)   | Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |  |  |  |  |  |  |  |  |
| Ξ  |      | 080           | 0     | 750                    | 20                  | 2                        | 1000                   | 30                | 2                        |  |  |  |  |  |  |  |  |
| Z  | U/UL | 164           | 0     | 750                    | 20 3                | 3                        | 1000                   | 30                | 3                        |  |  |  |  |  |  |  |  |
|    |      | 256           | 0     | 1000                   | 20                  | 4                        | 1300                   | 30                | 4                        |  |  |  |  |  |  |  |  |
|    |      | 200           | 1     | 1000                   | 20                  | 4                        | 1300                   | 30                | 4                        |  |  |  |  |  |  |  |  |

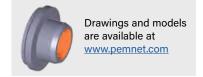
| Γ,  |            |      |        |       |              |                   | Test Sheet | Material          | aterial |            |  |  |  |  |
|-----|------------|------|--------|-------|--------------|-------------------|------------|-------------------|---------|------------|--|--|--|--|
| 1 : | ۱ ـ        |      | Thread | Shank |              | 5052-H34 Aluminum |            | Cold-rolled Steel |         |            |  |  |  |  |
| •   | r          | Type | Code   | Code  | Installation | Pushout           | Torque-out | Installation      | Pushout | Torque-out |  |  |  |  |
| Ľ   | <u>.</u> [ |      | Coue   | (kN)  |              | (N)               | (N•m)      | (kN)              | (N)     | (N-m)      |  |  |  |  |
| 2   | Σ          | U/UL | M2     | 1     | 4            | 4 89              |            | 5.8               | 133     | 0.45       |  |  |  |  |

## PERFORMANCE DATA FOR FE™/FEO™/FEX™/FEOX™FASTENERS(1)(2)

|     |          |                |                        |                   | Test Sheet               | Material               |                   |                          |  |  |  |
|-----|----------|----------------|------------------------|-------------------|--------------------------|------------------------|-------------------|--------------------------|--|--|--|
|     |          | Th             |                        | 5052-H34 Aluminum |                          | Cold-rolled Steel      |                   |                          |  |  |  |
|     | Туре     | Thread<br>Code | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |  |  |  |
|     | FE0/FE0X | 440            | 900                    | 88                | 12                       | 1500                   | 140               | 12                       |  |  |  |
| E D | FE/FEX   | 440            | 900                    | 135               | 12                       | 1500                   | 210               | 12                       |  |  |  |
| Ξ   | FEO/FEOX | 632            | 1200                   | 105               | 20                       | 2100                   | 185               | 20                       |  |  |  |
| Ξ   | FE/FEX   | 032            | 1300                   | 175               | 20                       | 2100                   | 255               | 20                       |  |  |  |
|     | FEO/FEOX | 832            | 1500                   | 155               | 48                       | 2500                   | 260               | 48                       |  |  |  |
|     | FE/FEX   | 032            | 1300                   | 255               | 40                       | 2300                   | 360               | 40                       |  |  |  |
|     | FEO/FEOX | 032            | 1500                   | 155               | 48                       | 2500                   | 260               | 48                       |  |  |  |
|     | FE/FEX   | 032            | 1500                   | 255               | 40                       | 2300                   | 360               | 40                       |  |  |  |
|     | FE/FEX   | 0420           | 2100                   | 320               | 110                      | 3500                   | 420               | 110                      |  |  |  |
|     | I L/I LX | 0428           | 2100                   | 320               | 110                      | 5500                   | 720               | 110                      |  |  |  |

|     |          |                |                      |                   | Test Sheet          | Material             |                |                     |  |  |  |
|-----|----------|----------------|----------------------|-------------------|---------------------|----------------------|----------------|---------------------|--|--|--|
|     |          |                |                      | 5052-H34 Aluminum |                     | Cold-rolled Steel    |                |                     |  |  |  |
| ပ   | Туре     | Thread<br>Code | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N-m) | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) |  |  |  |
| R C | FEO/FEOX | M3             | 4                    | 391               | 1.35                | 6.7                  | 622            | 1.35                |  |  |  |
| Η.  | FE/FEX   |                | 7                    | 600               | 1.33                | 0.7                  | 934            | 1.33                |  |  |  |
| Σ   | FEO/FEOX | M4             | 6.7                  | 689               | 5.42                | 11.1                 | 1156           | 5.42                |  |  |  |
|     | FE/FEX   | IVI            | 0.7                  | 1134              | 3.42                | 11.1                 | 1601           | 3.42                |  |  |  |
|     | FEO/FEOX | M5             | 6.7                  | 689               | 5.42                | 11.1                 | 1156           | 5.42                |  |  |  |
|     | FE/FEX   | M5             | 6.7                  | 1134              | J.4Z                | 16.1                 | 1601           | J.42                |  |  |  |
|     | FE/FEX   | M6             | 9.4                  | 1423              | 12.43               | 15.6                 | 1868           | 12.43               |  |  |  |

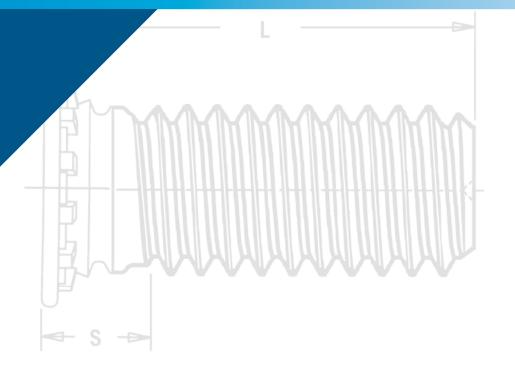
<sup>(1)</sup> Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.


<sup>(2)</sup> For FE and FEO fasteners, thread locking performance is equivalent to applicable NASM25027 specifications. Consult technical sheet PEM-REF/ NASM25027 on our web site for details.

## **AXIAL STRENGTH AND TIGHTENING TORQUE COMPARISON**

|     |        |                                      |                                           | Increasing A                                      | xial Strength                        |                                           | <b>→</b>                                          |  |
|-----|--------|--------------------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------------------------|--|
|     |        | U-0/                                 | UL-0/FE0X/FE0                             | Nuts                                              | U-1                                  | /UL-1/FEX/FE Nu                           | ıts                                               |  |
|     | Thread | Locknut                              | Mating                                    | Screw                                             | Locknut                              | Mating Screw                              |                                                   |  |
|     | Code   | Min. Axial<br>Strength<br>(lbs.) (1) | Strength<br>Level<br>(ksi) <sup>(2)</sup> | Tightening<br>Torque<br>(in. lbs.) <sup>(3)</sup> | Min. Axial<br>Strength<br>(lbs.) (1) | Strength<br>Level<br>(ksi) <sup>(2)</sup> | Tightening<br>Torque<br>(in. lbs.) <sup>(3)</sup> |  |
| E D | 080    | 125                                  | 69 1.0                                    |                                                   | ı                                    | ı                                         | _                                                 |  |
| Ξ   | 164    | 125                                  | 49                                        | 1.2                                               | -                                    | _                                         | _                                                 |  |
| N   | 256    | 169                                  | 46                                        | 1.9                                               | 316                                  | 85                                        | 3.5                                               |  |
| О   | 440    | 465                                  | 77                                        | 6.8                                               | 705                                  | 117                                       | 10.3                                              |  |
|     | 632    | 546                                  | 60                                        | 9.8                                               | 847                                  | 93                                        | 15.2                                              |  |
|     | 832    | 779                                  | 56                                        | 16.6                                              | 1,213                                | 87                                        | 25.9                                              |  |
|     | 032    | 779                                  | 39                                        | 19.2                                              | 1,213                                | 61                                        | 30.0                                              |  |
|     | 0420   | -                                    | -                                         | -                                                 | 1,412                                | 44                                        | 45.9                                              |  |

|     |        |                                    |                                | Increasing A                                 | Axial Strength ———————————————————————————————————— |                                           |                                              |  |  |  |
|-----|--------|------------------------------------|--------------------------------|----------------------------------------------|-----------------------------------------------------|-------------------------------------------|----------------------------------------------|--|--|--|
|     |        | U-0/                               | UL-0/FE0X/FE0                  | Nuts                                         | Ų.                                                  | U-1/UL-1/FEX/FE Nuts                      |                                              |  |  |  |
|     | Thread | Locknut                            | Mating                         | Screw                                        | Locknut                                             | Mating                                    | Screw                                        |  |  |  |
| RIC | Code   | Min. Axial<br>Strength<br>(kN) (1) | Strength<br>Level<br>(MPa) (2) | Tightening<br>Torque<br>(N•m) <sup>(3)</sup> | Min. Axial<br>Strength<br>(kN) (1)                  | Strength<br>Level<br>(MPa) <sup>(2)</sup> | Tightening<br>Torque<br>(N•m) <sup>(3)</sup> |  |  |  |
| Η.  | M2     | -                                  | _                              | _                                            | 1.39                                                | 432                                       | 0.36                                         |  |  |  |
| Σ   | M3     | 2.08                               | 267                            | 0.81                                         | 3.16                                                | 405                                       | 1.23                                         |  |  |  |
|     | M4     | 3.48                               | 255                            | 1.81                                         | 5.42                                                | 398                                       | 2.82                                         |  |  |  |
|     | M5     | 3.48                               | 158                            | 2.26                                         | 5.42                                                | 246                                       | 3.52                                         |  |  |  |
|     | M6     | _                                  | _                              | _                                            | 6.28                                                | 201                                       | 4.9                                          |  |  |  |


- (1) Axial strength for nuts is limited by knurled ring strength.
- (2) Screw strength level shown is the minimum needed to develop full nut strength, higher strength screws may be used.
- (3) Tightening torque shown will induce preload of 65% of locknut minimum axial strength with K or nut factor is equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value. If screw strength is less than the value shown, tightening torque should be proportionately reduced by multiplying the torque shown by the actual screw strength over the screw strength shown. If higher strength screws are used, torque is not adjusted upward because assemble strength is still limited by locknut strength.





PEM® brand self-clinching studs and pins install permanently in aluminum, steel or stainless steel sheets.







PEM® self-clinching studs are easily installed by placing them in properly sized holes in sheets and squeezing into place with any standard press:

- Install permanently in aluminum, steel or stainless steel in sheets as thin as .020" / 0.51 mm.
- High torque-out and pushout resistances.

| Dog Point and Anti Cross-Thread Options - PAGE 54                                                                                                               |   | HFE™/THFE™ (heavy-duty) studs Provides maximum pull through in sheets as thin as .031" / 0.8 mm - PAGE 60                                                                            | Constant of the second |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| FH™/FHS™/FHA™ (flush-head) studs are available in aluminum, steel, or stainless steel - PAGE 55                                                                 |   | HFG8™/HF109™ (heavy-duty high tensile strength) studs are manufactured for the most demanding applications from medium carbon alloy steel, then heat-treated to high                 |                        |
| FH4™/FHP™ (flush-head) studs are designed                                                                                                                       | 0 | strength and hardness qualities - PAGE 61                                                                                                                                            |                        |
| to provide strong threads in stainless steel<br>sheets as thin as .040"/1 mm. FHP studs have<br>high corrosion resistance - PAGE 56                             |   | HFLH™ studs are for installation into thin, harder, high-strength materials - PAGE 62                                                                                                |                        |
| FHL™/FHLS™ (flush, low-displacement head) studs have a smaller head diameter and install closer to the edge of a sheet than PEM FH/FHS studs - PAGE 57          |   | SGPC™ swaging collar studs can install into most panel material and accommodate multiple panels as long as the total thickness does not exceed the maximum sheet thickness - PAGE 63 |                        |
| TFH™/TFHS™ (non-flush) studs are for sheets as thin as .020" / 0.51 mm. The stud head will project above the sheet surface approximately .025"/0.64mm - PAGE 58 |   | FHX™ flush-head studs with X-Press™ thread profile are typically used with push-on or other plastic fasteners - PAGE 64                                                              |                        |
| HFH™/HFHS™ (heavy-duty) studs have a large head which projects above the sheet material to distribute the axial tightening                                      |   | FH™/FHS™/FHA™ (flush-head) Pins are available on special order - PAGE 65                                                                                                             |                        |
| force over a large area thereby improving pull through resistance - PAGE 59                                                                                     |   | TPS™/TP4™/TPXS™ (flush-head) pilot pins satisfy a wide range of positioning, pivot, and alignment applications - PAGE 66                                                             |                        |
| HFHB™ (heavy-duty BUSBAR®) studs are ideal for applications which demand superior                                                                               | 8 | Material and finish specifications - PAGE 67                                                                                                                                         |                        |
| electrical/mechanical attachment points -                                                                                                                       |   | Installation - PAGES 70 - 75                                                                                                                                                         |                        |
| PAGE 59                                                                                                                                                         |   | Performance data - PAGES 76 - 82                                                                                                                                                     |                        |



Flush-head studs
Types FH/FHA/FHS/FHP/FH4



Flush, low-displacement head studs Types FHL/FHLS



Thin sheet studs Types TFH/TFHS



Heavy-duty studs Types HFH/HFHS/HFHB



Heavy-duty studs for thin sheets Types HFE/THFE

## **STUD SELECTOR GUIDE**

|                     |                |               |                                                        |                                        | A                                                    | pplicatio                                      | n Requir                      | es:                                           |                        |                                         |              |                                  |
|---------------------|----------------|---------------|--------------------------------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------------|-----------------------------------------------|------------------------|-----------------------------------------|--------------|----------------------------------|
| PEM<br>Stud<br>Type | Flush-<br>head | Heavy<br>duty | Sheet<br>thickness<br>as thin as<br>.020" /<br>0.51 mm | Superior<br>electrical<br>conductivity | Installation<br>into<br>stainless<br>steel<br>sheets | Compatibility<br>with<br>aluminum<br>anodizing | Superior corrosion resistance | Closest<br>centerline-<br>to-edge<br>distance | Unthreaded<br>stud/pin | Largest<br>hole in<br>attached<br>Panel | Non-magnetic | Max.<br>panel<br>hardness<br>(2) |
| FH                  | •              |               |                                                        |                                        |                                                      |                                                |                               |                                               |                        |                                         |              | HRB 80<br>HB 150                 |
| FHA                 | •              |               |                                                        |                                        |                                                      | •                                              | •                             |                                               |                        |                                         | •            | HRB 50<br>HB 82                  |
| FHS                 | •              |               |                                                        |                                        |                                                      |                                                | •                             |                                               |                        |                                         | -            | HRB 70<br>HB 125                 |
| FH4                 | •              |               |                                                        |                                        | •                                                    |                                                |                               |                                               |                        |                                         |              | HRB 92<br>HB 202                 |
| FHP                 | •              |               |                                                        |                                        | •                                                    |                                                | •                             |                                               |                        |                                         | •            | HRB 92<br>HB 202                 |
| FHL                 | •              |               |                                                        |                                        |                                                      |                                                |                               | •                                             |                        |                                         |              | HRB 80<br>HB 150                 |
| FHLS                |                |               |                                                        |                                        |                                                      |                                                | •                             | •                                             |                        |                                         | -            | HRB 70<br>HB 125                 |
| TFH                 |                |               | •                                                      |                                        |                                                      |                                                |                               |                                               |                        |                                         |              | HRB 80<br>HB 150                 |
| TFHS                |                |               | •                                                      |                                        |                                                      |                                                |                               |                                               |                        |                                         |              | HRB 70<br>HB 125                 |
| HFH                 |                | <b>(1)</b>    |                                                        |                                        |                                                      |                                                |                               |                                               |                        | •                                       |              | HRB 85<br>HB 165                 |
| НЕНВ                |                |               |                                                        | -                                      |                                                      |                                                |                               |                                               |                        | •                                       |              | HRB 55<br>HB 83                  |
| HFHS                |                | •             |                                                        |                                        |                                                      |                                                | •                             |                                               |                        | •                                       | -            | HRB 70<br>HB 125                 |
| HFE                 |                |               |                                                        |                                        |                                                      |                                                |                               |                                               |                        | •                                       |              | HRB 85<br>HB 165                 |
| THFE                |                | •             |                                                        |                                        |                                                      |                                                |                               |                                               |                        | •                                       |              | HRB 85<br>HB 165                 |
| HFG8/HF109          |                | <b>(</b> 3)   |                                                        |                                        |                                                      |                                                |                               |                                               |                        | •                                       |              | HRB 89<br>HB 180                 |
| HFLH                |                | •             |                                                        |                                        |                                                      |                                                |                               |                                               |                        | •                                       |              | HRB 96<br>HB 216                 |
| SGPC                |                |               |                                                        |                                        | •                                                    |                                                |                               | •                                             |                        |                                         | •            | Any sheet hardness               |
| FHX                 | •              |               |                                                        |                                        |                                                      |                                                |                               |                                               |                        |                                         |              | HRB 80<br>HB 150                 |
| FH<br>Unthreaded    | •              |               |                                                        |                                        |                                                      |                                                |                               |                                               | -                      |                                         |              | HRB 80<br>HB 150                 |
| FHA<br>Unthreaded   |                |               |                                                        |                                        |                                                      |                                                | •                             |                                               | -                      |                                         | •            | HRB 50<br>HB 82                  |
| FHS<br>Unthreaded   | •              |               |                                                        |                                        |                                                      |                                                | •                             |                                               | •                      |                                         | -            | HRB 70<br>HB 125                 |
| TPS                 | •              |               |                                                        |                                        |                                                      |                                                | •                             |                                               | •                      |                                         | -            | HRB 70<br>HB 125                 |
| TP4                 |                |               |                                                        |                                        |                                                      |                                                |                               |                                               | •                      |                                         |              | HRB 92<br>HB 202                 |
| TPXS                | •              |               |                                                        |                                        |                                                      |                                                | •                             |                                               | •                      |                                         | •            | HRB 70<br>HB 125                 |

- (1) Meets grade 5 / property class 9.8 tensile requirements.
- (2) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (3) Grade 8 / Property Class 10.9 thread strength.

Standard product features shown above. Studs can also be custom designed to meet your exact application requirements.



Heavy-duty, high tensile strength studs Types HFG8/HF109



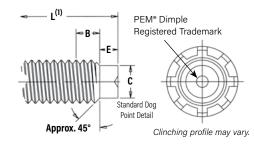
Studs for hard panels Type HFLH



Swaging collar studs Type SGPC



Flush-head Studs with X-Press™ Thread Profile Type FHX




Flush-head pins Types TPS/TP4

## OPTIONAL DOG POINT FEATURE

PEM® dog point lead-in option for studs allows quick location of the mating fastener during assembly and protects the first thread of the stud during nut engagement. This feature is available on Types FH, FHL, HFH, HFE, HF109, HFG8, TFH and THFE studs.



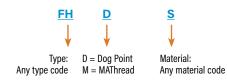


All dimensions are in inches

.375-16 (3/8-16)

.375-24 (3/8-24)

All dimensions are in millimeters.


| Unified<br>Thread Size | C ±.005<br>(2) | E ±.010 | B Nom.<br>Transitional Length to Full Thread | Metric<br>Thread Size            | C ±0.13<br>(2) | E ±0.25 | B nom.<br>Transitional Length to Full Thread |  |  |  |  |
|------------------------|----------------|---------|----------------------------------------------|----------------------------------|----------------|---------|----------------------------------------------|--|--|--|--|
| .138-32 (#6-32)        | .086           | .050    | .098                                         | M3.5 x 0.6                       | 2.4            | 1.27    | 1.88                                         |  |  |  |  |
| .164-32 (#8-32)        | .111           | .055    | .099                                         | M4 x 0.7                         | 2.79           | 1.4     | 2.26                                         |  |  |  |  |
| .190-24 (#10-24)       | .124           | .065    | .127                                         | M5 x 0.8                         | 3.66           | 1.78    | 2.48                                         |  |  |  |  |
| .190-32 (#10-32)       | .138           | .065    | .098                                         | M6 x 1                           | 3.05           |         |                                              |  |  |  |  |
| .250-20 (1/4-20)       | .173           | .085    | .149                                         | M8 x 1.25                        | 6.05           | 2.67    | 3.73                                         |  |  |  |  |
| .250-28 (1/4-28)       | .192           | .085    | .110                                         | M10 x 1.5                        | 7.72           | 3.43    | 4.37                                         |  |  |  |  |
| .313-18 (5/16-18)      | .228           | .105    | .164                                         |                                  |                |         |                                              |  |  |  |  |
| .313-24 (5/16-24)      | .246           | .105    | .127                                         | OPTIONAL PART NUMBER DESIGNATION |                |         |                                              |  |  |  |  |

- (1) For "L" refer to type stud lengths.
- (2) Maximum dog point diameter is .003" / 0.08 mm less than minimum minor diameter of 2B or 6H nut threads.

.282

.309

#### **OPTIONAL PART NUMBER DESIGNATION**



## **OPTIONAL MAThread®** ANTI CROSS-THREAD FEATURE

PennEngineering is a licensee of MAThread® Anti Cross-Threading Technology. This unique design allows the threads

.125

.125

to self-align and drive easily with reduced effort. This helps speed assembly, reduce or eliminate failures, repairs, scrap, downtime, and warranty service associated with thread damage. This option is available on most types of PEM® studs.



.182

.126

Anti Cross-Thread Feature

## **OPTIONAL POINTED STUD FEATURE**

A pointed lead-in option for studs allows quick location of mating fastener during assembly to speed assembly and

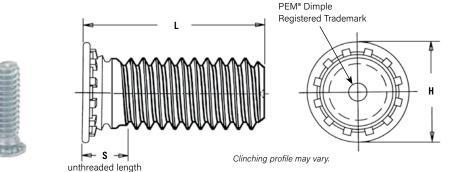
significantly reduces the likelihood of cross threading. Clip grooves for snap rings can also be added. This feature can be added to most types of PEM® studs.

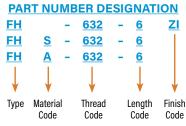
## **OPTIONAL THREAD MASK**

MAThread is a registered trademark of MAThread inc.

Thread mask is available for applications where hardware is installed prior to painting. During assembly, the threads of the mating hardware will remove paint, electro deposited automotive under coatings, and weld spatter upon application of torque. PEM® studs can be specially ordered with thread mask applied. Click here for more information.

"BC" suffix will be added to part number to designate thread mask to fastener.





# **AVAILABLE PEM® VARIMOUNT® FASTENING SYSTEM**

The PEM® VariMount® fastening system (see PEM® Bulletin VM) utilizes a self-clinching stud paired with a round steel or stainless steel base plate to offer a clean and ready-made assembly for mounting into any rigid material or panel, including composites, plastics, and metals. Multiple radial holes in the base plate and a generous footprint provide effective mounting of the assembly. Mounting can be performed either on the front or through the back of a panel.

## FH™/FHS™/FHA™ FLUSH-HEAD STUDS

- Flush-head for sheet thickness of .040" / 1 mm and greater.
- FH studs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 80 / HB (Hardness Brinell) 150 or less.
- FHS studs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 70 / HB (Hardness Brinell) 125 or less.
- FHA studs are recommended for use in aluminum sheets HRB (Rockwell "B" scale) 50 / HB (Hardness Brinell) 82 or less.

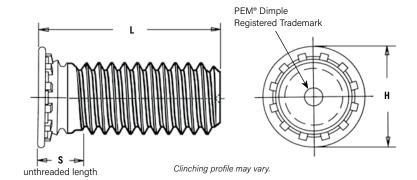


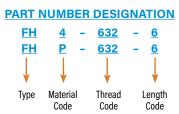


#### All dimensions are in inches.

|       | Thread               | Fas   | Type<br>tener Materi | al            | Thread |      |      |      |      |      | le "L" ±.015<br>16ths of an |      |      |      |      | Min.<br>Sheet<br>Thick- | Hole<br>Size in<br>Sheet | Н      | s           | Max.<br>Hole<br>in | Min.<br>Dist.<br>Hole |
|-------|----------------------|-------|----------------------|---------------|--------|------|------|------|------|------|-----------------------------|------|------|------|------|-------------------------|--------------------------|--------|-------------|--------------------|-----------------------|
|       | Size                 | Steel | Stainless<br>Steel   | Alu-<br>minum | Code   | .250 | .312 | .375 | .500 | .625 | .750                        | .875 | 1.00 | 1.25 | 1.50 | ness<br>(1)             | +.003<br>000             | ± .015 | Max.<br>(2) | Attached<br>Parts  | €<br>to Edge          |
|       | .086-56<br>(#2-56)   | FH    | FHS                  | ı             | 256    | 4    | 5    | 6    | 8    | 10   | 12                          | ı    | ı    | ı    | I    | .040                    | .085                     | .144   | .075        | .105               | .187                  |
|       | .112-40<br>(#4-40)   | FH    | FHS                  | FHA           | 440    | 4    | 5    | 6    | 8    | 10   | 12                          | 14   | 16   | 20   | -    | .040                    | .111                     | .176   | .085        | .135               | .219                  |
| FIED  | .138-32<br>(#6-32)   | FH    | FHS                  | FHA           | 632    | 4    | 5    | 6    | 8    | 10   | 12                          | 14   | 16   | 20   | 24   | .040                    | .137                     | .206   | .090        | .160               | .250                  |
| I N I | .164-32<br>(#8-32)   | FH    | FHS                  | FHA           | 832    | 4    | 5    | 6    | 8    | 10   | 12                          | 14   | 16   | 20   | 24   | .040                    | .163                     | .237   | .090        | .185               | .281                  |
|       | .190-24<br>(#10-24)  | FH    | FHS                  | FHA           | 024    | -    | 5    | 6    | 8    | 10   | 12                          | 14   | 16   | 20   | 24   | .040                    | .189                     | .256   | .100        | .210               | .281                  |
|       | .190-32<br>(#10-32)  | FH    | FHS                  | FHA           | 032    | -    | 5    | 6    | 8    | 10   | 12                          | 14   | 16   | 20   | 24   | .040                    | .189                     | .256   | .100        | .210               | .281                  |
|       | .250-20<br>(1/4-20)  | FH    | FHS                  | FHA           | 0420   | -    | -    | 6    | 8    | 10   | 12                          | 14   | 16   | 20   | 24   | .062                    | .249                     | .337   | .135        | .270               | .312                  |
|       | .313-18<br>(5/16-18) | FH    | FHS                  | -             | 0518   | -    | -    | -    | 8    | 10   | 12                          | 14   | 16   | 20   | 24   | .093                    | .311                     | .376   | .160        | .333               | .375                  |

#### All dimensions are in millimeters.


|      | Thread          | Fas   | Type<br>stener Mater | ial           | Thread |   |   |    |      | Length Co   | de "L" ±0.4 |      |    |    |    | Min.<br>Sheet         | Hole<br>Size in | Н     | s           | Max.<br>Hole            | Dist.<br>Hole |
|------|-----------------|-------|----------------------|---------------|--------|---|---|----|------|-------------|-------------|------|----|----|----|-----------------------|-----------------|-------|-------------|-------------------------|---------------|
|      | Size x<br>Pitch | Steel | Stainless<br>Steel   | Alu-<br>minum | Code   |   |   |    | (Lei | ngth Code i | n millimet  | ers) |    |    |    | Thick-<br>ness<br>(1) | Sheet<br>+0.08  | ± 0.4 | Max.<br>(2) | in<br>Attached<br>Parts |               |
|      | M2.5 x 0.45     | FH    | FHS                  | FHA           | M2.5   | 6 | 8 | 10 | 12   | 15          | 18          | -    | _  | _  | -  | 1                     | 2.5             | 4.1   | 1.95        | 3.1                     | 5.4           |
| RIC  | M3 x 0.5        | FH    | FHS                  | FHA           | М3     | 6 | 8 | 10 | 12   | 15          | 18          | 20   | 25 | -  | -  | 1                     | 3               | 4.6   | 2.1         | 3.6                     | 5.6           |
| METF | M3.5 x 0.6      | FH    | FHS                  | FHA           | M3.5   | 6 | 8 | 10 | 12   | 15          | 18          | 20   | 25 | 30 | -  | 1                     | 3.5             | 5.3   | 2.25        | 4.1                     | 6.4           |
|      | M4 x 0.7        | FH    | FHS                  | FHA           | M4     | 6 | 8 | 10 | 12   | 15          | 18          | 20   | 25 | 30 | 35 | 1                     | 4               | 5.9   | 2.4         | 4.6                     | 7.2           |
|      | M5 x 0.8        | FH    | FHS                  | FHA           | M5     | _ | 8 | 10 | 12   | 15          | 18          | 20   | 25 | 30 | 35 | 1                     | 5               | 6.5   | 2.7         | 5.6                     | 7.2           |
|      | M6 x 1          | FH    | FHS                  | FHA           | M6     | ı | ı | 10 | 12   | 15          | 18          | 20   | 25 | 30 | 35 | 1.6                   | 6               | 8.2   | 3           | 6.6                     | 7.9           |
|      | M8 x 1.25       | FH    | FHS                  | -             | M8     | - | П | -  | 12   | 15          | 18          | 20   | 25 | 30 | 35 | 2.4                   | 8               | 9.6   | 3.7         | 8.6                     | 9.6           |


<sup>(1)</sup> See page 68 for installation tool requirements.

<sup>(2)</sup> Threads are gaugeable to within 2 pitches of the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.

## FH4™/FHP™ FLUSH-HEAD STUDS FOR STAINLESS STEEL SHEETS

- FHP studs offer optimum corrosion resistance and are ideal for medical, foodservice, and marine applications.
- Recommended for use in stainless steel sheets HRB (Rockwell "B" Scale) 92 / HB (Hardness Brinell) 195 or less.





#### All dimensions are in inches.

|     | Thread<br>Size      | Type<br>Fastener |           | Thread |      |      |      |      | th Code "<br>code in 16 | L" ±.015<br>ths of an i | nch) |      |      |      | Sheet<br>Thick- | Hole<br>Size in<br>Sheet | Н     | S           | Max.<br>Hole<br>in | Min.<br>Dist.            |
|-----|---------------------|------------------|-----------|--------|------|------|------|------|-------------------------|-------------------------|------|------|------|------|-----------------|--------------------------|-------|-------------|--------------------|--------------------------|
|     | Size                | Stainless        | Steel (1) | Code   | .250 | .312 | .375 | .500 | .625                    | .750                    | .875 | 1.00 | 1.25 | 1.50 | ness<br>(2)     | +.003<br>000             | ±.015 | Max.<br>(3) | Attached<br>Patrts | Hole <b>©</b><br>to Edge |
| E D | .112-40<br>(#4-40)  | FH4              | FHP       | 440    | 4    | 5    | 6    | 8    | 10                      | 12                      | 14   | 16   | -    | -    | .040095         | .111                     | .176  | .085        | .131               | .219                     |
| N   | .138-32<br>(#6-32)  | FH4              | FHP       | 632    | 4    | 5    | 6    | 8    | 10                      | 12                      | 14   | 16   | 20   | 24   | .040095         | .137                     | .206  | .090        | .157               | .250                     |
| Π   | .164-32<br>(#8-32)  | FH4              | FHP       | 832    | 4    | 5    | 6    | 8    | 10                      | 12                      | 14   | 16   | 20   | 24   | .040095         | .163                     | .237  | .090        | .183               | .281                     |
|     | .190-32<br>(#10-32) | FH4              | FHP       | 032    | -    | 5    | 6    | 8    | 10                      | 12                      | 14   | 16   | 20   | 24   | .040095         | .189                     | .256  | .100        | .209               | .281                     |
|     | .250-20<br>(1/4-20) | FH4              | -         | 0420   | -    | -    | 6    | 8    | 10                      | 12                      | 14   | 16   | 20   | 24   | .062117         | .249                     | .337  | .135        | .269               | .312                     |

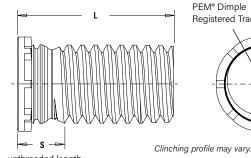
#### All dimensions are in millimeters.

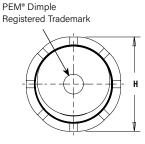
| ပ        | Thread<br>Size x<br>Pitch | Type Fastener I Stainless | Material | Thread<br>Code |   |   |    |    | ength Cod<br>gth Code i |    |    |    |    | (0) | Sheet<br>Thick-<br>ness | Hole<br>Size in<br>Sheet<br>+0.08 | H<br>±0.4<br>(3) | S<br>Max.    | Max.<br>Hole<br>in<br>Attached | Min.<br>Dist.<br>Hole <b>©</b><br>to Edge |
|----------|---------------------------|---------------------------|----------|----------------|---|---|----|----|-------------------------|----|----|----|----|-----|-------------------------|-----------------------------------|------------------|--------------|--------------------------------|-------------------------------------------|
| ET R I ( | M3 x 0.5                  | FH4                       | FHP      | M3             | 6 | 8 | 10 | 12 | 15                      | 18 | 20 | 25 | _  | (2) | 1 - 2.4                 | 3                                 | 4.6              | Parts<br>2.1 | 3.3                            | 5.6                                       |
| Σ        | M4 x 0.7                  | FH4                       | FHP      | M4             | 6 | 8 | 10 | 12 | 15                      | 18 | 20 | 25 | 30 | 35  | 1 - 2.4                 | 4                                 | 5.9              | 2.4          | 4.7                            | 7.2                                       |
|          | M5 x 0.8                  | FH4                       | FHP      | M5             | - | 8 | 10 | 12 | 15                      | 18 | 20 | 25 | 30 | 35  | 1 - 2.4                 | 5                                 | 6.5              | 2.7          | 5.3                            | 7.2                                       |
|          | M6 x 1                    | FH4                       | _        | M6             | _ | _ | 10 | 12 | 15                      | 18 | 20 | 25 | 30 | 35  | 1.6 - 3                 | 6                                 | 8.2              | 3            | 6.8                            | 7.9                                       |

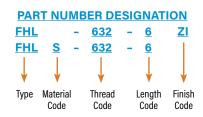
- (1) See material and finish specifications chart on page 67 for details.
- (2) See page 69 for installation tool requirements. Performance may be reduced for studs installed into thicker sheets.
- (3) Threads are gaugeable to within 2 pitches of the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.

#### A NOTE ABOUT 400 SERIES FASTENERS FOR STAINLESS STEEL PANELS

In order for self-clinching fasteners to work properly, the fastener must be harder than the sheet into which it is being installed. In the case of stainless steel panels, fasteners made from 300 Series Stainless Steel do not meet this hardness criteria. For this reason, we offer FH4<sup>TM</sup> 400 series fasteners. However, while these 400 Series fasteners install and perform well in 300 Series stainless sheets they should not be used if the end product:


- Will be exposed to any appreciable corrosive presence.
- Requires non-magnetic fasteners.
- Will be exposed to any temperatures above 300°F (149°C)


If any of the these are issues, please contact <u>techsupport@pemnet.com</u> for other options such as the FHP™ stud, made from precipitation hardened grade stainless steel which is not subject to these issues.


## FHL™/FHLS™ FLUSH, LOW-DISPLACEMENT HEAD STUDS

- Installs closer to the edge of a sheet than PEM Type FH/FHS studs without causing that edge to bulge.
- Flush-head for sheet thickness .040" / 1 mm and greater.
- FHL studs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" Scale) 80 / HB (Hardness Brinell) 150 or less.
- FHLS studs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" Scale) 70 / HB (Hardness Brinell) 125 or less.

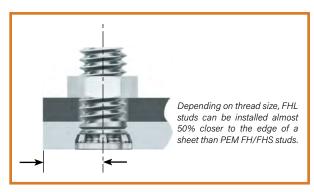






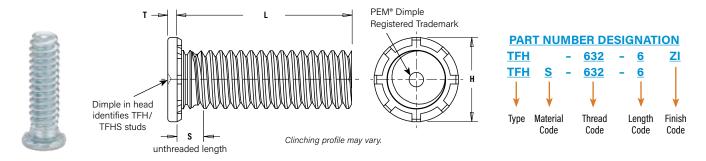


unthreaded length


#### All dimensions are in inches.

|      | Thread              |       | pe<br>er Material  | Thread |      |      |      |      | Length Coo<br>th Code in |      |      |      |      |      | Min.<br>Sheet<br>Thick- | Hole<br>Size in<br>Sheet | Н     | s           | Max.<br>Hole<br>in | Min.<br>Dist.<br>Hole |
|------|---------------------|-------|--------------------|--------|------|------|------|------|--------------------------|------|------|------|------|------|-------------------------|--------------------------|-------|-------------|--------------------|-----------------------|
|      | Size                | Steel | Stainless<br>Steel | Code   | .250 | .312 | .375 | .500 | .625                     | .750 | .875 | 1.00 | 1.25 | 1.50 | ness<br>(1)             | +.003<br>000             | ±.015 | Max.<br>(2) | Attached<br>Parts  | <b>©</b><br>to Edge   |
| E D  | .086-56<br>(#2-56)  | FHL   | FHLS               | 256    | 4    | 5    | 6    | 8    | 10                       | 12   | -    | -    | -    | -    | .040                    | .085                     | .112  | .080        | .100               | .098                  |
| NIFI | .112-40<br>(#4-40)  | FHL   | FHLS               | 440    | 4    | 5    | 6    | 8    | 10                       | 12   | 14   | 16   | -    | -    | .040                    | .111                     | .138  | .085        | .126               | .124                  |
| n    | .138-32<br>(#6-32)  | FHL   | FHLS               | 632    | 4    | 5    | 6    | 8    | 10                       | 12   | 14   | 16   | 20   | 24   | .040                    | .137                     | .164  | .090        | .152               | .150                  |
|      | .164-32<br>(#8-32)  | FHL   | FHLS               | 832    | 4    | 5    | 6    | 8    | 10                       | 12   | 14   | 16   | 20   | 24   | .040                    | .163                     | .190  | .090        | .178               | .176                  |
|      | .190-32<br>(#10-32) | FHL   | FHLS               | 032    | _    | 5    | 6    | 8    | 10                       | 12   | 14   | 16   | 20   | 24   | .040                    | .189                     | .225  | .100        | .204               | .210                  |

#### All dimensions are in millimeters.


|     | Thread<br>Size x<br>Pitch |     | pe<br>er Material<br>Stainless<br>Steel | Thread<br>Code |   |   |    |    | Length<br>(Length Co | Code "L" ±<br>de in millin |    |    |    |    | Min.<br>Sheet<br>Thick-<br>ness<br>(1) | Hole<br>Size in<br>Sheet<br>+0.08 | H<br>±0.4 | S<br>Max.<br>(2) | Max.<br>Hole<br>in<br>Attached<br>Parts | Min.<br>Dist.<br>Hole<br><b>©</b><br>to Edge |
|-----|---------------------------|-----|-----------------------------------------|----------------|---|---|----|----|----------------------|----------------------------|----|----|----|----|----------------------------------------|-----------------------------------|-----------|------------------|-----------------------------------------|----------------------------------------------|
| RIC | M2.5 x 0.45               | FHL | FHLS                                    | M2.5           | 6 | 8 | 10 | 12 | 15                   | 18                         | -  | -  | -  | -  | 1                                      | 2.5                               | 3.15      | 2.1              | 2.9                                     | 2.8                                          |
| MET | M3 x 0.5                  | FHL | FHLS                                    | М3             | 6 | 8 | 10 | 12 | 15                   | 18                         | 20 | 25 | -  | -  | 1                                      | 3                                 | 3.65      | 2.1              | 3.2                                     | 3.3                                          |
|     | M3.5 x 0.6                | FHL | FHLS                                    | M3.5           | 6 | 8 | 10 | 12 | 15                   | 18                         | 20 | 25 | 30 | -  | 1                                      | 3.5                               | 4.15      | 2.3              | 3.9                                     | 3.8                                          |
|     | M4 x 0.7                  | FHL | FHLS                                    | M4             | 6 | 8 | 10 | 12 | 15                   | 18                         | 20 | 25 | 30 | 35 | 1                                      | 4                                 | 4.65      | 2.4              | 4.5                                     | 4.3                                          |
|     | M5 x 0.8                  | FHL | FHLS                                    | M5             | - | 8 | 10 | 12 | 15                   | 18                         | 20 | 25 | 30 | 35 | 1                                      | 5                                 | 5.9       | 2.7              | 5.2                                     | 5.6                                          |

- (1) See page 69 for installation tool requirements.
- (2) Threads are gaugeable to within 2 pitches of the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.



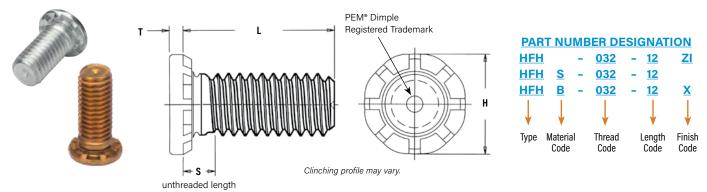
## TFH™/TFHS™ NON-FLUSH STUDS

- Non-flush for sheets as thin as .020" / 0.51 mm.
- TFH studs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" Scale) 80 / HB (Hardness Brinell) 150 or less.
- TFHS studs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" Scale) 70 / HB (Hardness Brinell) 125 or less.



#### All dimensions are in inches.

|   | Thread              |       | rpe<br>er Material | Thread |      |      |      |      | de "L" ±.01!<br>1 16ths of a |      |      |      |      |      | Min.<br>Sheet<br>Thick- | Hole<br>Size in<br>Sheet | Н     | S           | Ţ    | Max.<br>Hole<br>in | Min.<br>Dist.<br>Hole |
|---|---------------------|-------|--------------------|--------|------|------|------|------|------------------------------|------|------|------|------|------|-------------------------|--------------------------|-------|-------------|------|--------------------|-----------------------|
|   | Size                | Steel | Stainless<br>Steel | Code   | .250 | .312 | .375 | .500 | .625                         | .750 | .875 | 1.00 | 1.25 | 1.50 | ness<br>(1)             | +.003<br>000             | ±.015 | Max.<br>(2) | Max. | Attached<br>Parts  | <b>€</b><br>to Edge   |
|   | .086-56<br>(#2-56)  |       | TFHS               | 256    | 4    | 5    | 6    | 8    | 10                           | 12   | -    | -    | -    | -    | .020                    | .085                     | .141  | .070        | .025 | .105               | .187                  |
| 1 | (#4-40)             | TFH   | TFHS               | 440    | 4    | 5    | 6    | 8    | 10                           | 12   | 14   | -    | -    | -    | .020                    | .111                     | .176  | .070        | .025 | .131               | .219                  |
| - | .138-32             | TFH   | TFHS               | 632    | 4    | 5    | 6    | 8    | 10                           | 12   | 14   | 16   | 20   | 24   | .020                    | .137                     | .203  | .070        | .025 | .157               | .250                  |
|   | .164-32<br>(#8-32)  | TFH   | TFHS               | 832    | 4    | 5    | 6    | 8    | 10                           | 12   | 14   | 16   | 20   | 24   | .020                    | .163                     | .234  | .070        | .025 | .183               | .281                  |
|   | .190-24<br>(#10-24) | TFH   | TFHS               | 024    | 1    | 5    | 6    | 8    | 10                           | 12   | 14   | 16   | 20   | 24   | .020                    | .189                     | .250  | .090        | .025 | .209               | .281                  |
|   | .190-32<br>(#10-32) | TFH   | TFHS               | 032    | -    | 5    | 6    | 8    | 10                           | 12   | 14   | 16   | 20   | 24   | .020                    | .189                     | .250  | .090        | .025 | .209               | .281                  |


#### All dimensions are in millimeters.

| RIC | Thread<br>Size x<br>Pitch | Typ<br>Fastener<br>Steel | Material | Thread<br>Code |   |   |    |    | Length Coo<br>th Code in |    |    |    |    |    | Min.<br>Sheet<br>Thick-<br>ness<br>(1) | Hole<br>Size in<br>Sheet<br>+0.08 | H<br>±0.4 | S<br>Max.<br>(2) | T<br>Max. | Max.<br>Hole<br>in<br>Attached<br>Parts | Min.<br>Dist.<br>Hole<br><b>©</b><br>to Edge |
|-----|---------------------------|--------------------------|----------|----------------|---|---|----|----|--------------------------|----|----|----|----|----|----------------------------------------|-----------------------------------|-----------|------------------|-----------|-----------------------------------------|----------------------------------------------|
| MET | M3 x 0.5                  | TFH                      | TFHS     | М3             | 6 | 8 | 10 | 12 | 15                       | 18 | 20 | 25 | 1  | -  | 0.51                                   | 3                                 | 4.5       | 1.8              | 0.64      | 3.3                                     | 5.6                                          |
|     | M4 x 0.7                  | TFH                      | TFHS     | M4             | - | 8 | 10 | 12 | 15                       | 18 | 20 | 25 | 30 | 35 | 0.51                                   | 4                                 | 5.8       | 1.8              | 0.64      | 4.7                                     | 7.2                                          |
|     | M5 x 0.8                  | TFH                      | TFHS     | M5             | - | 8 | 10 | 12 | 15                       | 18 | 20 | 25 | 30 | 35 | 0.51                                   | 5                                 | 6.4       | 2.3              | 0.64      | 5.3                                     | 7.2                                          |

- (1) See page 70 for installation tool requirements.
- (2) Threads are gaugeable to within 2 pitches of the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.

## HFH™/HFHS™/HFHB™ HEAVY-DUTY STUDS

- HFH studs are for high-strength applications in sheets as thin as .050" / 1.3 mm.
- HFHS studs offer high corrosion resistance.
- HFHB studs are for superior electrical/mechanical attachment in copper.
- HFH studs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" Scale) 85 / HB (Hardness Brinell) 165 or less.
- HFHS studs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" Scale) 70 / HB (Hardness Brinell) 125 or less.
- HFHB studs are recommended for use in copper sheets HRB (Rockwell "B" Scale) 55 / HB (Hardness Brinell) 83 or less.

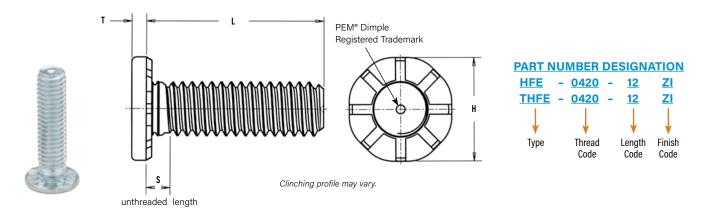


#### All dimensions are in inches.

|      | Thread               | ı     | Type<br>astener Materi | al                     | Thread |      | (    |      | h Code "L"<br>de in 16ths |      | )    |      | Min.<br>Sheet         | Hole<br>Size in       | н    | s           | т    | Max.<br>Hole            | Min.<br>Dist.               |
|------|----------------------|-------|------------------------|------------------------|--------|------|------|------|---------------------------|------|------|------|-----------------------|-----------------------|------|-------------|------|-------------------------|-----------------------------|
|      | Size                 | Steel | Stainless<br>Steel     | Phosphor<br>Bronze (1) | Code   | .500 | .750 | 1.00 | 1.25                      | 1.50 | 1.75 | 2.00 | Thick-<br>ness<br>(2) | Sheet<br>+.005<br>000 | ±.01 | Max.<br>(3) | Max. | in<br>Attached<br>Parts | Hole<br><b>©</b><br>to Edge |
| FIED | .190-32<br>(#10-32)  | HFH   | HFHS                   | HFHB                   | 032    | 8    | 12   | 16   | 20                        | 24   | 28   | 32   | .050                  | .190                  | .300 | .105        | .040 | .252                    | .415                        |
| N O  | .250-20<br>(1/4-20)  | HFH   | HFHS                   | HFHB                   | 0420   | 8    | 12   | 16   | 20                        | 24   | 28   | 32   | .060                  | .250                  | .380 | .125        | .050 | .312                    | .460                        |
|      | .313-18<br>(5/16-18) | HFH   | HFHS                   | HFHB                   | 0518   | 8    | 12   | 16   | 20                        | 24   | 28   | 32   | .075                  | .312                  | .480 | .140        | .070 | .374                    | .500                        |
|      | .375-16<br>(3/8-16)  | HFH   | HFHS                   | HFHB                   | 0616   | _    | 12   | 16   | 20                        | 24   | 28   | 32   | .090                  | .375                  | .580 | .155        | .085 | .437                    | .530                        |

Tensile strength: HFH - 120 ksi / HFHS - 75 ksi / HFHB - 60 ksi.

#### All dimensions are in millimeters.


|       | Thread<br>Size x | Fa    | Type<br>astener Mate | erial                 | Thread |    |    | Lei | ngth code "l | " ±0.4 |    |    | Min.<br>Sheet<br>Thick- | Hole<br>Size in | Н     | .s          | Ţ<br> | Max.<br>Hole<br>in | Min.<br>Dist.<br>Hole |
|-------|------------------|-------|----------------------|-----------------------|--------|----|----|-----|--------------|--------|----|----|-------------------------|-----------------|-------|-------------|-------|--------------------|-----------------------|
| S I C | Pitch            | Steel | Stainless<br>Steel   | Phosphor<br>Bronze(1) | Code   |    |    |     | th Code in n |        |    |    | ness<br>(2)             | Sheet<br>+0.13  | ±0.25 | Max.<br>(3) | Max.  | Attached<br>Parts  | <b>⊈</b><br>to Edge   |
| ET    | M5 x 0.8         | HFH   | HFHS                 | HFHB                  | M5     | 15 | 20 | 25  | 30           | 35     | 40 | 50 | 1.3                     | 5               | 7.8   | 2.7         | 1.14  | 6.4                | 10.7                  |
| Σ     | M6 x 1           | HFH   | HFHS                 | HFHB                  | М6     | 15 | 20 | 25  | 30           | 35     | 40 | 50 | 1.5                     | 6               | 9.4   | 2.8         | 1.27  | 7.5                | 11.5                  |
|       | M8 x 1.25        | HFH   | HFHS                 | HFHB                  | M8     | 15 | 20 | 25  | 30           | 35     | 40 | 50 | 2                       | 8               | 12.5  | 3.5         | 1.7   | 9.5                | 12.7                  |
|       | M10 x 1.5        | HFH   | HFHS                 | HFHB                  | M10    | 15 | 20 | 25  | 30           | 35     | 40 | 50 | 2.3                     | 10              | 15.7  | 4.1         | 2.29  | 11.5               | 13.7                  |

Tensile strength: HFH - 900 MPa / HFHS - 515 MPa / HFHB - 415 MPa.

- (1) The electrical resistance (tested at 10 amps DC) between phosphor bronze studs and copper busbars is below 104µ ohms and 62µ ohms for the #10-32 / M5 and 3/8-16 / M10 thread sizes respectively, after repeated thermal and mechanical cycling. For complete electrical resistance test data for type HFHB studs installed in copper, see bulletin entitled "Electrical Resistance of HFHB Studs Installed in Copper" on our website.
- (2) See page 72 for installation tool requirements.
- (3) Threads are gaugeable to within 2 pitches of the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.

## HFE™/THFE™ HEAVY DUTY STUDS FOR THIN SHEETS

- Enlarged head diameter reduces stress on panel.
- Thicker head allows for larger hole in attached panels.
- Clinch design provides high-strength in sheets as thin as .031" / 0.8 mm.
- Recommended for use in steel or aluminum sheets HRB (Rockwell "B" Scale) 85 / HB (Hardness Brinell) 165 or less.



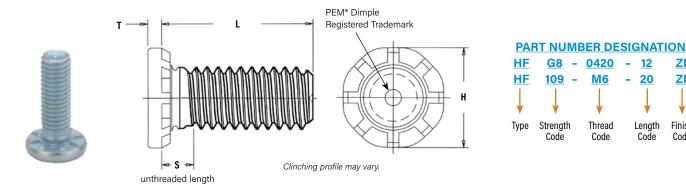
#### All dimensions are in inches.

|       | Thread              | Type<br>Fastener Material | Thread |      |      |      | h Code "L"<br>de in 16ths |      |      |      | Min.<br>Sheet    | Hole Size<br>In Sheet | Н    | s           | Ţ    | Max.<br>Hole in   | Min.<br>Dist.            |
|-------|---------------------|---------------------------|--------|------|------|------|---------------------------|------|------|------|------------------|-----------------------|------|-------------|------|-------------------|--------------------------|
|       | Size                | Steel                     | Code   | .500 | .750 | 1.00 | 1.25                      | 1.50 | 1.75 | 2.00 | Thickness<br>(1) | +.005<br>000          | ±.01 | Max.<br>(2) | Max. | Attached<br>Parts | Hole <b>©</b><br>To Edge |
| IFIED | .190-32<br>(#10-32) | HFE                       | 032    | 8    | 12   | 16   | 20                        | 24   | 28   | 32   | .040             | .190                  | .357 | .102        | .048 | .280              | .360                     |
| N O   | .250-20             | HFE                       | 0420   | 8    | 12   | 16   | 20                        | 24   | 28   | 32   | .040             | ,250                  | .462 | .118        | .060 | .340              | .470                     |
|       | (1/4-20)            | THFE                      | 0420   | 0    | IZ   | 10   | 20                        | 24   | 20   | JZ   | .031             | .230                  | .402 | .109        | .069 | .540              | .446                     |
|       | .313-18             | HFE                       | 0518   | 8    | 12   | 16   | 20                        | 24   | 28   | 32   | .060             | .312                  | .586 | .133        | .083 | .402              | .560                     |
|       | (5/16-18)           | THFE                      | 0310   | J    | ıZ   | 10   | 20                        | 24   | 20   | JZ   | .031             | JUL                   | .500 | .117        | .099 | .402              | .596                     |

Tensile strength: 120 ksi

#### All dimensions are in millimeters.

|      | Thread<br>Size x<br>Pitch | Type Fastener Material Steel | Thread<br>Code |    |    |    | th Code "L"<br>Code in mill |    |    |    | Min.<br>Sheet<br>Thickness<br>(1) | Hole<br>Size<br>In Sheet<br>+0.13 | H<br>±0.25 | S<br>Max.<br>(2) | T<br>Max. | Max.<br>Hole in<br>Attached<br>Parts | Min.<br>Dist.<br>Hole <b>⊉</b><br>To Edge |
|------|---------------------------|------------------------------|----------------|----|----|----|-----------------------------|----|----|----|-----------------------------------|-----------------------------------|------------|------------------|-----------|--------------------------------------|-------------------------------------------|
| TRIC | M5 x 0.8                  | HFE                          | M5             | 15 | 20 | 25 | 30                          | 35 | 40 | 50 | 1                                 | 5                                 | 9.6        | 2.6              | 1.35      | 7.3                                  | 10                                        |
| Z    | M6 x 1                    | HFE                          | M6             | 15 | 20 | 25 | 30                          | 35 | 40 | 50 | 1                                 | 6                                 | 11.35      | 2.8              | 1.52      | 8.3                                  | 11.5                                      |
|      |                           | THFE                         | 0              |    | 20 | 20 |                             | 00 |    |    | 0.8                               | Ů                                 |            | 2.62             | 1.7       | 0.0                                  | 10.5                                      |
|      | M8 x 1.25                 | HFE                          | M8             | 15 | 20 | 25 | 30                          | 35 | 40 | 50 | 1.5                               | 8                                 | 15.3       | 3.3              | 2.13      | 10.3                                 | 14.5                                      |
|      | IVIO A I.ZJ               | THFE                         | IVIO           | 13 | 20 | 23 | 30                          | 55 | 70 | 30 | 0.8                               | "                                 | 10.0       | 2.9              | 2.54      | 10.5                                 | 15                                        |


Tensile strength: 900 MPa

<sup>(1)</sup> See page 71 for installation tool requirements.

<sup>(2)</sup> Threads are gaugeable to within 2 pitches of the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.

## HFG8™/HF109™ HEAVY DUTY, HIGH TENSILE STRENGTH STUDS

- HFG8 and HF109 studs are for heavy-duty applications in sheets as thin as .040" / 1 mm.
- Grade 8 and property class 10.9 studs meeting 150 ksi/1040 MPa minimum.
- Recommended for use in steel or HSLA steel sheets HRB (Rockwell "B" Scale) 89 / HB (Hardness Brinell) 180 or less.
- Large head diameter spreads compressive stress on panel.



#### All dimensions are in inches.

|      | Thread<br>Size       | Туре  | Thread |      | th Code "L" ±.0<br>ode in 16ths o |      | Min. Sheet<br>Thickness | Hole Size<br>in Sheet | Н    | S<br>Max. | т    | Max. Hole<br>in Attached | Min. Dist.<br>Hole C/L |
|------|----------------------|-------|--------|------|-----------------------------------|------|-------------------------|-----------------------|------|-----------|------|--------------------------|------------------------|
|      |                      | Steel | Code   | .500 | .750                              | 1.00 | (2)                     | +.005000              | ±.01 | (3)       | Max. | Parts                    | To Edge                |
| FIED | .190-32<br>(#10-32)  | HFG8  | 032    | 8    | 12                                | 16   | .040                    | .190                  | .391 | .105      | .077 | .280                     | .469                   |
| N O  | .250-20<br>(1/4-20)  | HFG8  | 0420   | 8    | 12                                | 16   | .040                    | .250                  | .507 | .125      | .090 | .340                     | .709                   |
|      | .313-18<br>(5/16-18) | HFG8  | 0518   | -    | 12                                | 16   | .060                    | .312                  | .645 | .140      | .126 | .402                     | .827                   |

#### All dimensions are in millimeters.

M8 x 1.25

|      | Thread<br>Size x | Туре  | Thread | Leng | th Code "L" ±0 | <b>4</b> (1) | Min. Sheet<br>Thickness | Hole Size<br>in Sheet | н     | S<br>Max. | т    | Max. Hole<br>in Attached | Min. Dist.<br>Hole C/L |
|------|------------------|-------|--------|------|----------------|--------------|-------------------------|-----------------------|-------|-----------|------|--------------------------|------------------------|
| ၁    | Pitch            | Steel | Code   |      | Code in milli  |              | (2)                     | +0.13                 | ±0.25 | (3)       | Max. | Parts                    | To Edge                |
| ETRI | M5 x 0.8         | HF109 | M5     | 15   | 20             | 25           | 1                       | 5                     | 10.3  | 2.6       | 2.06 | 7.3                      | 11.5                   |
| Σ    | M6 x 1           | HF109 | M6     | 15   | 20             | 25           | 1                       | 6                     | 12.1  | 2.7       | 2.29 | 8.3                      | 18.0                   |

16.6

3.4

3.25

(1) Other lengths available up to a maximum of 1.5" (unified) and 40 mm (metric) on special order.

20

25

(2) See page 72 for installation tool requirements.

M8

HF109

(3) Threads are gaugeable to within 2 pitches of the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.

1.5

To be sure that you are getting genuine PEM products, look for the PEM stamp. Studs within the size range of the SAE and ISO specs are also identified with the Grade 8 and 10.9 head markings respectively. HFG8 Marking\*

\* Thread size #10-32 does not have SAE head marking since it is technically not within the size range of the specification.

<u>ZI</u>

ΖI

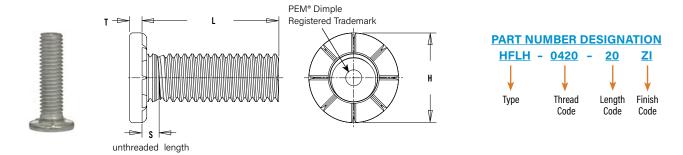
Finish

Code

Length

Code

Tensile strength: 150 ksi


Tensile strength: 1040 MPa

21.0

10.3

## **HFLH™ HARD PANEL STUDS**

- Installs into thinner, harder, high strength steel materials
- Recommended for use in HSLA sheets up to 700 MPa ultimate (hardness up to 96 HRB) such as s500 (1)

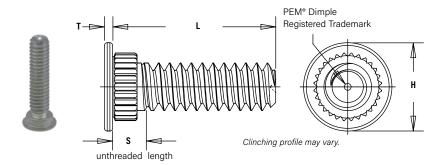


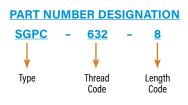
#### All dimensions are in inches.

|       | Thread               | Type<br>Fastener<br>Material | Thread |      |      |      | n Code "L" ±.<br>e in 16ths of |      |      |      | Min.<br>Sheet    | Hole Size<br>In Sheet | Н    | s           | Т    | Max.<br>Hole in   | Min.<br>Dist.            |
|-------|----------------------|------------------------------|--------|------|------|------|--------------------------------|------|------|------|------------------|-----------------------|------|-------------|------|-------------------|--------------------------|
| ED    | Size                 | Hardened<br>Alloy Steel      | Code   | .500 | .750 | 1.00 | 1.25                           | 1.50 | 1.75 | 2.00 | Thickness<br>(2) | +.005                 | ±.01 | Max.<br>(3) | Max. | Attached<br>Parts | Hole <b>©</b><br>To Edge |
| UNIFI | .190-32<br>(#10-32)  | HFLH                         | 032    | 8    | 12   | 16   | 20                             | 24   | 28   | 32   | .040             | .190                  | .357 | .102        | .048 | .280              | .360                     |
|       | .250-20<br>(1/4-20)  | HFLH                         | 0420   | 8    | 12   | 16   | 20                             | 24   | 28   | 32   | .040             | .250                  | .462 | .118        | .060 | .340              | .470                     |
|       | .313-18<br>(5/16-18) | HFLH                         | 0518   | 8    | 12   | 16   | 20                             | 24   | 28   | 32   | .060             | .312                  | .586 | .133        | .083 | .402              | .560                     |

Tensile strength: 120 ksi

#### All dimensions are in millimeters.


| 01   | Thread<br>Size x<br>Pitch | Type Fastener Material Hardened Alloy Steel | Thread<br>Code |    |    | Length<br>(Length C | n Code "L" ±.<br>ode in millin | 0.4<br>neters) |    |    | Min.<br>Sheet<br>Thickness<br>(2) | Hole Size<br>In Sheet<br>+0.13 | H<br>±0.25 | S<br>Max.<br>(3) | T<br>Max. | Max.<br>Hole in<br>Attached<br>Parts | Min.<br>Dist.<br>Hole <b>©</b><br>To Edge |
|------|---------------------------|---------------------------------------------|----------------|----|----|---------------------|--------------------------------|----------------|----|----|-----------------------------------|--------------------------------|------------|------------------|-----------|--------------------------------------|-------------------------------------------|
| METR | M5 x 0.8                  | HFLH                                        | M5             | 15 | 20 | 25                  | 30                             | 35             | 40 | 50 | 1                                 | 5                              | 9.6        | 2.6              | 1.35      | 7.3                                  | 10                                        |
|      | M6 x1                     | HFLH                                        | M6             | 15 | 20 | 25                  | 30                             | 35             | 40 | 50 | 1                                 | 6                              | 11.35      | 2.8              | 1.52      | 8.3                                  | 11.5                                      |
|      | M8 x 1.25                 | HFLH                                        | M8             | 15 | 20 | 25                  | 30                             | 35             | 40 | 50 | 1.5                               | 8                              | 15.3       | 3.3              | 2.13      | 10.3                                 | 14.5                                      |


Tensile strength: 900 MPa

- (1) Material meeting specification DIN EN 10149-2, grade S500MC with minimum yield of 500 MPa and max tensile of 700 MPa is a typical panel material in which type HFLH studs can be used.
- (2) See page 71 for installation tool requirements.
- (3) Threads are gaugeable to within 2 pitches of the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.

## **SGPC™ SWAGING COLLAR STUDS**

- Installs into sheets as thin as .024" / 0.6 mm.
- Can be used to attach dissimilar materials.
- Can captivate multiple panels as long as the total thickness does not exceed the maximum sheet thickness.<sup>(1)</sup>
- Can be installed into most materials, including stainless steel and rigid non-metallic panels.
- Allows for close centerline-to-edge distance.





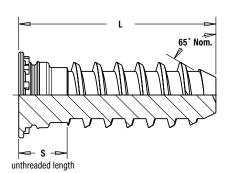
#### All dimensions are in inches.

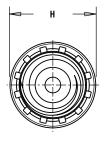
|          | Thread              | Type<br>Fastener<br>Material | Thread |      |      |      | Length Co<br>h Code in |      |      |      |      |      | Sheet            | Hole<br>Size in<br>Sheet | Н     | s           | Т     | Hole<br>Dia. of<br>Attached | Min.<br>Dist.<br>Hole |
|----------|---------------------|------------------------------|--------|------|------|------|------------------------|------|------|------|------|------|------------------|--------------------------|-------|-------------|-------|-----------------------------|-----------------------|
|          | Size                | Stainless<br>Steel           | Code   | .312 | .375 | .500 | .625                   | .750 | .875 | 1.00 | 1.25 | 1.50 | Thickness<br>(2) | +.003<br>000             | ±.010 | Max.<br>(3) | ±.004 | Panel<br>+.005000           | <b>©</b><br>To Edge   |
| <b>Q</b> | .086-56<br>(#2-56)  | SGPC                         | 256    | 5    | 6    | 8    | 10                     | 12   | _    | -    | _    | -    | .024047          | .145                     | .189  | .093        | .020  | .182                        | .130                  |
| FIE      | .112-40<br>(#4-40)  | SGPC                         | 440    | 5    | 6    | 8    | 10                     | 12   | 14   | 16   | 20   | -    | .024047          | .171                     | .228  | .101        | .024  | .205                        | .160                  |
| IN O     | .138-32<br>(#6-32)  | SGPC                         | 632    | 5    | 6    | 8    | 10                     | 12   | 14   | 16   | 20   | 24   | .024047          | .196                     | .256  | .109        | .024  | .229                        | .180                  |
|          | .164-32<br>(#8-32)  | SGPC                         | 832    | 5    | 6    | 8    | 10                     | 12   | 14   | 16   | 20   | 24   | .024047          | .223                     | .279  | .109        | .024  | .259                        | .200                  |
|          | .190-32<br>(#10-32) | SGPC                         | 032    | 5    | 6    | 8    | 10                     | 12   | 14   | 16   | 20   | 24   | .024047          | .249                     | .307  | .109        | .024  | .280                        | .210                  |
|          | .250-20<br>(1/4-20) | SGPC                         | 0420   | -    | 6    | 8    | 10                     | 12   | 14   | 16   | 20   | 24   | .024047          | .309                     | .366  | .131        | .028  | .343                        | .250                  |

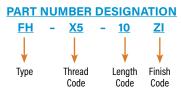
#### All dimensions are in millimeters.

| RIC | Thread<br>Size x<br>Pitch | Type Fastener Material Stainless Steel | Thread<br>Code |   |    |    | Length C<br>gth Code |    |    |    |    |    | Sheet<br>Thickness<br>(2) | Hole<br>Size in<br>Sheet<br>+0.08 | H<br>±0.25 | S<br>Max.<br>(3) | T<br>±0.1 | Hole<br>Dia. of<br>Attached<br>Panel<br>+0.13 | Min.<br>Dist.<br>Hole<br><b>©</b><br>To Edge |
|-----|---------------------------|----------------------------------------|----------------|---|----|----|----------------------|----|----|----|----|----|---------------------------|-----------------------------------|------------|------------------|-----------|-----------------------------------------------|----------------------------------------------|
| -   | M2.5 x 0.45               | SGPC                                   | M2.5           | 8 | 10 | 12 | 15                   | 18 | -  | _  | _  | _  | 0.6 - 1.2                 | 4                                 | 5          | 2.4              | 0.5       | 4.95                                          | 3.9                                          |
|     | M3 x 0.5                  | SGPC                                   | M3             | 8 | 10 | 12 | 15                   | 18 | 20 | 25 | _  | -  | 0.6 - 1.2                 | 4.5                               | 6          | 2.5              | 0.6       | 5.45                                          | 4.3                                          |
|     | M4 x 0.7                  | SGPC                                   | M4             | 8 | 10 | 12 | 15                   | 18 | 20 | 25 | 30 | -  | 0.6 - 1.2                 | 5.5                               | 7          | 2.7              | 0.6       | 6.3                                           | 4.9                                          |
|     | M5 x 0.8                  | SGPC                                   | M5             | 8 | 10 | 12 | 15                   | 18 | 20 | 25 | 30 | 35 | 0.6 - 1.2                 | 6.5                               | 8          | 2.8              | 0.6       | 7.45                                          | 5.5                                          |
|     | M6 x 1                    | SGPC                                   | M6             | _ | 10 | 12 | 15                   | 18 | 20 | 25 | 30 | 35 | 0.6 - 1.2                 | 7.5                               | 9          | 3                | 0.7       | 8.3                                           | 6.2                                          |

<sup>(1)</sup> When using the fastener to attach more than one sheet or panel, the stud may seem slightly loose after installation. This is a normal condition in some applications and will not effect the stud's performance.


<sup>(2)</sup> See page 73 for installation tooling requirements. Contact Technical Support (techsupport@pemnet.com) for other thicknesses.


<sup>(3)</sup> Threads are gaugeable to within 2 pitches on the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.


# FHX™ FLUSH-HEAD STUDS WITH X-PRESS™ THREAD PROFILE FOR USE WITH PUSH ON PLASTIC MATING FASTENERS

- Offers fast, reliable attachment.
- Coarse thread design of the thread reduces assembly time and provides high retention force.
- Allows for lighter assembly.
- Self-clinching stud mounts flush in metal sheets as thin as 1mm.
- Thread design accommodates paints and coatings without compromising performance.
- Self-clinching technology is cleaner and has a more attractive finished appearance than welding.
- Can be installed during the stamping process with PEMSERTER® in-die technology.







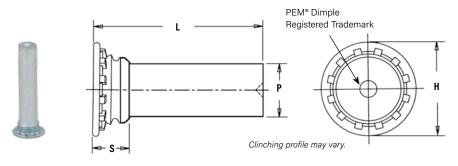


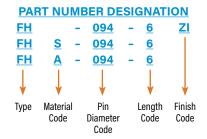
#### All dimensions are in millimeters.

| Thread Size<br>x Pitch | Туре | Thread<br>Code |    |    | de "L" ±0.4<br>in millimete |    | Min. Sheet<br>Thickness | Hole Size in Sheet<br>+0.08 | H<br>±0.4 | S<br>Max. |
|------------------------|------|----------------|----|----|-----------------------------|----|-------------------------|-----------------------------|-----------|-----------|
| 5 mm x 1.6             | FH   | X5             | 10 | 15 | 20                          | 25 | 1                       | 5.2                         | 6.5       | 4         |
| 6 mm x 1.6             | FH   | Х6             | 10 | 15 | 20                          | 25 | 1.6                     | 6.2                         | 8.2       | 4         |

(1) See page 73 for installation tool requirements.







Standard head mounts flush in sheet. Domed head available on special order.

## FH™/FHS™/FHA™ FLUSH-HEAD PINS

- Flush-head for sheet thickness of .040" / 1 mm and greater.
- FH pins are recommended for use in steel or aluminum sheets HRB (Rockwell "B" Scale) 80 / HB (Hardness Brinell) 150 or less.
- FHS pins are recommended for use in steel or aluminum sheets HRB (Rockwell "B" Scale) 70 / HB (Hardness Brinell) 125 or less.
- FHA pins are recommended for use in aluminum sheets HRB (Rockwell "B" Scale) 50 / HB (Hardness Brinell) 82 or less.

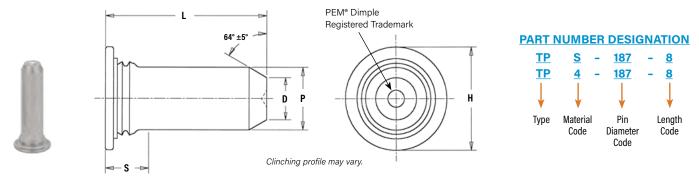
## These PEM® pins are only available on special order. See TPS, TP4, and TPXS pins on page 16 for standard diameter pins.





#### All dimensions are in inches.

|       | Nominal<br>Pin     | Fas   | Type<br>stener Mate | rial          | Pin<br>Dia. |      |      |      |      | th Code "L'<br>ode in 16th | ' ±.015<br>ns of an inc | :h)  |      |      |      | Min.<br>Sheet<br>Thick- | Hole<br>Size in<br>Sheet | Н      | S           | Min.<br>Dist.<br>Hole |
|-------|--------------------|-------|---------------------|---------------|-------------|------|------|------|------|----------------------------|-------------------------|------|------|------|------|-------------------------|--------------------------|--------|-------------|-----------------------|
|       | Diameter<br>P±.002 | Steel | Stainless<br>Steel  | Alu-<br>minum | Code        | .250 | .312 | .375 | .500 | .625                       | .750                    | .875 | 1.00 | 1.25 | 1.50 | ness<br>(1)             | +.003<br>000             | ± .015 | Max.<br>(2) | to Edge               |
|       | .073               | FH    | FHS                 | FHA           | 073         | 4    | 5    | 6    | 8    | 10                         | -                       | _    | -    | -    | -    | .040                    | .085                     | .15    | .075        | .19                   |
|       | .084               | FH    | FHS                 | FHA           | 084         | 4    | 5    | 6    | 8    | 10                         | 12                      | _    | -    | -    | -    | .040                    | .099                     | .16    | .085        | .22                   |
|       | .094               | FH    | FHS                 | FHA           | 094         | 4    | 5    | 6    | 8    | 10                         | 12                      | -    | -    | -    | -    | .040                    | .111                     | .18    | .085        | .22                   |
|       | .103               | FH    | FHS                 | FHA           | 103         | 4    | 5    | 6    | 8    | 10                         | 12                      | _    | _    | -    | -    | .040                    | .118                     | .18    | .085        | .22                   |
|       | .106               | FH    | FHS                 | FHA           | 106         | 4    | 5    | 6    | 8    | 10                         | 12                      | 14   | 16   | 20   | -    | .040                    | .125                     | .19    | .090        | .22                   |
|       | .116               | FH    | FHS                 | FHA           | 116         | 4    | 5    | 6    | 8    | 10                         | 12                      | 14   | 16   | 20   | -    | .040                    | .137                     | .21    | .090        | .25                   |
| I E D | .120               | FH    | FHS                 | FHA           | 120         | 4    | 5    | 6    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .040                    | .137                     | .21    | .090        | .25                   |
| UNIFI | .137               | FH    | FHS                 | FHA           | 137         | 4    | 5    | 6    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .040                    | .157                     | .23    | .090        | .28                   |
|       | .141               | FH    | FHS                 | FHA           | 141         | 4    | 5    | 6    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .040                    | .163                     | .24    | .090        | .28                   |
|       | .160               | FH    | FHS                 | FHA           | 160         | 4    | 5    | 6    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .040                    | .189                     | .26    | .100        | .28                   |
|       | .167               | FH    | FHS                 | FHA           | 167         | -    | 5    | 6    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .040                    | .189                     | .26    | .100        | .28                   |
|       | .173               | FH    | FHS                 | FHA           | 173         | -    | 5    | 6    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .040                    | .197                     | .26    | .100        | .28                   |
|       | .207               | FH    | FHS                 | FHA           | 207         | -    | 5    | 6    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .062                    | .236                     | .32    | .135        | .31                   |
|       | .215               | FH    | FHS                 | FHA           | 215         | -    | -    | -    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .062                    | .250                     | .34    | .135        | .31                   |
|       | .223               | FH    | FHS                 | FHA           | 223         | -    | _    | -    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .062                    | .250                     | .34    | .135        | .31                   |
|       | .273               | FH    | FHS                 | FHA           | 273         | _    | _    | -    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .093                    | .312                     | .38    | .160        | .38                   |
|       | .281               | FH    | FHS                 | FHA           | 281         | -    | -    | -    | 8    | 10                         | 12                      | 14   | 16   | 20   | 24   | .093                    | .312                     | .38    | .160        | .38                   |


#### All dimensions are in millimeters.

| RIC | Nominal<br>Pin<br>Diameter<br>P±0.05 | Fa:<br>Steel | Type<br>stener Mate<br>Stainless<br>Steel | rial<br>Alu-<br>minum | Pin<br>Dia.<br>Code |   |   |    |    | ength Cod.<br>gth Code in |    | ers) |    |    |    | Min.<br>Sheet<br>Thick-<br>ness<br>(1) | Hole<br>Size in<br>Sheet<br>+0.08 | H<br>± 0.4 | S<br>Max.<br>(2) | Min.<br>Dist.<br>Hole<br><b>£</b><br>to Edge |
|-----|--------------------------------------|--------------|-------------------------------------------|-----------------------|---------------------|---|---|----|----|---------------------------|----|------|----|----|----|----------------------------------------|-----------------------------------|------------|------------------|----------------------------------------------|
| MET | 3                                    | FH           | FHS                                       | FHA                   | 3MM                 | 6 | 8 | 10 | 12 | 15                        | 18 | 20   | 25 | 30 | -  | 1                                      | 3.5                               | 5.3        | 2.3              | 6.4                                          |
|     | 4                                    | FH           | FHS                                       | FHA                   | 4MM                 | ı | 8 | 10 | 12 | 15                        | 18 | 20   | 25 | 30 | 35 | 1                                      | 4.1                               | 6          | 2.3              | 7.1                                          |
|     | 5                                    | FH           | FHS                                       | FHA                   | 5MM                 | ı | 8 | 10 | 12 | 15                        | 18 | 20   | 25 | 30 | 35 | 1                                      | 5.5                               | 7.5        | 2.55             | 7.6                                          |

- (1) See page 74 for installation tool requirements.
- (2) Pin diameter may exceed max. in this region.

## TPS™/TP4™ FLUSH-HEAD PILOT PINS

- Flush-head for sheet thickness of .040" / 1 mm and greater.
- Satisfies a wide range of positioning, pivot, and alignment applications.
- Chamfered end makes mating hole location easy.
- TPS pins are recommended for use in steel or aluminum sheets HRB (Rockwell "B" Scale) 70 / HB (Hardness Brinell) 125 or less.
- TP4 pins are recommended for use in stainless steel sheets HRB (Rockwell "B" Scale) 92 / HB (Hardness Brinell) 195 or less.



All dimensions are in inches

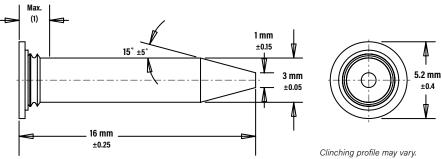
|       | Pin<br>Diameter | Tyj<br>Fastener I             |                               | Pin<br>Diameter |      |      | th Code "L" ±<br>ode in 16ths o |      |      | Min. Sheet<br>Thickness | Hole Size | D     | Н     | S<br>Max. | Min.<br>Distance         |
|-------|-----------------|-------------------------------|-------------------------------|-----------------|------|------|---------------------------------|------|------|-------------------------|-----------|-------|-------|-----------|--------------------------|
| I E D | P ±.002         | 300 Series<br>Stainless Steel | 400 Series<br>Stainless Steel | Code            | .375 | .500 | .625                            | .750 | 1.00 | (1)                     | +.003000  | ±.006 | ±.015 | (2)       | Hole <b>⊈</b><br>to Edge |
| Ē     | .125            | TPS                           | TP4                           | 125             | 6    | 8    | 10                              | 12   | _    | .040                    | .144      | .090  | .205  | .090      | .250                     |
| _     | .187            | TPS                           | TP4                           | 187             | 6    | 8    | 10                              | 12   | 16   | .040                    | .205      | .132  | .270  | .090      | .280                     |
|       | .250            | TPS                           | TP4                           | 250             | -    | 8    | 10                              | 12   | 16   | .040                    | .272      | .177  | .335  | .090      | .310                     |

All dimensions are in millimeters.

|        | Pin<br>Diameter | Tyj<br>Fastener I             |                               | Pin<br>Diameter |   |     | Length Co | de "L" ± 0. | 1     |    | Min. Sheet<br>Thickness | Hole Size<br>in Sheet | D     | Н    | S<br>Max. | Min.<br>Distance         |
|--------|-----------------|-------------------------------|-------------------------------|-----------------|---|-----|-----------|-------------|-------|----|-------------------------|-----------------------|-------|------|-----------|--------------------------|
| ر      | P ±0.05         | 300 Series<br>Stainless Steel | 400 Series<br>Stainless Steel | Code            |   | (Le | ngth Code | in millime  | ters) |    | (1)                     | +0.08                 | ±0.15 | ±0.4 | (2)       | Hole <b>⊈</b><br>to Edge |
| Δ<br>- | 1 3             | TPS                           | TP4                           | 3MM             | 6 | 8   | 10        | 12          | 16    | -  | 1                       | 3.5                   | 2.11  | 5.2  | 2.29      | 6.4                      |
| Σ      | 4               | TPS                           | TP4                           | 4MM             | 6 | 8   | 10        | 12          | 16    | ı  | 1                       | 4.5                   | 2.82  | 6.12 | 2.29      | 7.1                      |
|        | 5               | TPS                           | TP4                           | 5MM             | - | -   | 10        | 12          | 16    | 20 | 1                       | 5.5                   | 3.53  | 7.19 | 2.29      | 7.6                      |
|        | 6               | TPS                           | TP4                           | 6MM             | - | -   | -         | 12          | 16    | 20 | 1                       | 6.5                   | 4.24  | 8.13 | 2.29      | 7.9                      |

- (1) See page 75 for installation tool requirements.
- (2) Pin diameter may exceed max. in this region.

If your application requires corrosion resistant fasteners, non-magnetic fasteners, or will be exposed to temperatures above 300° F (149° C), see note at bottom of page 6 about "400 series fasteners for stainless steel panels".


## **TPXS™ SELF-CLINCHING PILOT PINS**

- Meets the ATCA PICMG 3.0 specification.
- 15° tapered point makes engaging the mating hole easy.



Min. Sheet Thickness: 1 mm Hole Size In Sheet: 3.5 mm +0.08 Min. Dist. Hole C/L To Edge: 6.4 mm

#### $\textbf{Contact}~\underline{\textbf{techsupport@pemnet.com}}~\textbf{for other sizes and materials}$ 2.29 mm Max. (1) 1 mm



PEM® Part Number: TPXS-3MM-16

(1) Pin diameter may exceed max. in this region.

## **MATERIAL AND FINISH SPECIFICATIONS**

|               | Threads (1)                                        |                             |                                             | F                          | astener Mater                 | ials                                       |                                  |                                  |                     | Standard Finishe                                                        | es                                              | Optional                                                            | Finishe             | S (2)                       |
|---------------|----------------------------------------------------|-----------------------------|---------------------------------------------|----------------------------|-------------------------------|--------------------------------------------|----------------------------------|----------------------------------|---------------------|-------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|---------------------|-----------------------------|
| Туре          | External,<br>ASME B1.1,<br>2A / ASME<br>B1.13M, 6g | Hardened<br>Carbon<br>Steel | Hardened<br>Medium<br>Carbon<br>Alloy Steel | Aluminum<br>(plain finish) | CDA 510<br>Phosphor<br>Bronze | Age<br>Hardened<br>A286 Stainless<br>Steel | 300 Series<br>Stainless<br>Steel | 400 Series<br>Stainless<br>Steel | No<br>Finish<br>(4) | Zinc plated per<br>ASTM B633, SC1<br>(5µm), Type III,<br>Colorless, (5) | Passivated<br>and/or<br>Tested Per<br>ASTM A380 | Zinc Plated per<br>ASTM B633, SC1<br>(5µm), Type II,<br>Yellow, (5) | No<br>Finish<br>(4) | Rust<br>Preventative<br>Oil |
| FH            | -                                                  | •                           |                                             |                            |                               |                                            |                                  |                                  |                     | •                                                                       |                                                 | •                                                                   |                     |                             |
| FHS           | -                                                  |                             |                                             |                            |                               |                                            | •                                |                                  |                     |                                                                         | •                                               |                                                                     |                     |                             |
| FHA           | •                                                  |                             |                                             | •                          |                               |                                            |                                  |                                  | <b>-</b> (3)        |                                                                         |                                                 |                                                                     |                     |                             |
| FH4           | •                                                  |                             |                                             |                            |                               |                                            |                                  | •                                |                     |                                                                         | •                                               |                                                                     |                     |                             |
| FHP           | •                                                  |                             |                                             |                            |                               | -                                          |                                  |                                  |                     |                                                                         | •                                               |                                                                     |                     |                             |
| FHL           | •                                                  | •                           |                                             |                            |                               |                                            |                                  |                                  |                     | •                                                                       |                                                 | •                                                                   |                     |                             |
| FHLS          | •                                                  |                             |                                             |                            |                               |                                            | •                                |                                  |                     |                                                                         | •                                               |                                                                     |                     |                             |
| TFH           | •                                                  | •                           |                                             |                            |                               |                                            |                                  |                                  |                     | •                                                                       |                                                 | •                                                                   |                     |                             |
| TFHS          | •                                                  |                             |                                             |                            |                               |                                            | •                                |                                  |                     |                                                                         | •                                               |                                                                     |                     |                             |
| HFE           | •                                                  | •                           |                                             |                            |                               |                                            |                                  |                                  |                     | •                                                                       |                                                 | -                                                                   |                     |                             |
| THFE          | •                                                  | •                           |                                             |                            |                               |                                            |                                  |                                  |                     | •                                                                       |                                                 | •                                                                   |                     |                             |
| HFH           | •                                                  | •                           |                                             |                            |                               |                                            |                                  |                                  |                     | •                                                                       |                                                 | •                                                                   |                     |                             |
| HFHB          | •                                                  |                             |                                             |                            | •                             |                                            |                                  |                                  | •                   |                                                                         |                                                 |                                                                     |                     |                             |
| HFHS          | -                                                  |                             |                                             |                            |                               |                                            | •                                |                                  |                     |                                                                         | •                                               |                                                                     |                     |                             |
| HFG8          | -                                                  |                             | •                                           |                            |                               |                                            |                                  |                                  |                     | •                                                                       |                                                 | -                                                                   |                     |                             |
| HF109         | •                                                  |                             | •                                           |                            |                               |                                            |                                  |                                  |                     | -                                                                       |                                                 | •                                                                   |                     |                             |
| HFLH          | •                                                  |                             | •                                           |                            |                               |                                            |                                  |                                  |                     | •                                                                       |                                                 |                                                                     | <b>-</b> (6)        |                             |
| SGPC          | -                                                  |                             |                                             |                            |                               |                                            | •                                |                                  |                     |                                                                         | •                                               |                                                                     |                     |                             |
| FHX           |                                                    | •                           |                                             |                            |                               |                                            |                                  |                                  |                     | •                                                                       |                                                 |                                                                     |                     | •                           |
| TPS           |                                                    |                             |                                             |                            |                               |                                            |                                  | •                                |                     |                                                                         |                                                 |                                                                     |                     |                             |
| TP4           |                                                    |                             |                                             |                            | •                             |                                            |                                  | •                                |                     |                                                                         |                                                 |                                                                     |                     |                             |
| TPXS          |                                                    |                             |                                             |                            |                               |                                            |                                  | •                                |                     |                                                                         |                                                 |                                                                     |                     |                             |
| Part Number C | odes for Finishes                                  | 3                           |                                             |                            |                               |                                            |                                  |                                  | Χ                   | ZI                                                                      | None                                            | ZC                                                                  | Х                   | Х                           |

|       |                              |                              |                               | For                           | use in Sheet Hardnes          | SS (7)                        |                               |                               |                       |
|-------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------|
| Туре  | HRB 50 /<br>HB 82<br>or Less | HRB 55 /<br>HB 83<br>or Less | HRB 70 /<br>HB 125<br>or Less | HRB 80 /<br>HB 150<br>or Less | HRB 85 /<br>HB 165<br>or Less | HRB 89 /<br>HB 180<br>or Less | HRB 92 /<br>HB 202<br>or Less | HRB 96 /<br>HB 216<br>or Less | Any Sheet<br>Hardness |
| FH    |                              |                              |                               | •                             |                               |                               |                               |                               |                       |
| FHS   |                              |                              | •                             |                               |                               |                               |                               |                               |                       |
| FHA   | •                            |                              |                               |                               |                               |                               |                               |                               |                       |
| FH4   |                              |                              |                               |                               |                               |                               | •                             |                               |                       |
| FHP   |                              |                              |                               |                               |                               |                               | •                             |                               |                       |
| FHL   |                              |                              |                               | •                             |                               |                               |                               |                               |                       |
| FHLS  |                              |                              | •                             |                               |                               |                               |                               |                               |                       |
| TFH   |                              |                              |                               | •                             |                               |                               |                               |                               |                       |
| TFHS  |                              |                              | •                             |                               |                               |                               |                               |                               |                       |
| HFE   |                              |                              |                               |                               | •                             |                               |                               |                               |                       |
| THFE  |                              |                              |                               |                               | •                             |                               |                               |                               |                       |
| HFH   |                              |                              |                               |                               | •                             |                               |                               |                               |                       |
| HFHB  |                              | •                            |                               |                               |                               |                               |                               |                               |                       |
| HFHS  |                              |                              | •                             |                               |                               |                               |                               |                               |                       |
| HFG8  |                              |                              |                               |                               |                               | •                             |                               |                               |                       |
| HF109 |                              |                              |                               |                               |                               | •                             |                               |                               |                       |
| HFLH  |                              |                              |                               |                               |                               |                               |                               | •                             |                       |
| SGPC  |                              |                              |                               |                               |                               |                               |                               |                               | •                     |
| FHX   |                              |                              |                               | •                             |                               |                               |                               |                               |                       |
| TPS   |                              |                              | •                             |                               |                               |                               |                               |                               |                       |
| TP4   |                              |                              |                               |                               |                               |                               | •                             |                               |                       |
| TPXS  |                              |                              | •                             |                               |                               |                               |                               |                               |                       |

<sup>(1)</sup> For plated studs, Class 2A/6g, the maximum major and pitch diameter, after plating, may equal basic sizes and be gauged to Class 3A/4h. Per ASME B1.1, Section 7, Paragraph 7.2 and ASME B1.13M, Section 8, paragraph 8.2.

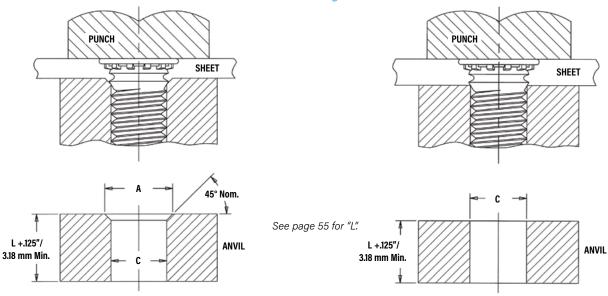
<sup>(2)</sup> Special order with additional charge.

<sup>(3)</sup> Part numbers for aluminum studs have no finish suffix.

<sup>(4) &</sup>quot;X" suffix studs may have pitch diameters and major diameters below 2A/6g minimum size, per ANSI B1.1, Section 7, and B1.13M, Section 8 to allow for minimum of 0.0002" / 0.0051 mm of plating.

<sup>(5)</sup> See <u>PEM Technical Support</u> section of our web site for related plating standards and specifications.

<sup>(6)</sup> With rust preventative oil.


<sup>(7)</sup> HRB - Hardness Rockwell "B" Scale. HB - Hardness Brinell.

## INSTALLATION - FHTM/FHSTM/FHATM THREADED STUDS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert stud through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force to embed the head of the stud flush in the sheet. In most cases, when using sheets .060" / 1.51 mm and thicker, the anvil requires only a straight thru hole to accommodate the stud (see illustrations below for details). For sheets less than .060 / 1.51 mm, the hole requires a countersink with dimension A at the top to provide for metal flow around the shank of the stud.

Tooling for sheet thicknesses less than .060 / 1.51 mm with #2 thru #10 / M2.5 thru M5 thread sizes and less than .093" / 2.36 mm for 1/4" / M6 threads.

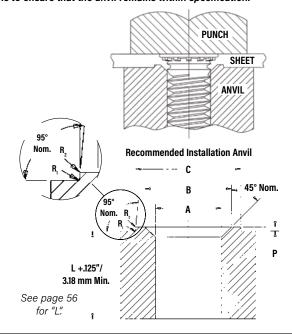
Tooling for sheet thicknesses .060'' / 1.51 mm and greater with #2 thru #10 / M2.5 thru M5 thread sizes and .093'' / 2.36 mm and greater for 1/4'' and 5/16'' / M6 and M8 threads.



|     | Thread  | Anvil Dimer | nsions (in.) | Anvil Part No.        | Anvil Part No.        | Punch          |
|-----|---------|-------------|--------------|-----------------------|-----------------------|----------------|
|     | Code    | A           | С            | For Sheets<br>> .060" | For Sheets<br>≤ .059" | Part<br>Number |
|     | 256     | .110114     | .087090      | 970200005300          | 970200240300          |                |
| Q   | 440     | .136140     | .113116      | 970200006300          | 970200241300          |                |
| ш.  | 632     | .162166     | .139142      | 970200007300          | 970200243300          | 975200048      |
| N F | 832     | .188192     | .165168      | 970200008300          | 970200245300          |                |
| П   | 024/032 | .216220     | .191194      | 970200009300          | 970200246300          |                |
|     |         |             |              | For Sheets<br>> .093" | For Sheets ≤ .092"    |                |
|     | 0420    | .295300     | .250253      | 970200010300          | 970200249300          | 975200048      |
|     | 0518    | .334-338    | .31253155    | 970200011300          | -                     | 373200040      |

|     | Thread | Anvil Dimen | sions (mm) | Anvil Part No.          | Anvil Part No.          | Punch          |
|-----|--------|-------------|------------|-------------------------|-------------------------|----------------|
|     | Code   | A + 0.1     | C + 0.08   | For Sheets<br>> 1.51 mm | For Sheets<br>≤ 1.5 mm  | Part<br>Number |
|     | M2.5   | 3.1         | 2.53       | 970200300300            | 970200493300            |                |
| ၁   | M3     | 3.6         | 3.03       | 970200229300            | 970200242300            |                |
| R ( | M3.5   | 4.1         | 3.53       | 970200007300            | 970200243300            | 975200048      |
| ΕT  | M4     | 4.6         | 4.03       | 970200019300            | 970200244300            |                |
| Σ   | M5     | 5.6         | 5.03       | 970200020300            | 970200247300            |                |
|     |        |             |            | For Sheets<br>> 2.36 mm | For Sheets<br>≤ 2.36 mm |                |
|     | M6     | 6.6         | 6.03       | 970200230300            | 970200248300            | 975200048      |
|     | M8     | 8.6         | 8.03       | 970200231300            | _                       | 3/3200040      |

## INSTALLATION - FH4™/FHP™ STUDS FOR STAINLESS STEEL SHEETS

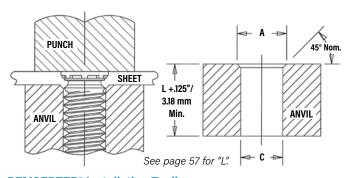

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert stud through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force to embed the head of the stud flush in the sheet.

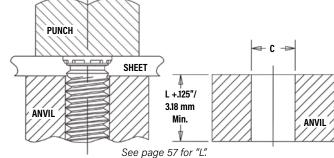
For FH4/FHP studs, a special anvil with a raised ring is required to create a proper installation. The raised ring acts as a second displacer of the stainless sheet material, thereby ensuring that the annular groove is filled. Please see page 56 for recommended sheet thickness range. The special anvils are available from PEM stock or can be machined from suitable tool steel. A hardness of HRC 55 / HB 547 minimum is required to provide long anvil life. We recommend measuring the "P" dimension every 5000 installations to ensure that the anvil remains within specification.

#### **PEMSERTER® Installation Tooling**

|   | Thread |               |            | Anvil Dime | nsions (in.) |            |                        | Anvil Part | Punch Part |
|---|--------|---------------|------------|------------|--------------|------------|------------------------|------------|------------|
| Q | Code   | A<br>+.003000 | B<br>±.002 | C<br>±.002 | P<br>±.001   | R,<br>Max. | R <sub>2</sub><br>Max. | Number     | Number     |
| Ξ | 440    | .113          | .144       | .174       | .010         | .003       | .005                   | 8001645    |            |
| Ξ | 632    | .140          | .170       | .200       | .010         | .003       | .005                   | 8001644    |            |
|   | 832    | .166          | .202       | .236       | .010         | .003       | .005                   | 8001643    | 975200048  |
|   | 032    | .191          | .235       | .275       | .010         | .003       | .005                   | 8001642    |            |
|   | 0420   | .252          | .324       | .360       | .020         | .003       | .005                   | 8002535    |            |

|        | Thread |            |            | Anvil Dimer | isions (mm) | )          |                        | Anvil Part | Punch Part<br>Number |
|--------|--------|------------|------------|-------------|-------------|------------|------------------------|------------|----------------------|
| METRIC | Code   | A<br>+0.08 | B<br>±0.05 | C<br>±0.05  | P<br>±.025  | R,<br>Max. | R <sub>2</sub><br>Max. | Number     |                      |
|        | М3     | 3.05       | 3.81       | 4.57        | 0.25        | 0.08       | 0.13                   | 8001678    |                      |
|        | M4     | 4.04       | 4.95       | 5.82        | 0.25        | 0.08       | 0.13                   | 8001677    | 975200048            |
|        | M5     | 5.08       | 6.15       | 7.16        | 0.25        | 0.08       | 0.13                   | 8001676    | 070200010            |
|        | M6     | 6.05       | 7.87       | 8.79        | 0.51        | 0.08       | 0.13                   | 8002536    |                      |





## INSTALLATION - FHL™/FHLS™ STUDS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert stud through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force to embed the head of the stud flush in the sheet. For sheets .060" / 1.51 mm and thicker, the anvil requires only a straight thru hole to accommodate the stud. For sheets less than .060" / 1.51 mm, the hole requires a countersink with dimension A at the top to provide for metal flow around the shank of the stud.

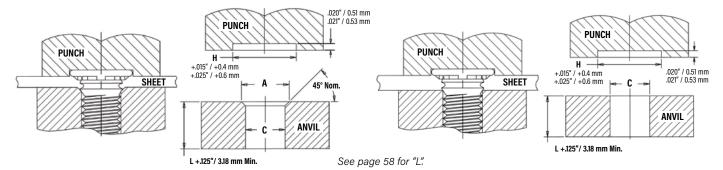
Tooling for sheet thicknesses less than .060" / 1.51 mm.







|       | Thread<br>Code | Anvil Dimensions (in.) |         | Anvil Part No.        | Anvil Part No.          | Punch          |
|-------|----------------|------------------------|---------|-----------------------|-------------------------|----------------|
|       |                | A                      | С       | For Sheets<br>> .060" | For Sheets $\leq$ .059" | Part<br>Number |
| I E D | 256            | .110114                | .087090 | 8003313               | 8003297                 |                |
| NIF   | 440            | .136140                | .113116 | 8003618               | 8003298                 |                |
| 5     | 632            | .162166                | .139142 | 8003314               | 8003299                 | 975200997      |
|       | 832            | .188192                | .165168 | 8003315               | 8003300                 |                |
|       | 032            | .216220                | .191194 | 8003619               | 8003301                 |                |


| RIC | Thread | Anvil Dimensions (mm) |            | Anvil Part No.          | Anvil Part No.         | Punch          |
|-----|--------|-----------------------|------------|-------------------------|------------------------|----------------|
|     | Code   | A<br>±0.05            | C<br>+0.08 | For Sheets<br>> 1.51 mm | For Sheets<br>≤ 1.5 mm | Part<br>Number |
|     | M25    | 3.1                   | 2.53       | 8003316                 | 8003302                |                |
| ш   | M3     | 3.6                   | 3.03       | 8003317                 | 8003303                |                |
| Σ   | M3.5   | 4.1                   | 3.53       | 8003318                 | 8003304                | 975200997      |
|     | M4     | 4.6                   | 4.03       | 8003620                 | 8003305                |                |
|     | M5     | 5.6                   | 5.03       | 8003319                 | 8003306                |                |

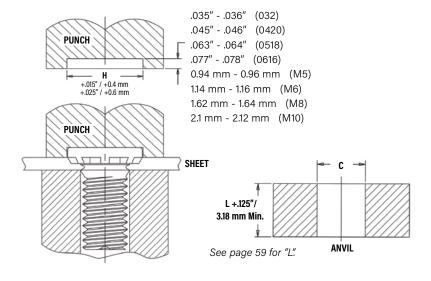
#### INSTALLATION - TFH™/TFHS™ NON-FLUSH STUDS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert stud through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force until the punch contacts the sheet. When installed, the stud head is not flush but will protrude approximately .025" / 0.64 mm. For sheets .030" / 0.76 mm and thicker, the anvil requires only a straight thru hole to accommodate the stud. For sheets less than .030" / 0.76 mm down to .020" / 0.51 mm, the hole requires a countersink with dimension A at the top to provide for metal flow around the shank of the stud. The standard punch design below provides clearance for the stud head and reduces chances of over squeezing the head of the stud into the sheet metal.

Tooling for sheet thicknesses less than .030" / 0.76 mm down to .020" / 0.51 mm.

Tooling for sheet thicknesses .030" / 0.76 mm and greater.




#### **PEMSERTER® Installation Tooling**

|     | Thread | Anvil Dimer | nsions (in.) | Anvil Part No.        | Anvil Part No.          | Punch          |
|-----|--------|-------------|--------------|-----------------------|-------------------------|----------------|
|     | Code   | A           | С            | For Sheets<br>> .030" | For Sheets<br>.020"029" | Part<br>Number |
| E D | 256    | .110114     | .087090      | 970200005300          | 970200240300            | 970200235400   |
| 盂   | 440    | .136140     | .113116      | 970200006300          | 970200241300            | 970200236400   |
| N N | 632    | .162166     | .139142      | 970200007300          | 970200243300            | 970200237400   |
|     | 832    | .188192     | .165168      | 970200008300          | 970200245300            | 970200238400   |
|     | 032    | .216220     | .191194      | 970200009300          | 970200246300            | 970200239400   |
|     | 0420   | .295300     | .250253      | 970200010300          | 970200249300            | 970200496400   |

|     | Thread | Anvil Dimen | sions (mm) | Anvil Part No.          | Anvil Part No.               | Punch          |
|-----|--------|-------------|------------|-------------------------|------------------------------|----------------|
|     | Code   | A + 0.1     | C + 0.08   | For Sheets<br>> 0.76 mm | For Sheets<br>0.51 - 0.75 mm | Part<br>Number |
| RIC | M3     | 3.6         | 3.03       | 970200229300            | 970200242300                 | 970200236400   |
| H   | M3.5   | 4.1         | 3.53       | 970200007300            | 970200243300                 | 970200237400   |
| Σ   | M4     | 4.6         | 4.03       | 970200019300            | 970200244300                 | 970200238400   |
|     | M5     | 5.6         | 5.03       | 970200020300            | 970200247300                 | 970200239400   |
|     | M6     | 6.6         | 6.03       | 970200230300            | 970200248300                 | 970200496400   |

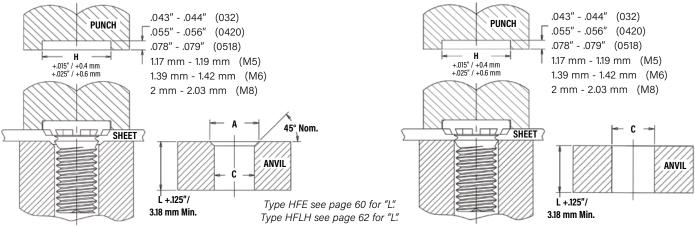
## INSTALLATION - HFH™/HFHB™/HFHS™ STUDS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert stud through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force on the punch sufficient only to embed the ribs on the head of the stud into the sheet. The standard punch design provides clearance for the stud head and reduces chances of over squeezing.



|       | Thread | Anvil Dimensions (in.) | Anvil Part   | Punch Part   |  |
|-------|--------|------------------------|--------------|--------------|--|
| Q     | Code   | С                      | Number       | Number       |  |
| FE    | 032    | .191 – .194            | 970200009300 | 970200311400 |  |
| I N O | 0420   | .250253                | 970200010300 | 970200312400 |  |
| П     | 0518   | .31253155              | 970200011300 | 970200313400 |  |
|       | 0616   | .375378                | 970200004300 | 970200314400 |  |

|   | Thread | Anvil Dimensions (mm) | Anvil Part   | Punch Part<br>Number |  |
|---|--------|-----------------------|--------------|----------------------|--|
| ပ | Code   | C+0.08                | Number       |                      |  |
| = | M5     | 5.03                  | 970200020300 | 970200311400         |  |
| ш | M6     | 6.03                  | 970200230300 | 970200312400         |  |
| Σ | M8     | 8.03                  | 970200231300 | 970200313400         |  |
|   | M10    | 10.03                 | 970200402300 | 970200491400         |  |


#### INSTALLATION - HFE™/THFE™/HFLH™ STUDS

## HFE™/HFLH™ STUDS

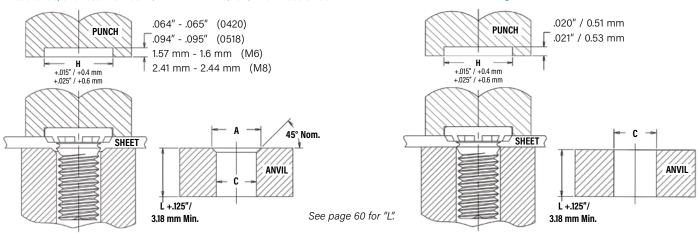
- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert stud through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force on the punch sufficient only to embed the ribs on the head of the stud into the sheet.

Tooling for sheet thicknesses less than .060" / 1.51 mm with #10 / M5 and 1/4" / M6 thread sizes and less than .075" / 1.9 mm with 5/16" / M8 threads.

Tooling for sheet thicknesses .060'' / 1.51 mm and greater with #10 / M5 and 1/4" / M6 thread sizes and .075'' / 1.9 mm and greater with 5/16" / M8 threads.



#### **PEMSERTER®** Installation Tooling


|     | Thread | Anvil Dimensions (in.) |           | Anvil Part No.        | Anvil Part No.          | Punch          |
|-----|--------|------------------------|-----------|-----------------------|-------------------------|----------------|
| 0   | Code   | A                      | С         | For Sheets<br>> .060" | For Sheets<br>.040"060" | Part<br>Number |
| #   | 032    | .216220                | .191194   | 970200009300          | 970200246300            | 8003707        |
| N H | 0420   | .295300                | .250253   | 970200010300          | 8003702                 | 8003708        |
| Π   |        |                        |           | For Sheets > .075"    | For Sheets<br>.060"075" |                |
|     | 0518   | .334338                | .31253155 | 970200011300          | 8003703                 | 8003709        |

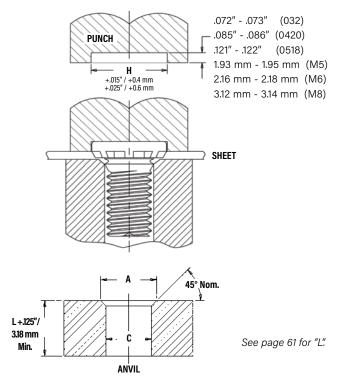
|     | Thread | Anvil Dimen | sions (mm) | Anvil Part No.          | Anvil Part No.               | Punch          |
|-----|--------|-------------|------------|-------------------------|------------------------------|----------------|
| ၁   | Code   | A + 0.1     | C + 0.08   | For Sheets<br>> 1.51 mm | For Sheets<br>1 mm - 1.51 mm | Part<br>Number |
| R C | M5     | 5.6         | 5.03       | 970200020300            | 8003704                      | 8003710        |
| ET  | M6     | 6.6         | 6.03       | 970200230300            | 8003705                      | 8003711        |
| Σ   |        |             |            | For Sheets<br>> 1.9 mm  | For Sheets<br>1.5 - 1.9 mm   |                |
|     | M8     | 8.6         | 8.03       | 970200231300            | 8003706                      | 8003712        |

## **THFE™ STUDS**

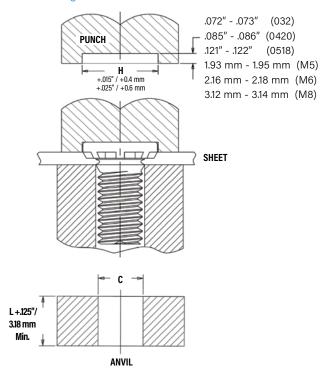
Tooling for sheet thicknesses less than .052" / 1.31 mm with 1/4" / M6 thread sizes, and less than .067" / 1.71 mm with 5/16" / M8 thread sizes.

Tooling for sheet thicknesses .052'' / 1.31 mm and greater with 1/4'' / M6 and .067'' / 1.71 mm thread sizes and greater with 5/16'' / M8 threads.




| E D | Thread<br>Code | Anvil Dimensions (in.) |           | Anvil Part No.        | Anvil Part No.          | Punch          |
|-----|----------------|------------------------|-----------|-----------------------|-------------------------|----------------|
|     |                | A                      | С         | For Sheets<br>> .051" | For Sheets<br>.031"051" | Part<br>Number |
| Ξ   | 0420           | .302306                | .250253   | 970200010300          | 8019886                 | 8019890        |
| N N |                |                        |           | For Sheets > .066"    | For Sheets<br>.031"066" |                |
|     | 0518           | .374378                | .31253155 | 970200011300          | 8019887                 | 8019891        |

| 01  | Thread<br>Code | Anvil Dimensions (mm) |          | Anvil Part No.         | Anvil Part No.             | Punch          |
|-----|----------------|-----------------------|----------|------------------------|----------------------------|----------------|
|     |                | A + 0.1               | C + 0.08 | For Sheets<br>> 1.3 mm | For Sheets<br>0.8 - 1.3 mm | Part<br>Number |
| H R | M6             | 7.25                  | 6.03     | 970200230300           | 8019888                    | 8019892        |
| ME  |                |                       |          | For Sheets<br>> 1.7 mm | For Sheets<br>0.8 - 1.7 mm |                |
|     | M8             | 9.55                  | 8.03     | 970200231300           | 8019889                    | 8019893        |


## INSTALLATION - HFG8™/HF109™ STUDS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert stud through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force on the punch sufficient only to embed the ribs on the head of the stud into the sheet. Note that for sheets .060" / 1.51 mm and thicker, the anvil requires only a straight thru hole to accommodate the stud. For sheets less than .060" / 1.51 mm to less than .075" / 1.9 mm, the hole requires a countersink with dimension A at the top to provide for metal flow around the shank of the stud.

Tooling for sheet thicknesses less than .060" / 1.51 mm with #10 / M5 and 1/4" / M6 thread sizes and less than .075" / 1.9 mm with 5/16" / M8 threads.



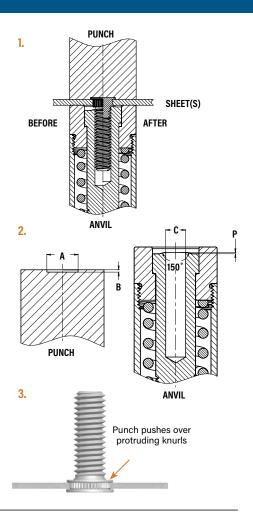
Tooling for sheet thicknesses .060" / 1.51 mm and greater with #10 / M5 and 1/4" / M6 thread sizes and .075" / 1.9 mm and greater with 5/16" / M8 threads.



|     | Thread | Anvil Dimensions (in.) |             | Anvil Part Number | Anvil Part Number | Punch Part |
|-----|--------|------------------------|-------------|-------------------|-------------------|------------|
| E D | Code   | A                      | С           | (Standard Sheet)  | (Thin Sheet)      | Number     |
| Ξ   | 032    | .216220                | .191 – .194 | 970200009300      | 970200246300      | 8014456    |
| N O | 0420   | .273278                | .250253     | 8021609           | 8021613           | 8014458    |
|     | 0518   | .334338                | .31253155   | 8021610           | 8021614           | 8014460    |

| METRIC | Thread<br>Code | Anvil Dimensions (mm) |         | Anvil Part Number | Anvil Part Number | Punch Part |
|--------|----------------|-----------------------|---------|-------------------|-------------------|------------|
|        |                | A +0.1                | C +0.08 | (Standard Sheet)  | (Thin Sheet)      | Number     |
|        | M5             | 5.6                   | 5.03    | 970200020300      | 8003704           | 8014457    |
|        | M6             | 6.6                   | 6.03    | 8021611           | 8021615           | 8014459    |
|        | M8             | 8.6                   | 8.03    | 8021612           | 8021616           | 8014461    |

### INSTALLATION - SGPC™ SWAGING COLLAR STUDS

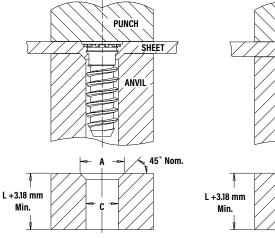

- 1. Prepare properly sized mounting hole in sheet.
- 2. Insert fastener through mounting hole (punch side) as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the punch pushes over the protruding knurls of the stud.

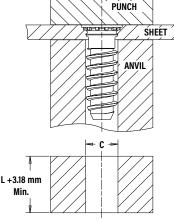
### **PEMSERTER® Installation Tooling**

|    | Thread | Punch Dimensions (in.) |               | Punch          | Anvil Dimen | sions (in.)   | Anvil          |
|----|--------|------------------------|---------------|----------------|-------------|---------------|----------------|
|    | Code   | A<br>+.004000          | B<br>+.000001 | Part<br>Number | C<br>+.001  | P<br>+.000002 | Part<br>Number |
| ED | 256    | .209                   | .019          | 8015111        | .087        | .014          | 8016983        |
| Н  | 440    | .248                   | .022          | 8015112        | .113        | .014          | 8016984        |
| N  | 632    | .276                   | .022          | 8015113        | .139        | .014          | 8016985        |
| Π  | 832    | .299                   | .022          | 8015114        | .165        | .014          | 8016986        |
|    | 032    | .327                   | .022          | 8015115        | .191        | .014          | 8016987        |
|    | 0420   | .386                   | .026          | 8015116        | .251        | .014          | 8016988        |

|     | Thread | Punch Dimensions (mm) |              | Punch          | Anvil Dimen | Anvil      |                |
|-----|--------|-----------------------|--------------|----------------|-------------|------------|----------------|
| ပ   | Code   | A<br>+0.1             | B<br>-0.025  | Part<br>Number | C<br>+0.025 | P<br>-0.05 | Part<br>Number |
| - H | M2.5   | 5.5                   | 0.47 8015117 |                | 2.53        | 0.35       | 8016989        |
| ΕT  | M3     | 6.5                   | 0.57         | 8015118        | 3.03        | 0.35       | 8016990        |
| Σ   | M4     | 7.5                   | 0.57         | 8015119        | 4.03        | 0.35       | 8016991        |
|     | M5     | 8.5                   | 0.57         | 8015120        | 5.03        | 0.35       | 8016992        |
|     | M6     | 9.5                   | 0.67         | 8015121        | 6.03        | 0.35       | 8016993        |

NOTE: For panel design information, go to http://www.pemnet.com/SGPC\_Panel\_Designs.pdf





### **INSTALLATION - FHX™ STUDS**

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert stud through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force to embed the head of the stud flush in the sheet. In most cases, when using sheets 1.51 mm and thicker, the anvil requires only a straight thru hole to accommodate the stud (see illustrations below for details). For sheets less than 1.51 mm, the hole requires a countersink with dimension A at the top to provide for metal flow around the shank of the stud.

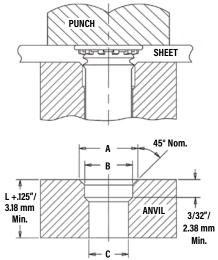
Tooling for sheet thicknesses less than 1.51 mm with 5 mm thread size and less than 2.4 mm for 6 mm thread size.

Tooling for sheet thicknesses 1.51 mm and greater with 5 mm thread size and 2.4 mm and greater for 6 mm thread size.

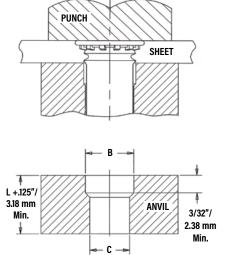




### **PEMSERTER®** Installation Tooling


| Thread | Anvil Dimen                | sions (mm)  | Anvil Part No.<br>For Sheets | Anvil Part No.<br>For Sheets | Punch<br>Part |  |
|--------|----------------------------|-------------|------------------------------|------------------------------|---------------|--|
| Code   | A                          | С           | < 1.51                       | > 1.51 ≥                     | Number        |  |
| Х5     | X5 6.12 - 6.22 5.23 - 5.31 |             | 8021189                      | 8021188                      | 975200048     |  |
|        |                            |             |                              | < 2.4                        | ≥ 2.4         |  |
| Х6     | 7.04 - 7.14                | 6.25 - 6.33 | 8021191                      | 8021190                      | 975200048     |  |

### INSTALLATION - FH™/FHS™/FHA™ PINS


- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert pin through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force to embed the head of the pin flush in the sheet. In most cases, when using sheets .060" / 1.51 mm and thicker, the anvil requires only a straight thru hole to accommodate the pin (see illustrations below for details). For sheets less than .060" / 1.51 mm, the hole requires a countersink with dimension A at the top to provide for metal flow around the shank of the pin.

Tooling for sheet thicknesses less than .060" / 1.52 mm with 073 thru 173 / 3 mm thru 5 mm pin diameter codes and for sheet thicknesses less than .093 / 2.36 mm with 207 thru 223 pin diameter codes.

Tooling for sheet thicknesses greater than .060" / 1.52 mm with 073 thru 173 / 3 mm thru 5 mm pin diameter codes and for sheet thicknesses greater than .093" / 2.36 mm with 207 thru 281 pin diameter codes.



See page 65 for "L".

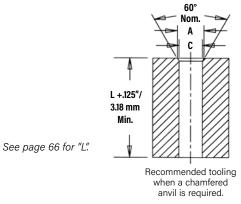


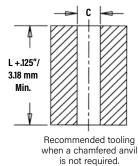
### **PEMSERTER® Installation Tooling**

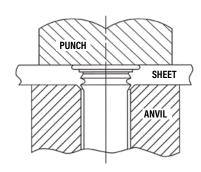
|         | Pin Dia. | Anv        | vil Dimensions (i | in.)    |
|---------|----------|------------|-------------------|---------|
|         | Code     | A +.004000 | B ±.002           | C ±.002 |
|         | 073      | .116       | .089              | .078    |
|         | 084      | .133       | .103              | .089    |
|         | 094      | .162       | .115              | .099    |
|         | 103      | .166       | .122              | .109    |
|         | 106      | .168       | .129              | .111    |
|         | 116      | .191       | .141              | .121    |
| ш       | 120      | .191       | .141              | .125    |
| Ψ.      | 137      | .215       | .161              | .144    |
| UNIFIED | 141      | .216       | .167              | .147    |
|         | 160      | .244       | .193              | .166    |
|         | 167      | .244       | .193              | .172    |
|         | 173      | .250       | .201              | .180    |
|         | 207      | .286       | .240              | .213    |
|         | 215      | .290       | .254              | .221    |
|         | 223      | .298       | .254              | .228    |
|         | 273      | .325       | .316              | .277    |
|         | 281      | .320       | .316              | .290    |

| C     | Pin Dia. | Anvil Dimensions (mm) |         |         |  |  |  |
|-------|----------|-----------------------|---------|---------|--|--|--|
| R I C | Code     | A +0.1                | B ±0.05 | C ±0.05 |  |  |  |
| -     | 3MM      | 4.9                   | 3.61    | 3.1     |  |  |  |
| M     | 4MM      | 5.44                  | 4.19    | 4.1     |  |  |  |
|       | 5MM      | 6.93                  | 5.61    | 5.1     |  |  |  |

### INSTALLATION - TPS™/TP4™/TPXS™ PILOT PINS


- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert pin through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force to embed the head of the pin flush in the sheet.


### **PEMSERTER® Installation Tooling**


|     | Pin Dia. | Test Sheet      | Anvil Dimer | nsions (in.) | Anvil Part | Punch Part |
|-----|----------|-----------------|-------------|--------------|------------|------------|
|     | Code     | Thickness (in.) | A ±.002     | C ±.002      | Number     | Number     |
| E D | 125      | .040060         | .160        | .130         | 8003284    |            |
| Ξ   | 120      | Over .060       | (1)         |              | 8003278    |            |
| IND | 107      | .040065         | .220        | .192         | 8003285    | 975200048  |
| 5   | 187      | Over .065       | (1)         |              | 8003279    | 3/3200040  |
|     | 250      | .040075         | .285        |              | 8003286    |            |
|     | 200      | Over .075       | (1)         | .255         | 8003280    |            |

(1) Chamfered anvil not required.

|          | Pin Dia. | Test Sheet     | Anvil Dimen                | sions (mm) | Anvil Part | Punch Part |  |
|----------|----------|----------------|----------------------------|------------|------------|------------|--|
|          | Code     | Thickness (mm) | kness (mm) A ±0.05 C ±0.05 |            | Number     | Number     |  |
|          | 3MM      | 1 - 1.7        | 3.88                       | 3,11       | 8008096    |            |  |
| ပ        | JIVIIVI  | Over 1.7       | (1)                        | 3.11       | 8008095    |            |  |
| <u>~</u> | 4MM      | 1 - 1.7        | 4.88                       | 4.11       | 8003287    |            |  |
| METRIC   |          | Over 1.7       | (1)                        | 4.11       | 8003281    | 975200048  |  |
| Σ        | 5MM      | 1 - 1.8        | 5.89                       | 5.13       | 8003288    | 373200040  |  |
|          | SIVIIVI  | Over 1.8       | (1)                        |            | 8003282    |            |  |
|          | 6MM      | 1 - 1.9        | 6.89                       | 6.12       | 8003289    |            |  |
|          | OIVIIVI  | Over 1.9       | (1)                        | U.IZ       | 8003283    |            |  |







### **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.

Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.

# PERFORMANCE DATA - FH™/FHS™ FLUSH-HEAD STUDS

|    | Thread<br>Code | Rec. Nut Tightening<br>Torque (in. lbs.) (1) | Туре | Test Sheet<br>Thickness & Material | Sheet<br>Hardness HRB | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Pull Thru<br>(lbs.) |
|----|----------------|----------------------------------------------|------|------------------------------------|-----------------------|------------------------|-------------------|--------------------------|---------------------|
|    |                | 4.4                                          | FH   | .062" Aluminum                     | 29                    | 2000                   | 100               | 5                        | 425                 |
|    | 256            | 2.7                                          | FHS  | .062" Aluminum                     | 29                    | 2000                   | 100               | 4.5                      | 300                 |
|    | 230            | 4.4                                          | FH   | .060" Steel                        | 59                    | 2500                   | 180               | 5                        | 425                 |
|    |                | 2.7                                          | FHS  | .060" Steel                        | 59                    | 2500                   | 180               | 4.5                      | 300                 |
|    |                | 8.7                                          | FH   | .064" Aluminum                     | 29                    | 3800                   | 170               | 10                       | 650                 |
|    | 440            | 5.9                                          | FHS  | .064" Aluminum                     | 29                    | 3200                   | 170               | 8                        | 500                 |
|    |                | 8.7                                          | FH   | .060" Steel                        | 59                    | 4300                   | 275               | 10                       | 650                 |
|    |                | 5.9                                          | FHS  | .060" Steel                        | 59                    | 4700                   | 275               | 8                        | 500                 |
|    |                | 14                                           | FH   | .064" Aluminum                     | 29                    | 3800                   | 180               | 17                       | 850                 |
|    | 632            | 11                                           | FHS  | .064" Aluminum                     | 29                    | 3500                   | 180               | 16                       | 775                 |
| Q  |                | 14                                           | FH   | .060" Steel                        | 59                    | 4700                   | 300               | 20                       | 850                 |
| Ξ. |                | 11                                           | FHS  | .060" Steel                        | 59                    | 5000                   | 300               | 16                       | 775                 |
| 巫  | 832            | 20                                           | FH   | .064" Aluminum                     | 29                    | 4800                   | 220               | 28                       | 1000                |
| 2  |                | 16                                           | FHS  | .064" Aluminum                     | 29                    | 4500                   | 220               | 28                       | 940                 |
| _  |                | 25                                           | FH   | .060" Steel                        | 59                    | 6800                   | 375               | 40                       | 1270                |
|    |                | 19                                           | FHS  | .060" Steel                        | 59                    | 5500                   | 375               | 28                       | 1130                |
|    |                | 28                                           | FH   | .064" Aluminum                     | 29                    | 5500                   | 270               | 30                       | 1220                |
|    | 032/024        | 24                                           | FHS  | .064" Aluminum                     | 29                    | 5500                   | 270               | 30                       | 1220                |
|    | 002,02         | 32                                           | FH   | .060" Steel                        | 59                    | 7500                   | 450               | 60                       | 1410                |
|    |                | 28                                           | FHS  | .060" Steel                        | 59                    | 6800                   | 450               | 50                       | 1410                |
|    |                | 69                                           | FH   | .093" Aluminum                     | 28                    | 6500                   | 310               | 65                       | 2300                |
|    | 0420           | 55                                           | FHS  | .093" Aluminum                     | 28                    | 6500                   | 310               | 65                       | 2100                |
|    | 0.20           | 77                                           | FH   | .088" Steel                        | 46                    | 9500                   | 575               | 100                      | 2550                |
|    |                | 67                                           | FHS  | .088" Steel                        | 46                    | 10000                  | 575               | 100                      | 2550                |
|    |                | 85                                           | FH   | .093" Aluminum                     | 28                    | 6500                   | 430               | 100                      | 2260                |
|    | 0518           | 74                                           | FHS  | .093" Aluminum                     | 28                    | 6700                   | 430               | 100                      | 2260                |
|    | 00.0           | 130                                          | FH   | .093" Steel                        | 46                    | 10000                  | 650               | 175                      | 3475                |
|    |                | 102                                          | FHS  | .093" Steel                        | 46                    | 11200                  | 650               | 175                      | 3120                |

|                                                                                                                                                                      | Thread<br>Code | Rec. Nut Tightening<br>Torque (N-m) (1) | Туре | Test Sheet<br>Thickness & Material | Sheet<br>Hardness HRB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) | Pull Thru<br>(N) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|---------------------|------------------|
|                                                                                                                                                                      |                | 0.78                                    | FH   | 1.6 mm Aluminum                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.9                  | 465            | 1.0                 | 2600             |
|                                                                                                                                                                      | M2.5           | 0.48                                    | FHS  | 1.6 mm Aluminum                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.6                 | 465            | 0.8                 | 1820             |
|                                                                                                                                                                      | IVIZIO         | 0.84                                    | FH   | 1.5 mm Steel                       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.1                 | 740            | 1.0                 | 2800             |
|                                                                                                                                                                      |                | 0.48                                    | FHS  | 1.5 mm Steel                       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.8                 | 740            | 0.8                 | 1820             |
|                                                                                                                                                                      |                | 1.1                                     | FH   | 1.6 mm Aluminum                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.9                 | 600            | 1.7                 | 3150             |
|                                                                                                                                                                      | M3             | 0.81                                    | FHS  | 1.6 mm Aluminum                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.9                 | 600            | 1.3                 | 2570             |
|                                                                                                                                                                      | IVIO           | 1.4                                     | FH   | 1.5 mm Steel                       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.7                 | 820            | 1.7                 | 3840             |
|                                                                                                                                                                      |                | 0.77                                    | FHS  | 1.5 mm Steel                       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.7                 | 820            | 1.3                 | 2440             |
|                                                                                                                                                                      | M3.5           | 1.6                                     | FH   | 1.6 mm Aluminum                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.6                 | 800            | 1.7                 | 3780             |
|                                                                                                                                                                      |                | 1.3                                     | FHS  | 1.6 mm Aluminum                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.6                 | 800            | 1.7                 | 3445             |
| M3.5  1.3  FHS  1.6 mm Aluminum  29  15.6  800  1.6  FH  1.5 mm Steel  59  22.3  1335  1.3  FHS  1.5 mm Steel  59  22.3  1335  2.1  FH  1.6 mm Aluminum  29  20  975 | 2.8            | 3780                                    |      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |                     |                  |
| 2                                                                                                                                                                    |                | 1.3                                     | FHS  | 1.5 mm Steel                       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.3                 | 1335           | 2.0                 | 3445             |
|                                                                                                                                                                      | M4 -           | 2.1                                     | FH   | 1.6 mm Aluminum                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                   | 975            | 2.9                 | 4448             |
| M                                                                                                                                                                    |                | 1.8                                     | FHS  | 1.6 mm Aluminum                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.3                 | 975            | 2.9                 | 4180             |
| _                                                                                                                                                                    |                | 2.7                                     | FH   | 1.5 mm Steel                       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.9                 | 1780           | 4.2                 | 5650             |
|                                                                                                                                                                      |                | 2                                       | FHS  | 1.5 mm Steel                       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.7                 | 1780           | 2.9                 | 4775             |
|                                                                                                                                                                      |                | 3.1                                     | FH   | 1.6 mm Aluminum                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.5                 | 1070           | 3.5                 | 5170             |
|                                                                                                                                                                      | M5             | 2.5                                     | FHS  | 1.6 mm Aluminum                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.5                 | 1070           | 3.5                 | 4760             |
|                                                                                                                                                                      | INIO           | 3.8                                     | FH   | 1.5 mm Steel                       | 29       11.6       465       0.8       1820         59       11.1       740       1.0       2800         59       13.8       740       0.8       1820         29       12.9       600       1.7       3150         29       12.9       600       1.3       2570         59       14.7       820       1.7       3840         59       14.7       820       1.3       2440         29       15.6       800       1.7       3780         29       15.6       800       1.7       3445         59       22.3       1335       2.8       3780         59       22.3       1335       2.8       3780         59       22.3       1335       2.8       3780         59       22.3       1335       2.9       4448         29       20       975       2.9       4448         29       22.3       975       2.9       4180         59       28.9       1780       4.2       5650         59       28.9       1780       4.2       5650         59       24.5       1070 <t< td=""><td>6270</td></t<> | 6270                 |                |                     |                  |
|                                                                                                                                                                      |                | 3.2                                     | FHS  | 1.5 mm Steel                       | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.5                 | 2000           | 6.3                 | 6000             |
|                                                                                                                                                                      |                | 7.3                                     | FH   | 2.4 mm Aluminum                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.9                 | 1660           | 7.3                 | 10200            |
|                                                                                                                                                                      | M6             | 5.7                                     | FHS  | 2.4 mm Aluminum                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.9                 | 1660           | 7.3                 | 9090             |
|                                                                                                                                                                      | IVIO           | 8.1                                     | FH   | 2.2 mm Steel                       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.5                 | 2560           | 11.3                | 11300            |
|                                                                                                                                                                      |                | 6.7                                     | FHS  | 2.2 mm Steel                       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.5                 | 2560           | 10.1                | 10600            |
|                                                                                                                                                                      |                | 10                                      | FH   | 2.4 mm Aluminum                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1910           | 11.3                | 10500            |
|                                                                                                                                                                      | M8             | 8                                       | FHS  | 2.4 mm Aluminum                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                |                     | 9540             |
|                                                                                                                                                                      | 1410           | 15                                      | FH   | 2.4 mm Steel                       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.5                 | 2890           | 19.2                | 15450            |
|                                                                                                                                                                      |                | 11                                      | FHS  | 2.4 mm Steel                       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49.8                 | 2890           | 17.5                | 13630            |

<sup>(1)</sup> Tightening torque shown is a theoretical value calculated to induce a load of 75% of minimum axial yield strength of the stud with an assumed K value or nut factor equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value.

### PERFORMANCE DATA - FHA™ FLUSH-HEAD STUDS

| D   | Thread<br>Code | Rec. Nut Tightening<br>Torque (in. lbs.) <sup>(1)</sup> | Туре | Test Sheet<br>Thickness & Material | Sheet<br>Hardness HR15T | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Pull Thru<br>(lbs.) |
|-----|----------------|---------------------------------------------------------|------|------------------------------------|-------------------------|------------------------|-------------------|--------------------------|---------------------|
| #   | 440            | 3.6                                                     | FHA  | .061" 5052-H34 Aluminum            | 75                      | 2500                   | 155               | 4                        | 270                 |
| 1 5 | 632            | 6.3                                                     | FHA  | .061" 5052-H34 Aluminum            | 75                      | 2600                   | 180               | 8                        | 380                 |
| 5   | 832            | 9.8                                                     | FHA  | .061" 5052-H34 Aluminum            | 73                      | 3200                   | 190               | 15                       | 500                 |
|     | 032            | 14                                                      | FHA  | .061" 5052-H34 Aluminum            | 75                      | 3200                   | 220               | 28                       | 600                 |
|     | 0420           | 32                                                      | FHA  | .062" 5052-H34 Aluminum            | 75                      | 5500                   | 300               | 55                       | 1050                |

| 01  | Thread<br>Code | Rec. Nut Tightening<br>Torque (N-m) <sup>(1)</sup> | Туре | Test Sheet<br>Thickness & Material | Sheet<br>Hardness HR15T | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) | Pull Thru<br>(N) |
|-----|----------------|----------------------------------------------------|------|------------------------------------|-------------------------|----------------------|----------------|---------------------|------------------|
| T.B | M3             | 0.54                                               | FHA  | 1.55 mm 5052-H34 Aluminum          | 74                      | 10.7                 | 575            | 0.5                 | 1500             |
| J E | M4             | 0.96                                               | FHA  | 1.55 mm 5052-H34 Aluminum          | 75                      | 14.3                 | 775            | 1.35                | 2000             |
| _   | M5             | 1.5                                                | FHA  | 1.55 mm 5052-H34 Aluminum          | 75                      | 15.2                 | 900            | 2.6                 | 2500             |
|     | M6             | 3.2                                                | FHA  | 1.6 mm 5052-H34 Aluminum           | 75                      | 24.5                 | 1500           | 5.3                 | 4500             |

### PERFORMANCE DATA - FH4™ STUDS(2)

|       | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque (in. lbs.) <sup>(1)</sup> | Test Sheet<br>Thickness and<br>Material <sup>(3)</sup> | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Pull Thru<br>(lbs.) |
|-------|----------------|------------------------------------------------------------|--------------------------------------------------------|--------------------------|------------------------|-------------------|--------------------------|---------------------|
| I E D | 440            | 11                                                         | .060" Stainless Steel                                  | 87                       | 9000                   | 450               | 16                       | 800                 |
| F     | 632            | 22                                                         | .060" Stainless Steel                                  | 87                       | 9500                   | 540               | 27                       | 1350                |
| 5     | 832            | 35                                                         | .060" Stainless Steel                                  | 86                       | 11200                  | 780               | 58                       | 1800                |
|       | 032            | 51                                                         | .060" Stainless Steel                                  | 86                       | 12000                  | 800               | 95                       | 2250                |
|       | 0420           | 117                                                        | .062" Stainless Steel                                  | 88                       | 23000                  | 1600              | 156                      | 3900                |

| ၁   | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque (N-m) <sup>(1)</sup> | Test Sheet<br>Thickness and<br>Material <sup>(3)</sup> | Sheet<br>Hardness<br>HRB | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) | Pull Thru<br>(N) |
|-----|----------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------|----------------------|----------------|---------------------|------------------|
| 18. | M3             | 1.3                                                   | 1.5 mm Stainless Steel                                 | 87                       | 40                   | 2220           | 1.8                 | 3500             |
| E   | M4             | 3.8                                                   | 1.5 mm Stainless Steel                                 | 86                       | 50                   | 3210           | 6.5                 | 8000             |
|     | M5             | 6                                                     | 1.5 mm Stainless Steel                                 | 86                       | 53                   | 3560           | 10.7                | 10000            |
|     | M6             | 11                                                    | 1.6 mm Stainless Steel                                 | 88                       | 100                  | 4200           | 15.9                | 14900            |

### PERFORMANCE DATA - FHP™ STUDS(2)

| D | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque (in. lbs.) <sup>(1)</sup> | Test Sheet<br>Thickness and<br>Material <sup>(3)</sup> | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Pull Thru<br>(lbs.) |
|---|----------------|------------------------------------------------------------|--------------------------------------------------------|--------------------------|------------------------|-------------------|--------------------------|---------------------|
| # | 440            | 8.1                                                        | .045" Stainless Steel                                  | 86                       | 9000                   | 520               | 10.6                     | 605                 |
| Z | 632            | 16                                                         | .045" Stainless Steel                                  | 86                       | 9500                   | 670               | 19.5                     | 940                 |
|   | 832            | 28                                                         | .045" Stainless Steel                                  | 86                       | 11200                  | 785               | 37.5                     | 1415                |
|   | 032            | 34                                                         | .045" Stainless Steel                                  | 86                       | 12000                  | 800               | 59.5                     | 1500                |

| 211 | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque (N-m) <sup>(1)</sup> | Test Sheet<br>Thickness and<br>Material <sup>(3)</sup> | Sheet<br>Hardness<br>HRB | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) | Pull Thru<br>(N) |
|-----|----------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------|----------------------|----------------|---------------------|------------------|
| ETR | M3             | 1.3                                                   | 2 mm Stainless Steel                                   | 86                       | 40                   | 2500           | 1.6                 | 3500             |
| Σ   | M4             | 2.9                                                   | 1.14 mm Stainless Steel                                | 86                       | 50                   | 3000           | 3.9                 | 6000             |
|     | M5             | 4.4                                                   | 1.14 mm Stainless Steel                                | 86                       | 53                   | 3560           | 7.35                | 7320             |

<sup>(1)</sup> Tightening torque shown is a theoretical value calculated to induce a load of 75% of minimum axial yield strength of the stud with an assumed K value or nut factor equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value.

<sup>(2)</sup> Performance values shown are typical for fasteners properly installed using raised ring tooling in good condition. We recommend replacing installation tooling when the height of the "P" falls out of tolerance (see page 71). Reductions in performance may occur as the height of the protrusion wears. Variations in hole preparation, installation force, and sheet material type, thickness, and hardness will affect both performance and tooling life.

<sup>(3)</sup> Performance may be reduced for studs installed into thicker sheets.

# PERFORMANCE DATA - FHL™/FHLS™ STUDS

|   | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque (in. lbs.) <sup>(1)</sup> | Туре       | Test Sheet<br>Thickness and<br>Material | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Pull Thru<br>(lbs.) | Pull Thru<br>Test Bushing<br>Hole Size (in.) |
|---|----------------|------------------------------------------------------------|------------|-----------------------------------------|--------------------------|------------------------|-------------------|--------------------------|---------------------|----------------------------------------------|
|   | 256            | 2.1                                                        | FHL / FHLS | .047" Aluminum                          | 33                       | 700                    | 55                | 4                        | 230                 | .106                                         |
|   | 230            | 3.8                                                        | FHL / FHLS | .045" Steel                             | 54                       | 1200                   | 85                | 8                        | 425                 | .106                                         |
| 프 | 440            | 3.5                                                        | FHL / FHLS | .047" Aluminum                          | 33                       | 1000                   | 60                | 5                        | 300                 | .132                                         |
| 프 | 440            | 6.8                                                        | FHL / FHLS | .045" Steel                             | 54                       | 1200                   | 105               | 11                       | 580                 | .132                                         |
| Z | 632            | 4.7                                                        | FHL / FHLS | .047" Aluminum                          | 33                       | 1000                   | 65                | 6.5                      | 325                 | .158                                         |
|   | 032            | 9                                                          | FHL / FHLS | .045" Steel                             | 54                       | 1500                   | 110               | 15                       | 650                 | .158                                         |
|   | 832            | 6                                                          | FHL / FHLS | .047" Aluminum                          | 33                       | 1200                   | 80                | 9                        | 350                 | .184                                         |
|   | 032            | 13                                                         | FHL / FHLS | .045" Steel                             | 54                       | 1500                   | 125               | 18                       | 740                 | .184                                         |
|   | 032            | 7.9                                                        | FHL / FHLS | .047" Aluminum                          | 33                       | 2500                   | 115               | 18                       | 395                 | .210                                         |
|   | 032            | 16                                                         | FHL / FHLS | .045" Steel                             | 54                       | 4500                   | 210               | 38                       | 800                 | .210                                         |

|     | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque (N-m) <sup>(1)</sup> | Туре       | Test Sheet<br>Thickness and<br>Material | Sheet<br>Hardness<br>HRB | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) | Pull Thru<br>(N) | Pull Thru<br>Test Bushing<br>Hole Size (mm) |
|-----|----------------|-------------------------------------------------------|------------|-----------------------------------------|--------------------------|----------------------|----------------|---------------------|------------------|---------------------------------------------|
|     | M2.5           | 0.32                                                  | FHL / FHLS | 1.2 mm Aluminum                         | 33                       | 3.1                  | 285            | 0.55                | 1200             | 3                                           |
|     | IVIZ.J         | 0.59                                                  | FHL / FHLS | 1.1 mm Steel                            | 54                       | 5.3                  | 450            | 1.1                 | 2250             | 3                                           |
| 1 = | M3             | 0.41                                                  | FHL / FHLS | 1.2 mm Aluminum                         | 33                       | 4.4                  | 285            | 0.65                | 1300             | 3.5                                         |
| Ë   | IVIO           | 0.79                                                  | FHL / FHLS | 1.1 mm Steel                            | 54                       | 5.3                  | 475            | 1.25                | 2500             | 3.5                                         |
| 2   | M3.5           | 0.51                                                  | FHL / FHLS | 1.2 mm Aluminum                         | 33                       | 4.4                  | 290            | 0.76                | 1400             | 4                                           |
|     | IVIO.O         | 1.03                                                  | FHL / FHLS | 1.1 mm Steel                            | 54                       | 6.6                  | 500            | 1.75                | 2800             | 4                                           |
|     | M4             | 0.65                                                  | FHL / FHLS | 1.2 mm Aluminum                         | 33                       | 5.3                  | 365            | 1.1                 | 1550             | 4.5                                         |
|     | IVIT           | 1.39                                                  | FHL / FHLS | 1.1 mm Steel                            | 54                       | 6.6                  | 550            | 2.1                 | 3300             | 4.5                                         |
|     | M5             | 0.97                                                  | FHL / FHLS | 1.2 mm Aluminum                         | 33                       | 11.1                 | 530            | 2.2                 | 1850             | 5.5                                         |
|     | IVIO           | 1.97                                                  | FHL / FHLS | 1.1 mm Steel                            | 54                       | 20                   | 1000           | 4.4                 | 3750             | 5.5                                         |

# PERFORMANCE DATA - TFH™/TFHS™ NON-FLUSH STUDS

|   | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque (in. lbs.) <sup>(1)</sup> | Туре | Test Sheet<br>Thickness and<br>Material | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.) <sup>(2)</sup> | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Pull Thru<br>(lbs.) | Pull Thru<br>Test Bushing<br>Hole Size (in.) |
|---|----------------|------------------------------------------------------------|------|-----------------------------------------|--------------------------|---------------------------------------|-------------------|--------------------------|---------------------|----------------------------------------------|
|   |                | 9.2                                                        | TFH  | .025" Aluminum                          | 38                       | 1300                                  | 75                | 10                       | 683                 | .132                                         |
|   | 440            | 6.2                                                        | TFHS | .025" Aluminum                          | 38                       | 1200                                  | 75                | 8                        | 527                 | .132                                         |
|   | 440            | 9.2                                                        | TFH  | .022" Steel                             | 57                       | 2800                                  | 85                | 10                       | 684                 | .132                                         |
|   |                | 6.2                                                        | TFHS | .022" Steel                             | 57                       | 1500                                  | 80                | 9                        | 531                 | .132                                         |
|   |                | 13                                                         | TFH  | .025" Aluminum                          | 41                       | 2400                                  | 87                | 9                        | 791                 | .158                                         |
| 壘 | 632            | 11                                                         | TFHS | .025" Aluminum                          | 41                       | 2400                                  | 88                | 12                       | 748                 | .158                                         |
| 느 | 632            | 15                                                         | TFH  | .022" Steel                             | 57                       | 2800                                  | 97                | 14                       | 906                 | .158                                         |
| Z |                | 11                                                         | TFHS | .022" Steel                             | 57                       | 2800                                  | 100               | 16                       | 750                 | .158                                         |
|   |                | 19                                                         | TFH  | .025" Aluminum                          | 41                       | 2100                                  | 94                | 14                       | 943                 | .184                                         |
|   | 832            | 17                                                         | TFHS | .025" Aluminum                          | 41                       | 2200                                  | 94                | 17                       | 963                 | .184                                         |
|   | 032            | 21                                                         | TFH  | .022" Steel                             | 57                       | 3500                                  | 111               | 23                       | 1065                | .184                                         |
|   |                | 19                                                         | TFHS | .022" Steel                             | 57                       | 2700                                  | 113               | 26                       | 1109                | .184                                         |
|   |                | 24                                                         | TFH  | .025" Aluminum                          | 38                       | 2300                                  | 98                | 13                       | 1033                | .210                                         |
|   | 024/032        | 21                                                         | TFHS | .025" Aluminum                          | 38                       | 2500                                  | 101               | 12                       | 1040                | .210                                         |
|   | 024/032        | 28                                                         | TFH  | .022" Steel                             | 57                       | 3900                                  | 121               | 25                       | 1214                | .210                                         |
|   |                | 24                                                         | TFHS | .022" Steel                             | 57                       | 3200                                  | 112               | 23                       | 1184                | .210                                         |

|     | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque (N-m) <sup>(1)</sup> | Туре | Test Sheet<br>Thickness and<br>Material | Sheet<br>Hardness<br>HRB | Installation<br>(kN) <sup>(2)</sup> | Pushout<br>(N) | Torque-out<br>(N-m) | Pull Thru<br>(N) | Pull Thru<br>Test Bushing<br>Hole Size (mm) |
|-----|----------------|-------------------------------------------------------|------|-----------------------------------------|--------------------------|-------------------------------------|----------------|---------------------|------------------|---------------------------------------------|
|     |                | 1.1                                                   | TFH  | 0.65 mm Aluminum                        | 42                       | 5.8                                 | 370            | 0.72                | 3091             | 3.51                                        |
|     | М3             | 0.93                                                  | TFHS | 0.65 mm Aluminum                        | 43                       | 5.8                                 | 255            | 0.19                | 2962             | 3.51                                        |
|     | IVIS           | 1.3                                                   | TFH  | 0.57 mm Steel                           | 57                       | 8                                   | 419            | 1.32                | 3477             | 3.51                                        |
| RIC |                | 0.94                                                  | TFHS | 0.57 mm Steel                           | 57                       | 6.7                                 | 394            | 0.84                | 2971             | 3.51                                        |
| ⊢   |                | 1.9                                                   | TFH  | 0.65 mm Aluminum                        | 42                       | 14.2                                | 396            | 1.29                | 3963             | 4.5                                         |
| M   | M4             | 1.7                                                   | TFHS | 0.65 mm Aluminum                        | 40                       | 9.8                                 | 391            | 1.83                | 4126             | 4.5                                         |
|     | IVI-           | 2.1                                                   | TFH  | 0.57 mm Steel                           | 57                       | 17.8                                | 453            | 1.69                | 4380             | 4.5                                         |
|     |                | 2                                                     | TFHS | 0.57 mm Steel                           | 57                       | 13.4                                | 460            | 2.49                | 4701             | 4.5                                         |
|     |                | 2.8                                                   | TFH  | 0.64 mm Aluminum                        | 42                       | 3.2                                 | 499            | 1.71                | 4720             | 5.51                                        |
|     | M5             | 2.6                                                   | TFHS | 0.64 mm Aluminum                        | 42                       | 3.2                                 | 518            | 2.29                | 4977             | 5.51                                        |
|     | IVIO           | 3.4                                                   | TFH  | 0.56 mm Steel                           | 57                       | 12.1                                | 570            | 2.77                | 5654             | 5.51                                        |
|     |                | 2.8                                                   | TFHS | 0.57 mm Steel                           | 57                       | 12.9                                | 582            | 2.9                 | 5328             | 5.51                                        |

<sup>(1)</sup> Tightening torque shown is a theoretical value calculated to induce a load of 75% of minimum axial yield strength of the stud with an assumed K value or nut factor equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value.

<sup>(2)</sup> Installation controlled by proper cavity depth in punch.

# PERFORMANCE DATA - HFE™ STUDS

| ED | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque<br>(ft. lbs.) <sup>(1)</sup> | Test Sheet Thickness<br>and Material <sup>(2)</sup><br>(in.) | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.) <sup>(3)</sup> | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Tensile<br>Strength<br>(lbs.) <sup>(4)</sup> | Pull Thru<br>(lbs.) | Test Bushing<br>Hole Size<br>For Pull Thru Tests |
|----|----------------|---------------------------------------------------------------|--------------------------------------------------------------|--------------------------|---------------------------------------|-------------------|--------------------------|----------------------------------------------|---------------------|--------------------------------------------------|
| 표  | 032            | 3.6                                                           | .040" Aluminum                                               | 27                       | 7500                                  | 170               | 60                       | 2400                                         | 1900                | .279                                             |
| Ξ  | 032            | 4.2                                                           | .040" Cold-rolled Steel                                      | 67                       | 9500                                  | 300               | 60                       | 2400                                         | 2200                | .213                                             |
|    | 0420           | 8                                                             | .040" Aluminum                                               | 27                       | 8000                                  | 180               | 120                      | 3820                                         | 3200                | .335                                             |
|    | 0420           | 9                                                             | .040" Cold-rolled Steel                                      | 67                       | 13500                                 | 340               | 130                      | 3820                                         | 3600                | .555                                             |
|    | 0510           | 0518 19 .060" Al                                              |                                                              | 22                       | 9000                                  | 275               | 240                      | 6280                                         | 6000                | .407                                             |
|    | 0310           | 20                                                            | .060" Cold-rolled Steel                                      | 65                       | 15500                                 | 575               | 290                      | 6280                                         | 6280                | .407                                             |

| METRIC | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque<br>(N-m) <sup>(1)</sup> | Test Sheet Thickness<br>and Material <sup>(2)</sup><br>(mm) | Sheet<br>Hardness<br>HRB | Installation<br>(kN) <sup>(3)</sup> | Pushout<br>(N) | Torque-out<br>(N-m) | Tensile<br>Strength<br>(kN) <sup>(4)</sup> | Pull Thru<br>(kN) | Test Bushing<br>Hole Size<br>For Pull Thru Tests |
|--------|----------------|----------------------------------------------------------|-------------------------------------------------------------|--------------------------|-------------------------------------|----------------|---------------------|--------------------------------------------|-------------------|--------------------------------------------------|
| _      | M5             | 5.8                                                      | 1 mm Aluminum                                               | 27                       | 37.7                                | 690            | 8.1                 | 12.8                                       | 9.7               | 7.4                                              |
| ш      | IVIS           | 6.4                                                      | 1 mm Cold-rolled Steel                                      | 67                       | 51.1                                | 1350           | 8.1                 | 12.8                                       | 10.6              | 1.4                                              |
| 2      | M6             | 10                                                       | 1 mm Aluminum                                               | 27                       | 39                                  | 750            | 11.8                | 18.1                                       | 14.2              | 8.2                                              |
|        | IVIO           | 11                                                       | 1 mm Cold-rolled Steel                                      | 67                       | 60                                  | 1400           | 14.4                | 18.1                                       | 15.5              | 0.2                                              |
|        | M8             | 24                                                       | 1.5 mm Aluminum                                             | 22                       | 42                                  | 1230           | 23.5                | 32.9                                       | 25                | 10.3                                             |
|        | IVIO           | 26                                                       | 1.5 mm Cold-rolled Steel                                    | 65                       | 71.1                                | 2400           | 33.9                | 32.9                                       | 27.5              | 10.5                                             |

### PERFORMANCE DATA - THFE™ STUDS

| 4 | IED | Thread<br>Code | Rec. Nut<br>Tightening Torque<br>(ft. lbs.) <sup>(1)</sup> | Test Sheet Thickness<br>and Material <sup>(2)</sup><br>(in.) | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.) <sup>(3)</sup> | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Tensile<br>Strength<br>(lbs.) <sup>(4)</sup> | Pull Thru<br>(lbs.) | Test Bushing<br>Hole Size<br>For Pull Thru Tests |
|---|-----|----------------|------------------------------------------------------------|--------------------------------------------------------------|--------------------------|---------------------------------------|-------------------|--------------------------|----------------------------------------------|---------------------|--------------------------------------------------|
| 1 | ב ו | 0420           | 8.1                                                        | .031" Aluminum                                               | 35                       | 8800                                  | 116               | 71                       | 3820                                         | 3249                | .340                                             |
|   | 2 L | 0420           | 8.5                                                        | .031" Cold-rolled Steel                                      | 47                       | 13500                                 | 197               | 116                      | 3820                                         | 3388                | .340                                             |
|   |     | 0518           | 18                                                         | .031" Aluminum                                               | 44                       | 11700                                 | 131               | 103                      | 6280                                         | 5701                | .402                                             |
|   |     | 0310           | 18                                                         | .031" Cold-rolled Steel                                      | 47                       | 16000                                 | 187               | 124                      | 6280                                         | 5772                | .402                                             |

| IETRIC | _        | Thread<br>Code | Rec. Nut<br>Tightening Torque<br>(N-m) <sup>(1)</sup> | Test Sheet Thickness<br>and Material <sup>(2)</sup><br>(mm) | Sheet<br>Hardness<br>HRB | Installation<br>(kN) <sup>(3)</sup> | Pushout<br>(N) | Torque-out<br>(N-m) | Tensile<br>Strength<br>(kN) <sup>(4)</sup> | Pull Thru<br>(kN) | Test Bushing<br>Hole Size<br>For Pull Thru Tests |
|--------|----------|----------------|-------------------------------------------------------|-------------------------------------------------------------|--------------------------|-------------------------------------|----------------|---------------------|--------------------------------------------|-------------------|--------------------------------------------------|
|        | <b>—</b> | M6             | 9                                                     | 0.8 mm Aluminum                                             | 38                       | 39.2                                | 550            | 7.3                 | 18.1                                       | 13                | 8.3                                              |
|        | Σ        | IVIO           | 10                                                    | 0.8 mm Cold-rolled Steel                                    | 47                       | 60.1                                | 886            | 13.4                | 18.1                                       | 14.3              | 0.3                                              |
|        |          | M8             | 27                                                    | 0.8 mm Aluminum                                             | 44                       | 56                                  | 582            | 12.2                | 32.9                                       | 27.8              | 10.3                                             |
|        |          | IVIO           | 27                                                    | 0.8 mm Cold-rolled Steel                                    | 47                       | 71.2                                | 881            | 13.1                | 32.9                                       | 28.1              | 10.3                                             |

<sup>(1)</sup> Tightening torque shown is a theoretical value calculated to induce a load of 75% of minimum axial yield strength of the stud with an assumed K value or nut factor equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value.

<sup>(2)</sup> See tech sheet on our website for performance data of PEM® Types HFE™ and THFE™ studs installed into copper sheets.

<sup>(3)</sup> Installation controlled by proper cavity depth in punch.

<sup>(4)</sup> Head size is adequate to ensure failure in threaded area when tested with industry standard tensile bushing diameter.

### PERFORMANCE DATA - HFH™/HFHS™/HFHB™ STUDS

|   | Thread<br>Code | Туре | Rec. Nut<br>Tightening<br>Torque<br>(ft. lbs.) <sup>(1)</sup> | Test Sheet<br>Thickness and<br>Material | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.) <sup>(2)</sup> | Pushout<br>(Ibs.) | Torque-out<br>(ft. lbs.) | Tensile<br>Strength<br>(Ibs.) |
|---|----------------|------|---------------------------------------------------------------|-----------------------------------------|--------------------------|---------------------------------------|-------------------|--------------------------|-------------------------------|
|   |                | HFH  | 4.6                                                           | .060" Aluminum                          | 15                       | 3000                                  | 180               | 4                        | 2400                          |
|   |                | HFH  | 4.6                                                           | .060" Steel                             | 65                       | 6000                                  | 375               | 5                        | 2400                          |
|   | 032            | HFHS | 2.5                                                           | .050" Aluminum                          | 38                       | 3000                                  | 180               | 4                        | 1500                          |
|   |                | HFHS | 2.5                                                           | .058" Steel                             | 52                       | 4500                                  | 325               | 4                        | 1500                          |
|   |                | HFHB | 1.7                                                           | .061" Copper CDA-110                    | 28                       | 3400                                  | 150               | 2.9                      | 1200                          |
|   |                | HFH  | 9.6                                                           | .060" Aluminum                          | 43                       | 5500                                  | 285               | 11                       | 3820                          |
| Q |                | HFH  | 9.6                                                           | .060" Steel                             | 59                       | 7000                                  | 480               | 11                       | 3820                          |
| 품 | 0420           | HFHS | 5.2                                                           | .064" Aluminum                          | 32                       | 4000                                  | 285               | 8                        | 2385                          |
| Z |                | HFHS | 5.2                                                           | .072" Steel                             | 43                       | 6500                                  | 480               | 8                        | 2385                          |
| 5 |                | HFHB | 3.6                                                           | .061" Copper CDA-110                    | 28                       | 6000                                  | 380               | 5                        | 1908                          |
|   |                | HFH  | 20                                                            | .091" Aluminum                          | 39                       | 8000                                  | 380               | 22                       | 6280                          |
|   |                | HFH  | 20                                                            | .090" Steel                             | 58                       | 10000                                 | 590               | 22                       | 6280                          |
|   | 0518           | HFHS | 11                                                            | .087" Aluminum                          | 41                       | 5500                                  | 380               | 15                       | 3930                          |
|   |                | HFHS | 11                                                            | .099" Steel                             | 44                       | 7500                                  | 590               | 15                       | 3930                          |
|   |                | HFHB | 7                                                             | .126" Copper CDA-110                    | 32                       | 7500                                  | 500               | 11                       | 3140                          |
|   |                | HFH  | 35                                                            | .091" Aluminum                          | 39                       | 12000                                 | 550               | 25                       | 9300                          |
|   |                | HFH  | 35                                                            | .090" Steel                             | 58                       | 16000                                 | 780               | 36                       | 9300                          |
|   | 0616           | HFHS | 19                                                            | .123" Aluminum                          | 44                       | 10000                                 | 560               | 25                       | 5810                          |
|   |                | HFHS | 19                                                            | .099" Steel                             | 44                       | 13000                                 | 780               | 25                       | 5810                          |
|   |                | HFHB | 13                                                            | .126" Copper CDA-110                    | 32                       | 12000                                 | 560               | 18                       | 4650                          |

|    | Thread<br>Code | Туре | Rec. Nut<br>Tightening<br>Torque<br>(N-m) <sup>(1)</sup> | Test Sheet<br>Thickness and<br>Material | Sheet<br>Hardness<br>HRB | Installation<br>(kN) <sup>(2)</sup> | Pushout<br>(N) | Torque-out<br>(N-m) | Tensile<br>Strength<br>(kN) |
|----|----------------|------|----------------------------------------------------------|-----------------------------------------|--------------------------|-------------------------------------|----------------|---------------------|-----------------------------|
|    |                | HFH  | 7.7                                                      | 1.5 mm Aluminum                         | 15                       | 13                                  | 800            | 5.4                 | 12.8                        |
|    |                | HFH  | 7.7                                                      | 1.5 mm Steel                            | 65                       | 26                                  | 1500           | 7.6                 | 12.8                        |
|    | M5             | HFHS | 3.8                                                      | 1.62 mm Aluminum                        | 35                       | 12.4                                | 800            | 5.4                 | 7.3                         |
|    |                | HFHS | 3.8                                                      | 1.47 mm Steel                           | 54                       | 21.7                                | 1500           | 6.4                 | 7.3                         |
|    |                | HFHB | 2.7                                                      | 1.5 mm Copper CDA-110                   | 28                       | 15.6                                | 1115           | 3.4                 | 5.9                         |
|    |                | HFH  | 13                                                       | 1.5 mm Aluminum                         | 43                       | 29                                  | 1270           | 14                  | 18.1                        |
| ပ  | M6             | HFH  | 13                                                       | 1.5 mm Steel                            | 59                       | 33                                  | 1750           | 14                  | 18.1                        |
| -  |                | HFHS | 6.5                                                      | 1.62 mm Aluminum                        | 35                       | 15.4                                | 1270           | 11                  | 10.3                        |
| ΕŢ |                | HFHS | 6.5                                                      | 1.6 mm Steel                            | 45                       | 24.6                                | 1750           | 11                  | 10.3                        |
| Σ  |                | HFHB | 4.5                                                      | 1.5 mm Copper CDA-110                   | 28                       | 25.3                                | 1600           | 6.7                 | 8.3                         |
|    |                | HFH  | 32                                                       | 2.3 mm Aluminum                         | 39                       | 35.6                                | 1700           | 30                  | 32.9                        |
|    |                | HFH  | 32                                                       | 2.3 mm Steel                            | 58                       | 44.5                                | 2200           | 30                  | 32.9                        |
|    | M8             | HFHS | 16                                                       | 2.23 mm Aluminum                        | 44                       | 24.4                                | 1700           | 20                  | 18.8                        |
|    |                | HFHS | 16                                                       | 2.48 mm Steel                           | 43                       | 37.8                                | 2100           | 20                  | 18.8                        |
|    |                | HFHB | 11                                                       | 3.2 mm Copper CDA-110                   | 32                       | 33                                  | 2250           | 15.3                | 15.1                        |
|    |                | HFH  | 63                                                       | 2.3 mm Aluminum                         | 39                       | 53.3                                | 2445           | 36                  | 52.2                        |
|    |                | HFH  | 63                                                       | 2.3 mm Steel                            | 58                       | 71.2                                | 3470           | 49                  | 52.2                        |
|    | M10            | HFHS | 31                                                       | 2.3 mm Aluminum                         | 44                       | 44.4                                | 2445           | 36                  | 29.9                        |
|    |                | HFHS | 31                                                       | 2.3 mm Steel                            | 44                       | 57.7                                | 3470           | 36                  | 29.9                        |
|    |                | HFHB | 22                                                       | 3.2 mm Copper CDA-110                   | 32                       | 53.3                                | 2500           | 25                  | 24                          |

### PERFORMANCE DATA - HFG8™/HF109™ HIGH TENSILE STRENGTH STUDS

| FIED | Thread<br>Code | Rec. Nut<br>Tightening<br>Torque<br>(ft. lbs.) | Tensile<br>Strength<br>(lbs.) (3) | Test Sheet<br>Material | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.) (2) | Pushout<br>(lbs.) | Torque-out<br>(ft. lbs.) | Test Sheet<br>Material  | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.) (2) | Pushout<br>(lbs.) | Torque-out<br>(ft. lbs.) |
|------|----------------|------------------------------------------------|-----------------------------------|------------------------|--------------------------|----------------------------|-------------------|--------------------------|-------------------------|--------------------------|----------------------------|-------------------|--------------------------|
| Ξ    | 032            | 6.4                                            | 3000                              | .047" HSLA Steel       | 85.5                     | 14000                      | 483               | 6.2                      | .040" Cold-rolled Steel | 45.0                     | 9900                       | 249               | 5.9                      |
| _    | 0420           | 13                                             | 4750                              | .047" HSLA Steel       | 85.7                     | 21400                      | 592               | 11.5                     | .040" Cold-rolled Steel | 45.0                     | 14100                      | 248               | 11.5                     |
|      | 0518           | 28                                             | 7850                              | .060" HSLA Steel       | 84.9                     | 32600                      | 667               | 25.6                     | .060" Cold-rolled Steel | 55.2                     | 19100                      | 447               | 25.2                     |

| . B.I.C | Code | Rec. Nut<br>Tightening<br>Torque<br>(N-m) | Tensile<br>Strength<br>(kN) <sup>(3)</sup> | Test Sheet<br>Material | Sheet<br>Hardness<br>HRB | Installation<br>(kN) <sup>(2)</sup> | Pushout<br>(N) | Torque-out<br>(N-m) | Test Sheet<br>Material   | Sheet<br>Hardness<br>HRB | Installation<br>(kN) <sup>(2)</sup> | Pushout<br>(N) | Torque-out<br>(N-m) |
|---------|------|-------------------------------------------|--------------------------------------------|------------------------|--------------------------|-------------------------------------|----------------|---------------------|--------------------------|--------------------------|-------------------------------------|----------------|---------------------|
| A F     | M5   | 10                                        | 14.8                                       | 1.2 mm HSLA Steel      | 86.1                     | 60.1                                | 2084           | 9                   | 1 mm Cold-rolled Steel   | 45.3                     | 43.2                                | 978            | 9                   |
| 1       | M6   | 17                                        | 20.9                                       | 1.2 mm HSLA Steel      | 85.6                     | 90                                  | 2454           | 15.6                | 1 mm Cold-rolled Steel   | 45.5                     | 60                                  | 1072           | 14.4                |
|         | M8   | 41                                        | 38.1                                       | 1.5 mm HSLA Steel      | 84                       | 145                                 | 3026           | 38.4                | 1.5 mm Cold-rolled Steel | 55                       | 85                                  | 1992           | 37.7                |

<sup>(1)</sup> Tightening torque shown is a theoretical value calculated to induce a load of 75% of minimum axial yield strength of the stud with an assumed K value or nut factor equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value.

<sup>(2)</sup> Installation controlled by proper cavity depth in punch.

<sup>(3)</sup> Head size is adequate to ensure failure in threaded area when tested with industry standard tensile bushing diameter.

### PERFORMANCE DATA - HFLH™ STUDS

| IED | Thread<br>Code | Rec. Nut<br>Tightening Torque<br>(ft. lbs.) <sup>(1)</sup> | Test Sheet Thickness<br>and Material<br>(in.) | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.) (2) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Tensile<br>Strength<br>(lbs.) <sup>(3)</sup> | Pull Thru<br>(lbs.) | Test Bushing<br>Hole Size For<br>Pull Thru Tests |
|-----|----------------|------------------------------------------------------------|-----------------------------------------------|--------------------------|----------------------------|-------------------|--------------------------|----------------------------------------------|---------------------|--------------------------------------------------|
| E N | 032            | 4.2                                                        | .040" HC500LA                                 | 89                       | 9500                       | 300               | 60                       | 2400                                         | 2200                | .279                                             |
| 5   | 0420           | 10                                                         | .040" HC500LA                                 | 89                       | 13500                      | 340               | 130                      | 3820                                         | 3600                | .335                                             |
|     | 0518           | 23                                                         | .060" HC500LA                                 | 91                       | 16000                      | 575               | 290                      | 6280                                         | 6280                | .407                                             |

| 211 | Thread<br>Code | Rec. Nut<br>Tightening Torque<br>(N-m) <sup>(1)</sup> | Test Sheet Thickness<br>and Material<br>(mm) | Sheet<br>Hardness<br>HRB | Installation<br>(kN) <sup>(2)</sup> | Pushout<br>(N) | Torque-out<br>(N-m) | Tensile<br>Strength<br>(kN) <sup>(3)</sup> | Pull Thru<br>(kN) | Test Bushing<br>Hole Size For<br>Pull Thru Tests |
|-----|----------------|-------------------------------------------------------|----------------------------------------------|--------------------------|-------------------------------------|----------------|---------------------|--------------------------------------------|-------------------|--------------------------------------------------|
| ETR | M5             | 6.4                                                   | 1 mm HC500LA                                 | 89                       | 51.1                                | 1350           | 8.1                 | 12.8                                       | 10.6              | 7.4                                              |
| Σ   | M6             | 11                                                    | 1 mm HC500LA                                 | 89                       | 60                                  | 1400           | 14.4                | 18.1                                       | 15.5              | 8.2                                              |
|     | M8             | 26                                                    | 1.5 mm HC500LA                               | 91                       | 71.1                                | 2400           | 33.9                | 32.9                                       | 27.5              | 10.3                                             |

### PERFORMANCE DATA - SGPC™ SWAGING COLLAR STUDS

|     |        |                                     |                        | Test Sheet M                                     | laterial                 |                     |  |  |  |  |
|-----|--------|-------------------------------------|------------------------|--------------------------------------------------|--------------------------|---------------------|--|--|--|--|
|     | Thread | Rec. Nut<br>Tightening              | Single sl              | Single sheet of .039" 300 Series Stainless Steel |                          |                     |  |  |  |  |
| D   | Code   | Torque<br>(in. lbs.) <sup>(1)</sup> | Installation<br>(lbs.) | Pushout<br>(lbs.)                                | Torque-out<br>(in. lbs.) | Pull-thru<br>(lbs.) |  |  |  |  |
| Ξ   | 256    | 3.7                                 | 4000                   | 425                                              | 5.2                      | 415                 |  |  |  |  |
| H   | 440    | 6                                   | 5000                   | 450                                              | 8                        | 512                 |  |  |  |  |
| INO | 632    | 12                                  | 5500                   | 460                                              | 15.8                     | 811                 |  |  |  |  |
|     | 832    | 20                                  | 6500                   | 480                                              | 29.3                     | 1133                |  |  |  |  |
|     | 032    | 25                                  | 7300                   | 545                                              | 42.8                     | 1273                |  |  |  |  |
|     | 0420   | 45                                  | 10000                  | 565                                              | 76.7                     | 1721                |  |  |  |  |

|         |        |                                | Test Sheet Material                             |                |                     |                  |  |  |  |  |
|---------|--------|--------------------------------|-------------------------------------------------|----------------|---------------------|------------------|--|--|--|--|
|         | Thread | Rec. Nut<br>Tightening         | Single sheet of 1 mm 300 Series Stainless Steel |                |                     |                  |  |  |  |  |
| <u></u> | Code   | Torque<br>(N-m) <sup>(1)</sup> | Installation<br>(kN)                            | Pushout<br>(N) | Torque-out<br>(N-m) | Pull-thru<br>(N) |  |  |  |  |
| H H     | M2.5   | 0.67                           | 20.1                                            | 2546           | 0.86                | 2561             |  |  |  |  |
| Σ       | М3     | 0.9                            | 21.8                                            | 2051           | 1.35                | 2851             |  |  |  |  |
| =       | M4     | 2.5                            | 28.5                                            | 2396           | 2.66                | 4000             |  |  |  |  |
|         | M5     | 3.3                            | 35.6                                            | 3200           | 5.96                | 4284             |  |  |  |  |
|         | M6     | 3.3                            | 42.3                                            | 3262           | 9.19                | 6311             |  |  |  |  |

### PERFORMANCE DATA - FHX™ STUDS WITH X-PRESS™ THREAD PROFILE

| Threa<br>Code | Test Sheet Material<br>(4)     | Installation<br>kN | Pushout<br>N | Torque-out<br>N-m |
|---------------|--------------------------------|--------------------|--------------|-------------------|
| X5            | 1.1 mm Steel HRB 58 / HB 104   | 24.9               | 1519         | 4.7               |
| ٨٥            | 1.2 mm Aluminum HRB 44 / HB 66 | 19.2               | 1070         | 3.2               |
| Х6            | 1.6 mm Steel HRB 58 / HB 104   | 35.6               | 2964         | 13.3              |
| Λυ            | 1.6 mm Aluminum HRB 44 / HB 66 | 29.4               | 1623         | 7                 |

<sup>(1)</sup> Tightening torque shown is a theoretical value calculated to induce a load of 75% of minimum axial yield strength of the stud with an assumed K value or nut factor equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value.

<sup>(2)</sup> Installation controlled by proper cavity depth in punch.

<sup>(3)</sup> Head size is adequate to ensure failure in threaded area when tested with industry standard tensile bushing diameter.

<sup>(4)</sup> HRB - Hardness Rockwell "B" Scale. HB - Hardness Brinell.

# PERFORMANCE DATA - TPS™ PILOT PINS

|   | Pin<br>Dia. Code | Test Sheet<br>Material | Sheet<br>Hardness HRB | Installation<br>(lbs.) | Pushout<br>(lbs.) |
|---|------------------|------------------------|-----------------------|------------------------|-------------------|
|   | 105              | Aluminum               | 20                    | 4500                   | 150               |
| 1 | 125              | Steel                  | 62                    | 6500                   | 250               |
| ı | 107              | Aluminum               | 18                    | 6500                   | 230               |
| = | 187              | Steel                  | 60                    | 8000                   | 400               |
|   | 250              | Aluminum               | 18                    | 7000                   | 270               |
|   | 250              | Steel                  | 62                    | 9000                   | 500               |

|          | Pin<br>Dia. Code | Test Sheet<br>Material | Sheet<br>Hardness HRB | Installation<br>(kN) | Pushout<br>(kN) |
|----------|------------------|------------------------|-----------------------|----------------------|-----------------|
|          | 3MM              | Aluminum               | 22                    | 12                   | 0.56            |
| ی        | SIVIW            | Steel                  | 65                    | 22                   | 0.98            |
| <u> </u> | ANAM             | Aluminum               | 19                    | 22                   | 0.89            |
| ET       | 4MM              | Steel                  | 66                    | 26.4                 | 1.54            |
| Σ        | EMM              | Aluminum               | 18                    | 28.6                 | 1.01            |
|          | 5MM              | Steel                  | 60                    | 35.2                 | 1.76            |
|          | 6MM              | Aluminum               | 18                    | 30.8                 | 1.1             |
|          | OMIM             | Steel                  | 62                    | 39.6                 | 2.1             |

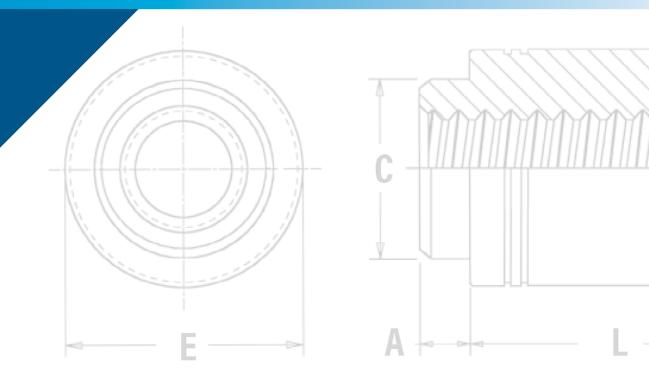
# PERFORMANCE DATA - TP4™ PILOT PINS

| E D    | Pin<br>Dia. Code | Test Sheet<br>Material     | Installation<br>(Ibs.) | Pushout<br>(lbs.) |
|--------|------------------|----------------------------|------------------------|-------------------|
| Ξ      | 125              | 300 Series Stainless Steel | 8000                   | 350               |
| UNIFIE | 187              | 300 Series Stainless Steel | 12000                  | 570               |
|        | 250              | 300 Series Stainless Steel | 14000                  | 650               |

|     | Pin<br>Dia. Code | Test Sheet<br>Material     | Installation<br>(kN) | Pushout<br>(N) |
|-----|------------------|----------------------------|----------------------|----------------|
| RIC | 3MM              | 300 Series Stainless Steel | 35                   | 1556           |
| ET  | 4MM              | 300 Series Stainless Steel | 45                   | 2335           |
| Σ   | 5MM              | 300 Series Stainless Steel | 54                   | 2535           |
|     | 6MM              | 300 Series Stainless Steel | 60                   | 2891           |

# PERFORMANCE DATA - TPXS™ PILOT PINS

| RIC | Pin<br>Dia. Code | Test Sheet<br>Material | Sheet<br>Hardness HRB | Installation<br>(kN) | Pushout<br>(kN) |
|-----|------------------|------------------------|-----------------------|----------------------|-----------------|
| ET  | 3MM              | Aluminum               | 22                    | 12                   | 0.56            |
| Σ   | SIVIIVI          | Steel                  | 65                    | 22                   | 0.98            |








PEM® brand fasteners that utilize, surface-mount, broaching and flaring technology for use with PC boards





No matter how sophisticated or advanced, electronic components must be attached reliably and securely if they are to deliver optimum performance. We offer several fastener products for use with PC boards to satisfy component-to-board, board-to-board, and board-to-chassis attachment needs.

ReelFast® surface mount fasteners mount on PC boards in the same manner and at the same time as other surface mount components prior to the automated reflow solder process. The fasteners simply become another board component. This alleviates concerns about potential damage to PC boards due to improper secondary installation operations. The fasteners are provided on tape and reel compatible with existing SMT automated installation equipment. The benefits of using ReelFast® SMT fasteners are: faster assembly; reduced scrap; reduced handling; and reduced risk of board damage.

Broaching fasteners can also offer practical alternatives to "loose" hardware. A broaching fastener is a knurled-shank fastening device that can be pressed into a hole to provide a permanent, strong, threaded or unthreaded attachment point in PC boards. They can also be used in aluminum, acrylic, casting and polycarbonate components. Specially formed axial grooves around the shank of the fastener "broach" or cut into the material, creating a firm, interference-type fit resistant to rotation. In PC boards, broaching fasteners are recommended for use in non-plated holes.

Broach/flare-mount standoffs (KFB3™) offer a combined broach/flare feature for even greater pullout performance in PC board materials.

**STUDS** 

### **NUTS AND SPACERS/STANDOFFS**

SMTSO™/SMTSOB™ - ReelFast® surface mount nuts and standoffs are available threaded and unthreaded - PAGE 86

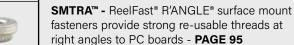


**PFK™** - Broaching panel fastener assemblies for mounting on PC boards - **PAGE 94** 



SMTSS™ - ReelFast® SNAP-TOP® standoffs feature a spring action to hold PC board securely without screws or threaded hardware - PAGE 87




**KFH™ -** Threaded broaching studs for use as solderable connectors or as permanently mounted studs on PC boards - **PAGE 94** 



SMTSK™ - NEW ReelFast® KEYHOLE® standoffs eliminate the need for attaching screws - PAGE 88



**RIGHT ANGLE FASTENERS** 





**KFE™/KFSE™ -** Broaching standoffs, threaded or

unthreaded for stacking or spacing - PAGE 90

for mounting on PC boards - PAGE 89

KF2™/KFS2™ - Broaching nuts, internally threaded



SHEET JOINING FASTENERS

**KFB3™ -** Broach/flare-mount standoffs with greater pullout performance - **PAGE 90** 



**SFK™** - SpotFast® clinch/broach mount fasteners for joining metal to PCB/plastic panels - **PAGE 96** 



**KSSB™ -** Broaching, SNAP-TOP® standoffs feature a spring action to hold PC board securely without screws or threaded hardware - **PAGE 91** 



MATERIAL AND FINISH SPECIFICATIONS - PAGE 97

**CAPTIVE PANEL SCREWS** 

screws - PAGE 93

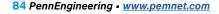


INSTALLATION -PAGES 98-100

PAGES 101-102

PERFORMANCE DATA -

SMTPF™ - ReelFast® surface mount captive panel


loaded captive panel screws - PAGE 92

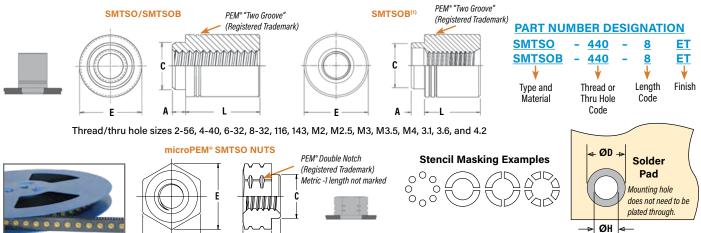
SMTPFLSM™ - ReelFast® surface mount spring-



OTHER FASTENERS FOR USE WITH PC BOARDS -

**PAGE 103** 




# **QUICK REFERENCE CHART**

|                  |             | ı      | Mountir          | ng Type          | e s               |     |                     |                    | Prima | ary Use          |                 |                              |                              |
|------------------|-------------|--------|------------------|------------------|-------------------|-----|---------------------|--------------------|-------|------------------|-----------------|------------------------------|------------------------------|
| PEM°<br>Fastener | Page<br>No. | Broach | Broach/<br>Flare | Surface<br>Mount | Clinch/<br>Broach | Nut | Spacer/<br>Standoff | Snap<br>Attachment | Stud  | Captive<br>Screw | Color<br>Coding | Right<br>Angle<br>Attachment | Sheet to<br>Sheet<br>Joining |
| SMTSO/SMTSOB     | 86          |        |                  |                  |                   | •   |                     |                    |       |                  |                 |                              |                              |
| SMTSS            | 87          |        |                  |                  |                   |     | •                   | •                  |       |                  |                 |                              |                              |
| SMTSK            | 88          |        |                  |                  |                   |     | •                   |                    |       |                  |                 |                              |                              |
| KF2/KFS2         | 89          | -      |                  |                  |                   | •   |                     |                    |       |                  |                 |                              |                              |
| KFE/KFSE         | 90          |        |                  |                  |                   |     | •                   |                    |       |                  |                 |                              |                              |
| KFB3             | 90          |        | •                |                  |                   |     | •                   |                    |       |                  |                 |                              |                              |
| KSSB             | 91          |        |                  |                  |                   |     | •                   | •                  |       |                  |                 |                              |                              |
| SMTPFLSM         | 92          |        |                  |                  |                   |     |                     |                    |       | •                |                 |                              |                              |
| SMTPF            | 93          |        |                  |                  |                   |     |                     |                    |       | •                | •               |                              |                              |
| PFK              | 94          |        |                  |                  |                   |     |                     |                    |       |                  |                 |                              |                              |
| KFH              | 94          |        |                  |                  |                   |     |                     |                    | •     |                  |                 |                              |                              |
| SMTRA            | 95          |        |                  |                  |                   |     |                     |                    |       |                  |                 | -                            |                              |
| SFK              | 98          |        |                  |                  | •                 |     |                     |                    |       |                  |                 |                              | •                            |





### SMTSO™/SMTSOB™ ReelFast® SURFACE MOUNT NUTS AND SPACERS/STANDOFFS



Thread sizes 080, S1, S1.2, S1.4 and M1.6

NOTE: Standoffs are available on special order without a pilot that do not require a thru hole for installation. Contact <a href="techsupport@pemnet.com">techsupport@pemnet.com</a> for more information

### All dimensions are in inches.

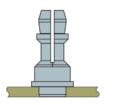
|       | Thread             | Thru<br>Hole |       | pe<br>Material | Thread or<br>Thru Hole |      | ength Cod |       |                   | Min.<br>Sheet | A    | С    | E    |       | Н    | ØH Hole Size<br>In Sheet | ØD<br>Min. Solder |
|-------|--------------------|--------------|-------|----------------|------------------------|------|-----------|-------|-------------------|---------------|------|------|------|-------|------|--------------------------|-------------------|
|       | Size               | +.004003     | Steel | Brass          | Code                   | .062 | .125      | .250  | .375              | Thickness     | Max. | Max. | Ref. | ±.005 | Nom. | +.003000                 | Pad               |
|       | .060-80<br>(#0-80) | -            | SMTS0 | -              | 080                    | 2    | 4         | -     | -                 | .020          | .019 | .095 | .144 |       | .125 | .098                     | .165              |
| I E D | .086-56<br>(#2-56) | -            | SMTS0 | SMTSOB         | 256                    | 2    | 4         | 8 (1) | 12 <sup>(1)</sup> | .060          | .060 | .142 | -    | .219  | -    | .147                     | .244              |
| H N   | .112-40<br>(#4-40) | -            | SMTS0 | SMTSOB         | 440                    | 2    | 4         | 8 (1) | 12 (1)            | .060          | .060 | .161 | -    | .219  | -    | .166                     | .244              |
| Π     | .138-32<br>(#6-32) | -            | SMTS0 | SMTSOB         | 632                    | 2    | 4         | 8 (1) | 12 (1)            | .060          | .060 | .208 | -    | .281  | -    | .213                     | .306              |
|       | .164-32<br>(#8-32) | -            | SMTS0 | SMTSOB         | 832                    | 2    | 4         | 8 (1) | 12 <sup>(1)</sup> | .060          | .060 | .245 | -    | .344  | -    | .250                     | .369              |
|       | _                  | .116         | SMTS0 | SMTSOB         | 116                    | 2    | 4         | 8     | 12                | .060          | .060 | .161 | -    | .219  | _    | .166                     | .244              |
|       | -                  | .143         | SMTS0 | SMTSOB         | 143                    | 2    | 4         | 8     | 12                | .060          | .060 | .208 | -    | .281  | -    | .213                     | .306              |

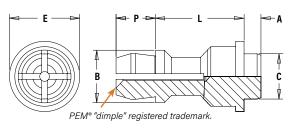
### All dimensions are in millimeters.

|        | Thread          | Thru Hole      | Ту               | ре                  | Thread or         |   |     | Longth | Code "L" | ±0.12            |       |        | Min.               |           |           | E    |       |           | ØH Hole Size      | ØD                 |
|--------|-----------------|----------------|------------------|---------------------|-------------------|---|-----|--------|----------|------------------|-------|--------|--------------------|-----------|-----------|------|-------|-----------|-------------------|--------------------|
|        | Size x<br>Pitch | +0.10<br>-0.08 | Fastene<br>Steel | r Material<br>Brass | Thru Hole<br>Code |   | (Le | -      |          | imeters)         |       |        | Sheet<br>Thickness | A<br>Max. | C<br>Max. | Ref. | ±0.13 | H<br>Nom. | In Sheet<br>+0.08 | Min. Solder<br>Pad |
|        | S1              | -              | SMTS0            | -                   | M1                | 1 | 2   | 3      | -        | -                | -     | -      | 0.5                | 0.48      | 2.41      | 3.66 | -     | 3.18      | 2.5               | 4.19               |
|        | S1.2            | 1              | SMTS0            | -                   | M1.2              | 1 | 2   | 3      | _        | -                | -     | -      | 0.5                | 0.48      | 2.41      | 3.66 | -     | 3.18      | 2.5               | 4.19               |
|        | S1.4            | 1              | SMTS0            | ı                   | M1.4              | 1 | 2   | 3      | -        | -                | ı     | ı      | 0.5                | 0.48      | 2.41      | 3.66 | -     | 3.18      | 2.5               | 4.19               |
| ပ      | M1.6 x 0.35     | -              | SMTS0            | -                   | M1.6              | 1 | 2   | 3      | _        | -                | -     | -      | 0.5                | 0.48      | 2.41      | 3.66 | -     | 3.18      | 2.5               | 4.19               |
| ۳<br>ا | M2 x 0.4        | 1              | SMTS0            | SMTS0B              | M2                | _ | 2   | 3      | 4 (1)    | 6 <sup>(1)</sup> | 8 (1) | 10 (1) | 1.53               | 1.53      | 3.6       | -    | 5.56  | -         | 3.73              | 6.2                |
| ш      | M2.5 x 0.45     | 1              | SMTS0            | SMTSOB              | M25               | _ | 2   | 3      | 4 (1)    | 6 <sup>(1)</sup> | 8 (1) | 10 (1) | 1.53               | 1.53      | 4.09      | -    | 5.56  | -         | 4.22              | 6.2                |
| Σ      | M3 x 0.5        | 1              | SMTS0            | SMTS0B              | M3                | _ | 2   | 3      | 4 (1)    | 6 <sup>(1)</sup> | 8 (1) | 10 (1) | 1.53               | 1.53      | 4.09      | -    | 5.56  | -         | 4.22              | 6.2                |
|        | M3.5 x 0.6      | 1              | SMTS0            | SMTSOB              | M35               | _ | 2   | 3      | 4 (1)    | 6 <sup>(1)</sup> | 8 (1) | 10 (1) | 1.53               | 1.53      | 5.28      | -    | 7.14  | -         | 5.41              | 7.77               |
|        | M4 x 0.7        | -              | SMTS0            | SMTS0B              | M4                | _ | 2   | 3      | 4        | 6 <sup>(1)</sup> | 8 (1) | 10 (1) | 1.53               | 1.53      | 6.22      | -    | 8.74  | -         | 6.35              | 9.37               |
|        | -               | 3.1            | SMTS0            | SMTS0B              | 3.1               | - | 2   | 3      | 4        | 6                | 8     | 10     | 1.53               | 1.53      | 4.09      | -    | 5.56  | -         | 4.22              | 6.2                |
|        | -               | 3.6            | SMTS0            | SMTS0B              | 3.6               | _ | 2   | 3      | 4        | 6                | 8     | 10     | 1.53               | 1.53      | 5.28      | -    | 7.14  | -         | 5.41              | 7.77               |
|        | _               | 4.2            | SMTS0            | SMTSOB              | 4.2               | - | 2   | 3      | 4        | 6                | 8     | 10     | 1.53               | 1.53      | 6.22      | -    | 8.74  | -         | 6.35              | 9.37               |

(1) SMTSOB fasteners with this length code have a shank counterbore.

### NUMBER OF PARTS PER REEL / PITCH (MM) FOR EACH SIZE


| Thread/Thru-Hole           |          |           |           | Length Code |          |          |          |          |
|----------------------------|----------|-----------|-----------|-------------|----------|----------|----------|----------|
| Size                       | 1        | 2         | 3         | 4           | 6        | 8        | 10       | 12       |
| 080                        | -        | 3500 / 8  | -         | 2000 / 8    | -        | -        | -        | -        |
| 256, 440, 632, 116, 143    | -        | 1500 / 12 | -         | 1000 / 12   | -        | 650 / 12 | -        | 300 / 16 |
| 832                        | -        | 1100 / 16 | -         | 800 / 16    | -        | 500 / 16 | -        | 300 / 16 |
| M1, M1.2, M1.4, M1.6       | 3500 / 8 | 2500 / 8  | 2000 / 8  | -           | -        | -        | -        | _        |
| M2, M25, M3, M35, 3.1, 3.6 | _        | 1500 / 12 | 1000 / 12 | 900 / 12    | 650 / 12 | 375 / 16 | 300 / 16 | _        |
| M4, 4.2                    | -        | 1100 / 16 | 800 / 16  | 675 / 16    | 500 / 16 | 375 / 16 | 300 / 16 | _        |


Packaged on 330 mm recyclable reels. Tape width is 24 mm. Reels conform to EIA-481.

A polyimide patch is supplied to allow for reliable vacuum pickup. Fasteners are also available without a patch which may provide a lower cost alternative, depending on your installation methods/requirements.

### SMTSS™ REELFAST® SNAP-TOP® STANDOFFS

NOTE: REELFAST® SNAP-TOP® SMTSS™ standoffs are for ononly applications. For removal applications, mounting hole A can be increased to reduce removal force.





# Solder Pad Mounting hole does not need to be plated through.

### Stencil Masking Examples



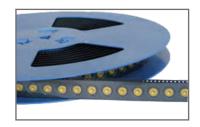
# PART NUMBER DESIGNATION

TSS S - 156 ↓ ↓ ↓

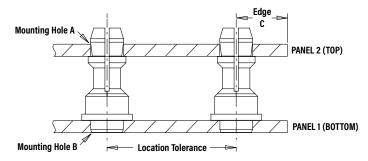
Type Material Top Board Length Finish Mounting Hole A Code Diameter Code

All dimensions are in inches.

| <u> </u> | Top Board<br>Mounting Hole A<br>Diameter Code | Type and<br>Material |   | de "L" ±.005<br>32nds of an inch)<br>.375 | Min.<br>Sheet<br>Thickness | A<br>Max. | C<br>Max. | E<br>±.005 | B<br>±.005 | P<br>±.005 | ØH Hole<br>Size in Sheet<br>+.003000 | ØD<br>Min.<br>Solder Pad |
|----------|-----------------------------------------------|----------------------|---|-------------------------------------------|----------------------------|-----------|-----------|------------|------------|------------|--------------------------------------|--------------------------|
| 2        | 156                                           | SMTSSS               | 8 | 12                                        | .060                       | .060      | .161      | .250       | .188       | .141       | .166                                 | .276                     |


### All dimensions are in millimeters.

| 0.01 |        | Top Board<br>Mounting Hole A<br>Diameter Code | Type and<br>Material |   | yth Code "L" :<br>Code in mill |    | Min.<br>Sheet<br>Thickness | A<br>Max. | C<br>Max. | E<br>±0.13 | B<br>±0.13 | P<br>±0.13 | ØH Hole<br>Size in Sheet<br>+0.08 | ØD<br>Min.<br>Solder Pad |
|------|--------|-----------------------------------------------|----------------------|---|--------------------------------|----|----------------------------|-----------|-----------|------------|------------|------------|-----------------------------------|--------------------------|
| 2    | ⊒<br>⊒ | 4MM                                           | SMTSSS               | 6 | 8                              | 10 | 1.53                       | 1.53      | 4.09      | 6.35       | 4.8        | 3.58       | 4.22                              | 7                        |


### **NUMBER OF PARTS PER REEL**

| Type, Material and Size | Length Code | / Numl | oer of Pa | arts per Reel |
|-------------------------|-------------|--------|-----------|---------------|
| SMTSSS-156              | -8 / 280    | )      | -1        | 2 / 220       |
| SMTSSS-4MM              | -6 / 300    | -8 /   | 250       | -10 / 200     |

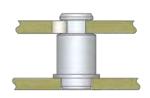
Packaged on 330 mm recyclable reels. Tape width is 24 mm. Supplied with polyimide patch for vacuum pick up. Reels conform to EIA-481.

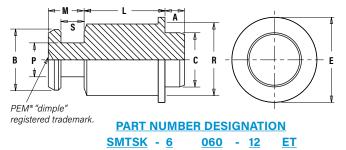


# SMTSS™ APPLICATION DATA



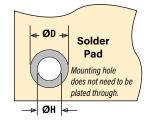
### All dimensions are in inches.


|       |       |                  |                                          | Panel 1           |                   |                       |                  |                                       | Panel 2           |                    |                            |
|-------|-------|------------------|------------------------------------------|-------------------|-------------------|-----------------------|------------------|---------------------------------------|-------------------|--------------------|----------------------------|
| IFIED | Туре  | Hardness<br>Max. | Bottom<br>Mounting<br>Hole B<br>+.003000 | Panel<br>Material | Thickness<br>Min. | Location<br>Tolerance | Hardness<br>Max. | Top<br>Mounting<br>Hole A<br>+.003000 | Panel<br>Material | Thickness<br>Range | Edge<br>Distance<br>C Min. |
|       | SMTSS | No Limit         | .166                                     | PC board          | .060              | ±.005                 | No Limit         | .156                                  | PC board or Metal | .040070            | .100                       |


|       |       |                  |                                       | Panel 1           |                   |                       |                  |                                    | Panel 2           |                    |                            |
|-------|-------|------------------|---------------------------------------|-------------------|-------------------|-----------------------|------------------|------------------------------------|-------------------|--------------------|----------------------------|
| ETRIC | Туре  | Hardness<br>Max. | Bottom<br>Mounting<br>Hole B<br>+0.08 | Panel<br>Material | Thickness<br>Min. | Location<br>Tolerance | Hardness<br>Max. | Top<br>Mounting<br>Hole A<br>+0.08 | Panel<br>Material | Thickness<br>Range | Edge<br>Distance<br>C Min. |
| Σ     | SMTSS | No Limit         | 4.22                                  | PC board          | 1.53              | ±0.13                 | No Limit         | 4                                  | PC board or Metal | 1 - 1.8            | 2.54                       |

### SMTSK™ REELFAST® KEYHOLE® STANDOFFS




- Unique barrel design allows for quick attachment and detachment.
- Makes horizontal or vertical component mounting possible.





Body

Type



### Stencil Masking Examples









| I | ED | Туре  | Body Size - |      | ength "L" ± .0<br>ode in 32nds |      | Min.               | . А  | c    | E     | В     | Р     | R    | S     | _М   | ØH<br>Hole Size      | ØD<br>Min.    |
|---|----|-------|-------------|------|--------------------------------|------|--------------------|------|------|-------|-------|-------|------|-------|------|----------------------|---------------|
| ı | Ξ  |       | Sheet Code  | .125 | .250                           | .375 | Sheet<br>Thickness | Max. | Max. | ±.005 | ±.003 | ±.003 | Max. | ±.003 | Max. | in Sheet<br>+.003000 | Solder<br>Pad |
|   | n  | SMTSK | 6060        | 4    | 8                              | 12   | .060               | .060 | .161 | .250  | .177  | .099  | .212 | .068  | .108 | .166                 | .276          |

Size Code Thickness

Sheet

Length

Code

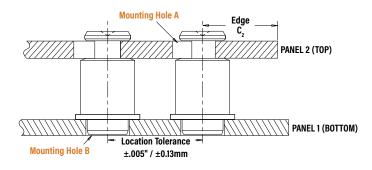
Finish

### All dimensions are in millimeters.

| 1 | ETRIC | Туре  | Body Size -<br>Sheet Code | (Le | Leng<br>ength Co | gth "L" ±<br>ode in m |   | rs) | Min.<br>Sheet<br>Thickness | A<br>Max. | C<br>Max. | E<br>±0.13 | B<br>±.0.08 | P<br>±0.08 | R<br>Max. | S<br>±0.08 | M<br>Max. | ØH<br>Hole Size<br>in Sheet<br>+0.08 | ØD<br>Min.<br>Solder<br>Pad |
|---|-------|-------|---------------------------|-----|------------------|-----------------------|---|-----|----------------------------|-----------|-----------|------------|-------------|------------|-----------|------------|-----------|--------------------------------------|-----------------------------|
| 1 | Σ     | SMTSK | 61.5                      | 3   | 4                | 6                     | 8 | 10  | 1.53                       | 1.53      | 4.09      | 6.35       | 4.5         | 2.51       | 5.39      | 1.73       | 2.75      | 4.22                                 | 7                           |

### **NUMBER OF PARTS PER REEL**


| Part Number   |      | Length Code "L" |      |
|---------------|------|-----------------|------|
| rait Nullibei | .125 | .250            | .375 |
| SMTSK-6060    | 4    | 8               | 12   |
| 31011314-0000 | 630  | 440             | 230  |


| Part Number |     | Ler | ngth Code | "L" |     |
|-------------|-----|-----|-----------|-----|-----|
| SMTSK-61.5  | 3   | 4   | 6         | 8   | 10  |
| 2101-VC11MC | 640 | 540 | 440       | 260 | 220 |



Packaged on 13" recyclable reels. Tape width is 24mm and 16mm. Pitch is 16mm and 12mm. Reels conform to EIA-481.

### **APPLICATION DATA**





### All dimensions are in inches.

|   |       |                  |                                | Panel 1           |                   |                       |                        |                         |                         | Pa                     | anel 2            |                    |                                 |
|---|-------|------------------|--------------------------------|-------------------|-------------------|-----------------------|------------------------|-------------------------|-------------------------|------------------------|-------------------|--------------------|---------------------------------|
| О |       | Handaaaa         | Bottom                         | Donal             | Thislman          | Landina               |                        | Top Mount               | ting Hole A             |                        | Damel             | Thislman           | Edge                            |
| = | Туре  | Hardness<br>Max. | Mounting<br>Hole B<br>+.003000 | Panel<br>Material | Thickness<br>Min. | Location<br>Tolerance | A <sub>1</sub><br>Nom. | A <sub>2</sub><br>±.003 | A <sub>3</sub><br>±.003 | A <sub>4</sub><br>Min. | Panel<br>Material | Thickness<br>Range | Distance<br>C <sub>2</sub> Min. |
| 2 | SMTSK | No Limit         | .166                           | PC board          | .060              | ±.005                 | .059                   | .118                    | .197                    | .148                   | ANY               | .057064            | .160                            |

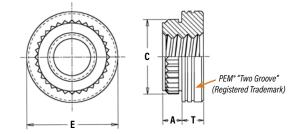
|      |       |                  |                             | Panel 1           |                   |                       |                        |                         |                         | Pa                     | anel 2            |                    |                                 |
|------|-------|------------------|-----------------------------|-------------------|-------------------|-----------------------|------------------------|-------------------------|-------------------------|------------------------|-------------------|--------------------|---------------------------------|
| ပ    |       |                  | Bottom                      |                   |                   |                       |                        | Top Mount               | ing Hole A              |                        |                   |                    | Edge                            |
| ETRI | Туре  | Hardness<br>Max. | Mounting<br>Hole B<br>+0.08 | Panel<br>Material | Thickness<br>Min. | Location<br>Tolerance | A <sub>1</sub><br>Nom. | A <sub>2</sub><br>±0.08 | A <sub>3</sub><br>±0.08 | A <sub>4</sub><br>Min. | Panel<br>Material | Thickness<br>Range | Distance<br>C <sub>2</sub> Min. |
| Ξ    | SMTSK | No Limit         | 4.22                        | PC board          | 1.53              | ±0.13                 | 1.5                    | 3                       | 5                       | 3.75                   | ANY               | 1.45 - 1.62        | 4.1                             |

### NOTE ABOUT PLATED AND UNPLATED MOUNTING HOLES FOR BROACHING FASTENERS

Broaching and broach/flare types are designed for unplated mounting hole applications. If used in plated mounting holes, the stresses involved can damage the plating, push out the plating entirely, or break any traces inside the board that might be connected to the plated hole. When installing into non-plated mounting holes there may even be issues with delamination, measeling or crazing in some instances.

Increasing the mounting hole size +.005" to +.008" /+0.13 mm to +0.2 mm may relieve these conditions. If increasing the mounting hole does not correct the issue then we recommend our surface-mount type fasteners.

It is always recommended that you try the fasteners in your specific application before full production begins. We are happy to provide samples for this purpose.


General recommendations for "Keep Out" areas are the same as our "Min. Distance Hole C/L to Edge" dimensions stated in the dimensional charts of our bulletin.

### KF2™/KFS2™ BROACHING NUTS

Can be used in aluminum, acrylic, casting and polycarbonate components

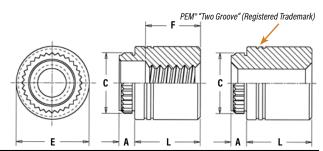


### PART NUMBER DESIGNATION



### All dimensions are in inches.

|      | Thread              | Ту              | pe                 | Thread | A               | Min.               | Hole Size            | r     | E     | т.    | Min. Dişt.               |
|------|---------------------|-----------------|--------------------|--------|-----------------|--------------------|----------------------|-------|-------|-------|--------------------------|
|      | Size                | Carbon<br>Steel | Stainless<br>Steel | Code   | (Shank)<br>Max. | Sheet<br>Thickness | In Sheet<br>+.003000 | ±.003 | ±.005 | ±.005 | Hole <b>©</b><br>To Edge |
| ٥    | .086-56<br>(#2-56)  | KF2             | KFS2               | 256    | .060            | .060               | .147                 | .165  | .219  | .065  | 0.16                     |
| 3131 | .112-40<br>(#4-40)  | KF2             | KFS2               | 440    | .060            | .060               | .166                 | .184  | .219  | .065  | 0.17                     |
| 2    | .138-32<br>(#6-32)  | KF2             | KFS2               | 632    | .060            | .060               | .213                 | .231  | .281  | .065  | 0.22                     |
|      | .164-32<br>(#8-32)  | KF2             | KFS2               | 832    | .060            | .060               | .250                 | .268  | .344  | .096  | 0.25                     |
|      | .190-32<br>(#10-32) | KF2             | KFS2               | 032    | .060            | .060               | .272                 | .290  | .375  | .127  | 0.28                     |


|     | Thread          | Ту              | ре                 | Throad         | A               | Min.               | Hole Size         | •     | -     | т.    | Min. Dist.               |
|-----|-----------------|-----------------|--------------------|----------------|-----------------|--------------------|-------------------|-------|-------|-------|--------------------------|
| O   | Size x<br>Pitch | Carbon<br>Steel | Stainless<br>Steel | Thread<br>Code | (Shank)<br>Max. | Sheet<br>Thickness | In Sheet<br>+0.08 | ±0.08 | ±0.13 | ±0.13 | Hole <b>©</b><br>To Edge |
| 1 = | M2 x 0.4        | KF2             | KFS2               | M2             | 1.53            | 1.53               | 3.73              | 4.19  | 5.56  | 1.5   | 4.2                      |
| Ī   | M2.5 x 0.45     | KF2             | KFS2               | M2.5           | 1.53            | 1.53               | 4.22              | 4.68  | 5.56  | 1.5   | 4.4                      |
| Σ   | M3 x 0.5        | KF2             | KFS2               | М3             | 1.53            | 1.53               | 4.22              | 4.68  | 5.56  | 1.5   | 4.4                      |
|     | M4 x 0.7        | KF2             | KFS2               | M4             | 1.53            | 1.53               | 6.4               | 6.81  | 8.74  | 2     | 6.4                      |
|     | M5 x 0.8        | KF2             | KFS2               | M5             | 1.53            | 1.53               | 6.9               | 7.37  | 9.53  | 3     | 7.1                      |

### KFE™/KFSE™ BROACHING STANDOFFS



### **PART NUMBER DESIGNATION**

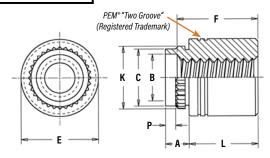
632 <u>12</u> **KFE 632** <u>12</u> <u>ET</u> Thread Length Finish Type and Material or Thru Hole Code Code



### All dimensions are in inches.

|     | Thread             | Thru<br>Hole | Ту              | ре                 | Thread<br>or Thru |      |      | (Lenç | Length '<br>th Code is ir | 'L" ±.005<br>1 32nds of an | inch)       |             |             | A<br>(Shank) | Min.<br>Sheet  | Hole Size<br>In Sheet | С     | Е     | Min.<br>Dist.            |
|-----|--------------------|--------------|-----------------|--------------------|-------------------|------|------|-------|---------------------------|----------------------------|-------------|-------------|-------------|--------------|----------------|-----------------------|-------|-------|--------------------------|
|     | Size               | +.004<br>003 | Carbon<br>Steel | Stainless<br>Steel | Hole<br>Code      | .125 | .250 | .375  | .500                      | .625                       | (1)<br>.750 | (1)<br>.875 | (1)<br>1.00 | `Max.´       | Thick-<br>ness | +.003000              | ±.003 | ±.005 | Hole <b>©</b><br>To Edge |
| IED | .112-40<br>(#4-40) | -            | KFE             | KFSE               | 440               | 4    | 8    | 12    | 16                        | 20                         | 24          | -           | ı           | .060         | .060           | .166                  | .184  | .219  | .17                      |
| N N | .138-32<br>(#6-32) | -            | KFE             | KFSE               | 632               | 4    | 8    | 12    | 16                        | 20                         | 24          | 28          | 32          | .060         | .060           | .213                  | .231  | .281  | .22                      |
|     | -                  | .116         | KFE             | KFSE               | 116               | 4    | 8    | 12    | 16                        | 20                         | 24          | -           | 1           | .060         | .060           | .166                  | .184  | .219  | .17                      |
|     | _                  | .143         | KFE             | KFSE               | 143               | 4    | 8    | 12    | 16                        | 20                         | 24          | 28          | 32          | .060         | .060           | .213                  | .231  | .281  | .22                      |
|     | "F" Minimu         | ım Thread Le | ngth (Where     | Applicable)        |                   |      | Full |       | .375                      | ± .016                     |             | .375 Blind  |             |              | ·              |                       |       |       |                          |

### All dimensions are in millimeters.


|        | Thread          | Thru<br>Hole   | Ty              | /ре                | Thread<br>or Thru |   |   |      | Lenath '     | "L" ±0.13                |      |           |    | A<br>(Shank) | Min.<br>Sheet  | Hole Size<br>In Sheet | С     | E     | Min.<br>Dist.            |
|--------|-----------------|----------------|-----------------|--------------------|-------------------|---|---|------|--------------|--------------------------|------|-----------|----|--------------|----------------|-----------------------|-------|-------|--------------------------|
| ပ      | Size x<br>Pitch | +0.10<br>-0.08 | Carbon<br>Steel | Stainless<br>Steel | Hole<br>Code      |   |   | (Ler | ngth Code is | "L" ±0.13<br>in millimet | ers) |           |    | ` Max.´      | Thick-<br>ness | +0.08                 | ±0.08 | ±0.13 | Hole <b>⊈</b><br>To Edge |
| ۳ [    | M3 x 0.5        | -              | KFE             | KFSE               | M3                | 3 | 4 | 6    | 8            | 10                       | 12   | 14        | 16 | 1.53         | 1.53           | 4.22                  | 4.68  | 5.56  | 4.4                      |
| M<br>M | -               | 3.6            | KFE             | KFSE               | 3.6               | 3 | 4 | 6    | 8            | 10                       | 12   | 14        | 16 | 1.53         | 1.53           | 5.41                  | 5.87  | 7.14  | 5.5                      |
| _      | -               | 4.2            | KFE             | KFSE               | 4.2               | 3 | 4 | 6    | 8            | 10                       | 12   | 14        | 16 | 1.53         | 1.53           | 6.4                   | 6.81  | 8.74  | 7.1                      |
|        | "F" Minimu      | m Thread Le    | ngth (When      | e Applicable)      |                   |   |   | Full |              |                          |      | 9.5 ± 0.4 |    |              |                |                       |       |       |                          |

# KFB3™ BROACH/FLARE-MOUNT STANDOFFS

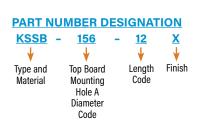


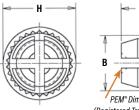
# PART NUMBER DESIGNATION

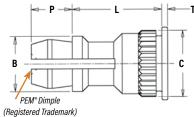
**632** <u>12</u> <u>ET</u> Length Finish Thread Type and Material Code Code



### All dimensions are in inches.


|   |     | Thread<br>Size               | Туре  | Thread<br>Code |      |      | (1   |      | Length "<br>ode is in |      |      | 1)   |             |             | A<br>(Shank) | Sheet     | Hole Size<br>in Sheet<br>+.005 | R     | С    | F     | к     | Р     | Min.<br>Dist.<br>Hole <b>c</b> |
|---|-----|------------------------------|-------|----------------|------|------|------|------|-----------------------|------|------|------|-------------|-------------|--------------|-----------|--------------------------------|-------|------|-------|-------|-------|--------------------------------|
| ı | О   | OLO                          | 1,700 | oouo           | .062 | .125 | .187 | .250 | .312                  | .375 | .500 | .625 | (1)<br>.750 | (1)<br>1.00 | Max.         | Thickness | 001                            | ±.003 | Max. | ±.005 | ±.003 | ±.010 | Hole <b>©</b><br>To<br>Edge    |
| ı | E   | .112-40<br>(#4-40)           | KFB3  | 440            | 2    | 4    | 6    | 8    | 10                    | 12   | 16   | 20   | -           | -           | .09          | .050065   | .166                           | .122  | .165 | .219  | .179  | .040  | .17                            |
|   | 2 7 | .138-32<br>(#6-32)           | KFB3  | 632            | 2    | 4    | 6    | 8    | 10                    | 12   | 16   | 20   | 24          | 32          | .09          | .050065   | .213                           | .171  | .212 | .280  | .226  | .040  | .22                            |
|   |     | "F" Min. Thre<br>(Where Appl |       |                |      |      |      | Full |                       |      |      |      | .375        | Blind       |              |           |                                |       |      |       |       |       |                                |


| ن<br>د | Thread<br>Size x<br>Pitch                                   | Size x Pitch Type Code (Length Code is in mill |    |   |   |   |     | s) |    |    | A<br>(Shank)<br>Max. | Sheet<br>Thickness | Hole Size<br>in Sheet<br>+0.13<br>-0.03 | B<br>±0.08 | C<br>Max. | E<br>±0.13 | K<br>±0.08 | P<br>±0.25 | Min.<br>Dist.<br>Hole <b>&amp;</b><br>To<br>Edge |   |      |
|--------|-------------------------------------------------------------|------------------------------------------------|----|---|---|---|-----|----|----|----|----------------------|--------------------|-----------------------------------------|------------|-----------|------------|------------|------------|--------------------------------------------------|---|------|
| ETRIO  | M3 x 0.5                                                    | KFB3                                           | М3 | 2 | 3 | 4 | 6   | 8  | 10 | 12 | 14                   | 16                 | 2.29                                    | 1.27-1.65  | 4.22      | 3.23       | 4.2        | 5.56       | 4.55                                             | 1 | 4.33 |
| M      | M4 x 0.7                                                    | KFB3                                           | M4 | 2 | 3 | 4 | 6   | 8  | 10 | 12 | 14                   | 16                 | 2.29                                    | 1.27-1.65  | 6.4       | 5.23       | 6.33       | 8.74       | 6.68                                             | 1 | 6.36 |
|        | M4 x 0.7 KFB3 M4  "F" Min. Thread Length (Where Applicable) |                                                |    |   |   | F | ull |    |    |    | 9.5 ±0.4             |                    |                                         |            |           |            |            |            |                                                  |   |      |


<sup>(1)</sup> Blind at shank end with .375" minimum thread length from head end.

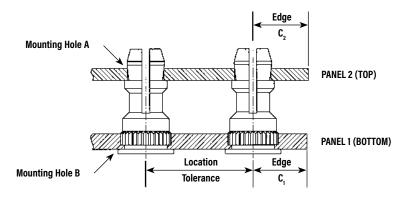
# KSSB™ BROACHING SNAP-TOP® STANDOFFS










### All dimensions are in inches.

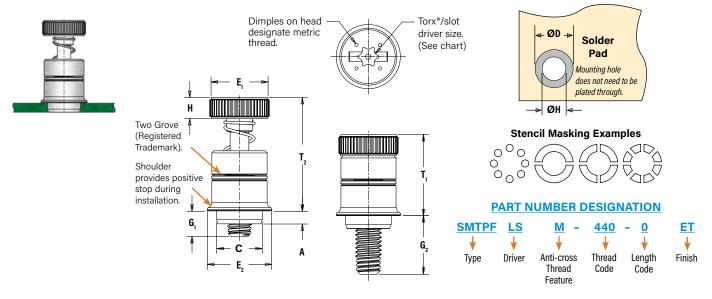
| E D | Туре   | Top Board<br>Mounting<br>Hole A |      |      |      | (Lengt | Length '<br>h Code is ir | 'L" ±.005<br>32nds of a | n inch) |      |      |      | R     | c     | н     | Р     | т     |
|-----|--------|---------------------------------|------|------|------|--------|--------------------------|-------------------------|---------|------|------|------|-------|-------|-------|-------|-------|
| E   | .,,,,, | Diameter<br>Code                | .250 | .312 | .375 | .437   | .500                     | .562                    | .625    | .750 | .875 | 1.00 | ±.005 | ±.003 | ±.005 | ±.005 | ±.005 |
| NO  | KSSB   | 156                             | 8    | 10   | 12   | 14     | 16                       | 18                      | 20      | 24   | 28   | 32   | .188  | .226  | .250  | .141  | .020  |

### All dimensions are in millimeters.

| ETRIC | Туре | Top Board<br>Mounting<br>Hole A<br>Diameter<br>Code |   |    |    | Le<br>(Length C | ngth "L" ±0.1<br>ode is in mil | 3<br>limeters) |    |    |    | B<br>±0.13 | C<br>±0.08 | H<br>±0.13 | P<br>±0.13 | T<br>±0.13 |
|-------|------|-----------------------------------------------------|---|----|----|-----------------|--------------------------------|----------------|----|----|----|------------|------------|------------|------------|------------|
| M     | KSSB | 4MM                                                 | 8 | 10 | 12 | 14              | 16                             | 18             | 20 | 22 | 25 | 4.8        | 5.74       | 6.35       | 3.58       | 0.51       |

### KSSB™ APPLICATION DATA




### All dimensions are in inches.

|       |      | All difficultions are in | iliolios.                                |                   |                   |                             |                       |                  |                                       |                      |                           |                             |
|-------|------|--------------------------|------------------------------------------|-------------------|-------------------|-----------------------------|-----------------------|------------------|---------------------------------------|----------------------|---------------------------|-----------------------------|
|       |      |                          |                                          | Panel 1           |                   |                             |                       |                  |                                       | Panel 2              |                           |                             |
| IFIED | Туре | Hardness<br>Max.<br>(1)  | Bottom<br>Mounting<br>Hole B<br>+.003000 | Panel<br>Material | Thickness<br>Min. | Edge<br>Distance<br>C, Min. | Location<br>Tolerance | Hardness<br>Max. | Top<br>Mounting<br>Hole A<br>+.003000 | Panel<br>Material    | Thickness<br>Range<br>(2) | Edge<br>Distance<br>C, Min. |
| 2     | KSSB | HRB 65 / HB 116          | .213                                     | PC board          | .050              | .220                        | ±.005                 | No Limit         | .156                                  | PC board<br>or Metal | .040070                   | .100                        |

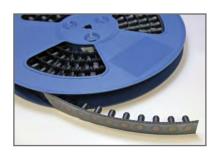
|     |   |      |                         |                                       | Panel 1           |                   |                             |                       |                  |                                    | Panel 2              |                           |                                         |
|-----|---|------|-------------------------|---------------------------------------|-------------------|-------------------|-----------------------------|-----------------------|------------------|------------------------------------|----------------------|---------------------------|-----------------------------------------|
| - a | - | Туре | Hardness<br>Max.<br>(1) | Bottom<br>Mounting<br>Hole B<br>+0.08 | Panel<br>Material | Thickness<br>Min. | Edge<br>Distance<br>C, Min. | Location<br>Tolerance | Hardness<br>Max. | Top<br>Mounting<br>Hole A<br>+0.08 | Panel<br>Material    | Thickness<br>Range<br>(2) | Edge<br>Distance<br>C <sub>2</sub> Min. |
| M   |   | KSSB | HRB 65 / HB 116         | 5.41                                  | PC board          | 1.27              | 5.59                        | ±0.13                 | No Limit         | 4                                  | PC board<br>or Metal | 1 - 1.8                   | 2.54                                    |

- (1) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (2) Available for thicker boards on special order.

### SMTPFLSM™ ReelFast® SURFACE MOUNT CAPTIVE PANEL SCREWS



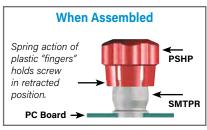
### All dimensions are in inches.

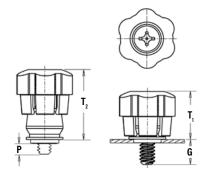

| I E D | Thread<br>Size | Туре           | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | C<br>Max. | E <sub>1</sub><br>±.010 | E <sub>2</sub><br>Nom | G,<br>±.025 | G <sub>2</sub><br>±.025 | H<br>±.010 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | ØK Hole Size<br>in Sheet<br>+.003000 | ØD Min.<br>Solder<br>Pad | Driver<br>Size |
|-------|----------------|----------------|----------------|-------------------------|----------------------|----------------------------|-----------|-------------------------|-----------------------|-------------|-------------------------|------------|------------------------|------------------------|--------------------------------------|--------------------------|----------------|
| ш.    | .112-40        | SMTPFLSM       | 440            | 0                       | .063                 | .063                       | ,215      | .280                    | .300                  | .040        | .210                    | .100       | .38                    | .55                    | .220                                 | .340                     | T15            |
| Z     | (#4-40)        | SWITTLSW       | 440            | 1                       | .003                 | .003                       | ,210      | .200                    | .300                  | .100        | .270                    | .100       | .30                    | .00                    | .220                                 | .540                     | 110            |
|       | .138-32        | SMTPFLSM       | 632            | 0                       | .063                 | .063                       | .247      | .310                    | .320                  | .040        | .240                    | .100       | .42                    | .62                    | .252                                 | .400                     | T15            |
|       | (#6-32)        | JIVITI I LJIVI | UJZ            | 1                       | ,000                 | .550                       | .217      | .010                    | .020                  | .100        | .300                    | 50         |                        | .52                    | .202                                 |                          |                |

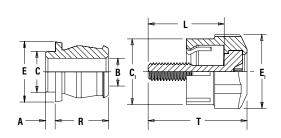
### All dimensions are in millimeters.

| RIC | Thread<br>Size | Туре     | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | C<br>Max. | E <sub>1</sub><br>±0.25 | E <sub>2</sub><br>Nom | G <sub>1</sub><br>±0.64 | G <sub>2</sub><br>±0.64 | H<br>±0.25 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | ØK Hole Size<br>in Sheet<br>+0.08 | ØD Min.<br>Solder<br>Pad | Driver<br>Size |
|-----|----------------|----------|----------------|-------------------------|----------------------|----------------------------|-----------|-------------------------|-----------------------|-------------------------|-------------------------|------------|------------------------|------------------------|-----------------------------------|--------------------------|----------------|
| F   | M3 x 0.5       | SMTPFLSM | M3             | 0                       | 1,6                  | 1.6                        | 5.46      | 7                       | 7.6                   | 1                       | 5.3                     | 2,5        | 9.6                    | 14                     | 5.6                               | 8.6                      | T15            |
| ш   | INIO X 0'O     | SWITTLOW | IVIO           | 1                       | 1.0                  | 1.0                        | 5.40      | ,                       | 1.0                   | 2.5                     | 6.8                     | 2.0        | 3.0                    | 14                     | 5.0                               | 0.0                      | 113            |
| ≥   | M3.5 x 0.6     | SMTPFLSM | M3.5           | 0                       | 1,6                  | 1.6                        | 6.27      | 7,9                     | 8.13                  | 1                       | 6.1                     | 2,5        | 10.7                   | 15.7                   | 6.4                               | 10.2                     | T15            |
|     | INIO'O Y O'O   | SWITTLOW | IVIO           | 1                       | 1.0                  | 110                        | OILI      | ""                      | 0.10                  | 2.5                     | 7.62                    | Lio        | 1011                   | 1017                   | 011                               | 1012                     | 110            |

## **NUMBER OF PARTS PER REEL**


| Thread Size | Parts Per Reel |
|-------------|----------------|
| 440         | 200            |
| 632         | 150            |
| M3          | 200            |
| M3.5        | 150            |





Packaged on 330 mm recyclable reels. Tape width is 24 mm. Supplied with polyimide patch for vacuum pick up. Reels conform to EIA-481.

### SMTPF™ ReelFast® SURFACE MOUNT CAPTIVE PANEL SCREWS

### Patented.







### All dimensions are in inches.

|     |                    | Scre   | w Part Nur     | nber                    |                            |             | Assembly [  | imensions              |                        |                          | S                       | crew Dime         | nsions     |           |                      | Reta                    | ainer Dime | ensions   |           |            |
|-----|--------------------|--------|----------------|-------------------------|----------------------------|-------------|-------------|------------------------|------------------------|--------------------------|-------------------------|-------------------|------------|-----------|----------------------|-------------------------|------------|-----------|-----------|------------|
| IED | Thread<br>Size     | Туре   | Thread<br>Code | Screw<br>Length<br>Code | Retainer<br>Part<br>Number | G<br>± .025 | P<br>± .025 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | Total<br>Radial<br>Float | C <sub>1</sub><br>±.010 | E,<br>±.010       | L<br>±.015 | T<br>Nom. | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thick. | B<br>±.003 | C<br>Max. | E<br>Nom. | R<br>±.005 |
| NIF | .112-40            | DCLID  | 440            | 0                       | CMTDD C 1                  | .188        | .000        | 470                    | 0.40                   | 015                      | 440                     | F40               | .510       | .663      | 000                  | 000                     | 107        | 040       | 275       | 205        |
|     | (#4-40)            | PSHP   | 440            | 1                       | SMTPR-6-1                  | .248        | .026        | .478                   | .646                   | .015                     | .440                    | .542              | .570       | .723      | .060                 | .060                    | .167       | .249      | .375      | .325       |
|     | .138-32            | PSHP   | 632            | 0                       | SMTPR-6-1                  | .188        | .000        | .478                   | .646                   | .020                     | .440                    | .542              | .510       | .663      | .060                 | .060                    | .167       | .249      | .375      | .325       |
|     | .138-32<br>(#6-32) | 1 3111 | 032            | 1                       | SWITT IN-U-I               | .248        | .026        | .710                   | 1040                   | .020                     | U++.                    | 10 <del>1</del> 2 | .570       | .723      | .000                 | .000                    | .107       | .243      | .070      | 1020       |

### All dimensions are in millimeters.

|     |                           | Scre | w Part Nur     | nber                    |                            |             | Assembly D  | Dimensions             |                        |                          | S                       | crew Dime               | ensions    |           |                      | Reta                    | ainer Dime | ensions   |           |            |
|-----|---------------------------|------|----------------|-------------------------|----------------------------|-------------|-------------|------------------------|------------------------|--------------------------|-------------------------|-------------------------|------------|-----------|----------------------|-------------------------|------------|-----------|-----------|------------|
| RIC | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Screw<br>Length<br>Code | Retainer<br>Part<br>Number | G<br>± 0.64 | P<br>± 0.64 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | Total<br>Radial<br>Float | C <sub>1</sub><br>±0.25 | E <sub>1</sub><br>±0.25 | L<br>±0.38 | T<br>Nom. | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thick. | B<br>±0.08 | C<br>Max. | E<br>Nom. | R<br>±0.13 |
| E   | Mayor                     | PSHP | M3             | 0                       | SMTPR-6-1                  | 4.78        | 0           | 10.14                  | 16 /1                  | 20                       | 11.10                   | 10 77                   | 12.95      | 16.84     | 152                  | 150                     | 4.24       | 6 22      | 0.53      | 0.06       |
| Ξ   | M3 x 0.5                  | РЭПР | IVIO           | 1                       | SWITH-0-I                  | 6.3         | .66         | 12.14                  | 16.41                  | .38                      | 11.18                   | 13.77                   | 14.48      | 18.36     | 1.53                 | 1.53                    | 4.24       | 6.33      | 9.53      | 8.26       |
|     | M3.5 x 0.6                | PSHP | M3.5           | 0                       | SMTPR-6-1                  | 4.78        | 0           | 12.14                  | 16,41                  | .51                      | 11,18                   | 13.77                   | 12.95      | 16.84     | 1,53                 | 1.53                    | 4.24       | 6.33      | 9.53      | 8,26       |
|     | WI3.3 X 0.0               | rom  | IVIOIO         | 1                       | SWITT II-U-I               | 6.3         | .66         | 12.14                  | 10.41                  | ıJI                      | 11.10                   | 13.77                   | 14.48      | 18.36     | IiJJ                 | 1.55                    | 4,24       | 0.33      | 3.33      | 0.20       |

RETAINER - Packaged on 330 mm recyclable reels of 400 pieces. Tape width is 24 mm. Supplied with Kapton® patch for vacuum pick up. Reels conform to EIA-481.

SCREW - Packaged in bags. Retainers and screws are sold separately.

### PART NUMBER DESIGNATION **FOR SCREW**

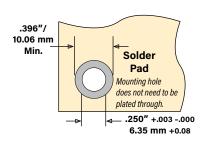


### **PART NUMBER DESIGNATION FOR RETAINER**



### **COLOR CAPABILITIES FOR TYPE PSHP SCREW**

The colors shown here (codes #002 thru #007) are non-stocked standards and available on special order. Since actual cap colors may vary slightly from those shown here, we recommend that you request samples for color verification. If you require a custom color or you need a "color matched" cap, please contact us.

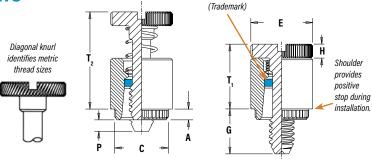





recess on special order.



#4-40 & M3 = #1 #6-32 & M3.5 = #2




### Stencil Masking Examples



### PFK™ BROACHING CAPTIVE PANEL SCREWS

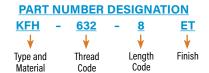


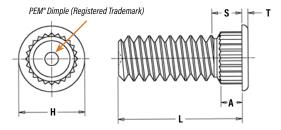


PEM® Blue Nylon Ring\*

### All dimensions are in inches.

| FD  | Thread<br>Size     | Туре | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole<br>Size In<br>Sheet<br>+.003000 | C<br>±.003 | E<br>±.010 | G<br>±.016           | H<br>±.005 | P<br>±.025           | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Nom. | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|-----|--------------------|------|----------------|-------------------------|----------------------|----------------------------|--------------------------------------|------------|------------|----------------------|------------|----------------------|------------------------|------------------------|----------------------------------------|
| I I | .112-40<br>(#4-40) | PFK  | 440            | 40<br>62<br>84          | .060                 | .060                       | .265                                 | .283       | .312       | .250<br>.375<br>.500 | .072       | .000<br>.125<br>.250 | .36                    | .54                    | .20                                    |
|     | .138-32<br>(#6-32) | PFK  | 632            | 40<br>62<br>84          | .060                 | .060                       | .281                                 | .299       | .344       | .250<br>.375<br>.500 | .072       | .000<br>.125<br>.250 | .36                    | .54                    | .26                                    |


### All dimensions are in millimeters.


| RIC | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>±0.08 | E<br>±0.25 | G<br>±0.4          | H<br>±0.13 | P<br>±0.64      | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Nom. | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|-----|---------------------------|------|----------------|-------------------------|----------------------|----------------------------|--------------------------------|------------|------------|--------------------|------------|-----------------|------------------------|------------------------|----------------------------------------|
| MET | M3 x 0.5                  | PFK  | M3             | 40<br>62<br>84          | 1.53                 | 1.53                       | 6.73                           | 7.19       | 7.92       | 6.4<br>9.5<br>12.7 | 1.83       | 0<br>3.2<br>6.4 | 9.14                   | 13.72                  | 5.08                                   |

<sup>\*</sup>Retaining rings are plastic with normal 250°F / 120°C temperature limit.

### **KFH™ BROACHING STUDS**



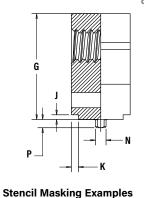


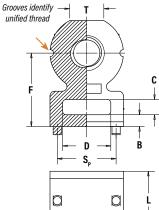


### All dimensions are in inches.

|       | Thread<br>Size      | Туре   | Thread<br>Code |      | (Le  | Length '<br>ngth Code is ir | "L" ±.010<br>n 16ths of an in | ıch) |      | A<br>(Shank) | Min.<br>Sheet | Hole<br>Size in<br>Sheet | Max.<br>Hole<br>Size in | Н     | s           | т     | Min.<br>Dist.<br>Hole <b>¢</b> |
|-------|---------------------|--------|----------------|------|------|-----------------------------|-------------------------------|------|------|--------------|---------------|--------------------------|-------------------------|-------|-------------|-------|--------------------------------|
|       | 0.20                | .,,,,, | 5525           | .250 | .312 | .375                        | .500                          | .625 | .750 | Max.         | Thickness     | +.003<br>000             | Attached<br>Parts       | ±.010 | Max.<br>(1) | ±.005 | To<br>Edge                     |
| 1 E D | .112-40<br>(#4-40)  | KFH    | 440            | 4    | 5    | 6                           | 8                             | 10   | 12   | .065         | .060          | .120                     | .145                    | .180  | .09         | .020  | .15                            |
| N N   | .138-32<br>(#6-32)  | KFH    | 632            | 4    | 5    | 6                           | 8                             | 10   | 12   | .065         | .060          | .140                     | .170                    | .200  | .09         | .020  | .19                            |
|       | .164-32<br>(#8-32)  | KFH    | 832            | 4    | 5    | 6                           | 8                             | 10   | 12   | .065         | .060          | .166                     | .195                    | .225  | .09         | .020  | .20                            |
|       | .190-32<br>(#10-32) | KFH    | 032            | 4    | 5    | 6                           | 8                             | 10   | 12   | .065         | .060          | .189                     | .220                    | .250  | .09         | .020  | .20                            |

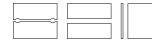
| RIC | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code |   | ( | Length<br>Length Code is | "L" ±0.25<br>s in millimeter | s) |    | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole<br>Size in<br>Sheet<br>+0.08 | Max.<br>Hole<br>Size in<br>Attached<br>Parts | H<br>±0.25 | S<br>Max.<br>(1) | T<br>±0.13 | Min.<br>Dist.<br>Hole <b>Œ</b><br>To<br>Edge |
|-----|---------------------------|------|----------------|---|---|--------------------------|------------------------------|----|----|----------------------|----------------------------|-----------------------------------|----------------------------------------------|------------|------------------|------------|----------------------------------------------|
| ET  | M3 x 0.5                  | KFH  | M3             | 6 | 8 | 10                       | 12                           | 15 | 18 | 1.65                 | 1.53                       | 3                                 | 3.7                                          | 4.58       | 2.3              | 0.51       | 3.8                                          |
| Σ   | M4 x 0.7                  | KFH  | M4             | 6 | 8 | 10                       | 12                           | 15 | 18 | 1.65                 | 1.53                       | 4.2                               | 4.8                                          | 5.74       | 2.3              | 0.51       | 5.1                                          |
|     | M5 x 0.8                  | KFH  | M5             | 6 | 8 | 10                       | 12                           | 15 | 18 | 1.65                 | 1.53                       | 5                                 | 5.8                                          | 6.6        | 2.3              | 0.51       | 5.3                                          |

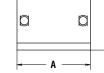

<sup>(1)</sup> Threads are gaugeable to within 2 pitches of the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.


# SMTRA™ ReelFast® SURFACE MOUNT RIGHT ANGLE (R'ANGLE®) FASTENERS



### **PART NUMBER DESIGNATION**







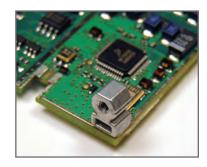




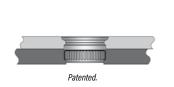



Mounting holes do not need to be plated through.

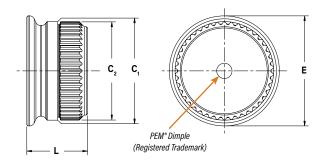
### All dimensions are in inches.


|          | Si   | read<br>ize   | Туре  | Thread<br>Code | Height<br>Code | Length<br>Code | Length<br>L<br>±.005 | Min.<br>Sheet<br>Thick-<br>ness | Hole<br>Size<br>In Sheet<br>+.003000 | A<br>±.006 | B<br>±.006 | C<br>±.006 | D<br>±.006 | Height<br>F<br>±.006 | G<br>±.006 | J<br>Nom. | K<br>Nom. | N<br>Max. | P<br>Max. | S <sub>p</sub><br>±.003 | T<br>Nom. |
|----------|------|---------------|-------|----------------|----------------|----------------|----------------------|---------------------------------|--------------------------------------|------------|------------|------------|------------|----------------------|------------|-----------|-----------|-----------|-----------|-------------------------|-----------|
| 1        | .086 | 6-56<br>2-56) | SMTRA | 256            | 8              | 6              | .188                 | .040                            | .053                                 | .218       | .040       | .060       | .140       | .250                 | .345       | .020      | .030      | .048      | .040      | .157                    | .105      |
| -<br>  Z |      | 2-40<br>1-40) | SMTRA | 440            | 9              | 6              | .188                 | .040                            | .053                                 | .250       | .050       | .065       | .160       | .281                 | .390       | .020      | .030      | .048      | .040      | .188                    | .125      |
|          |      | 8-32<br>6-32) | SMTRA | 632            | 10             | 8              | .250                 | .040                            | .053                                 | .312       | .050       | .065       | .205       | .312                 | .450       | .020      | .030      | .048      | .040      | .250                    | .145      |
|          |      | 4-32<br>3-32) | SMTRA | 832            | 12             | 9              | .281                 | .040                            | .053                                 | .375       | .050       | .075       | .250       | .375                 | .535       | .020      | .030      | .048      | .040      | .312                    | .195      |

| ပ        | Thread<br>Size x<br>Pitch | Туре  | Thread<br>Code | Height<br>Code | Length<br>Code | Length<br>L<br>±0.13 | Min.<br>Sheet<br>Thick-<br>ness | Hole<br>Size<br>In Sheet<br>+0.08 | A<br>±0.15 | B<br>±0.15 | C<br>±0.15 | D<br>±0.15 | Height<br>F<br>±0.15 | G<br>±0.15 | J<br>Nom. | K<br>Nom. | N<br>Max. | P<br>Max. | S <sub>P</sub><br>±0.08 | T<br>Nom. |
|----------|---------------------------|-------|----------------|----------------|----------------|----------------------|---------------------------------|-----------------------------------|------------|------------|------------|------------|----------------------|------------|-----------|-----------|-----------|-----------|-------------------------|-----------|
| <u>~</u> | M2 x 0.4                  | SMTRA | M2             | 6              | 5              | 5                    | 1                               | 1.35                              | 5.5        | 1          | 1.5        | 3.5        | 6                    | 8.4        | 0.5       | 0.75      | 1.22      | 1         | 4                       | 2.65      |
| MET      | M2.5 x 0.45               | SMTRA | M25            | 6              | 5              | 5                    | 1                               | 1.35                              | 5.5        | 1          | 1.5        | 3.5        | 6                    | 8.4        | 0.5       | 0.75      | 1.22      | 1         | 4                       | 2.65      |
|          | M3 x 0.5                  | SMTRA | М3             | 7              | 5              | 5                    | 1                               | 1.35                              | 6.35       | 1.25       | 1.65       | 4          | 7                    | 9.75       | 0.5       | 0.75      | 1.22      | 1         | 4.75                    | 3.2       |
|          | M4 x 0.7                  | SMTRA | M4             | 9              | 7              | 7                    | 1                               | 1.35                              | 9.53       | 1.25       | 1.65       | 6.35       | 9                    | 13.1       | 0.5       | 0.75      | 1.22      | 1         | 7.9                     | 4.8       |


| E D | Thread<br>Code | Pad Width<br>P <sub>A</sub><br>Min. | Pad Length<br>P <sub>L</sub><br>Min. | Hole Spacing<br>S <sub>H</sub><br>±.002 | Hole Size<br>In Sheet<br>+.003000 |
|-----|----------------|-------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------|
| Ē.  | 256            | .262                                | .171                                 | .157                                    | .053                              |
| Z   | 440            | .294                                | .171                                 | .188                                    | .053                              |
|     | 632            | .356                                | .233                                 | .250                                    | .053                              |
|     | 832            | .419                                | .264                                 | .312                                    | .053                              |

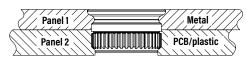
| ا C | Thread<br>Code | Pad Width<br>P <sub>a</sub><br>Min. | Pad Length<br>P <sub>L</sub><br>Min. | Hole Spacing<br>S <sub>H</sub><br>±0.05 | Hole Size<br>In Sheet<br>+0.08 |
|-----|----------------|-------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------|
| T B | M2             | 6.62                                | 4.57                                 | 4                                       | 1.35                           |
| ш   | M25            | 6.62                                | 4.57                                 | 4                                       | 1.35                           |
| Σ   | М3             | 7.47                                | 4.57                                 | 4.75                                    | 1.35                           |
|     | M4             | 10.65                               | 6.57                                 | 7.9                                     | 1.35                           |


| Part<br>Number | Parts<br>Per Reel | Pitch<br>(mm) | Tape Width (mm) |
|----------------|-------------------|---------------|-----------------|
| SMTRA256-8-6   | 375               | 16            | 24              |
| SMTRA440-9-6   | 300               | 16            | 24              |
| SMTRA632-10-8  | 200               | 20            | 32              |
| SMTRA832-12-9  | 200               | 20            | 32              |
| SMTRAM2-6-5    | 375               | 16            | 24              |
| SMTRAM25-6-5   | 375               | 16            | 24              |
| SMTRAM3-7-5    | 300               | 16            | 24              |
| SMTRAM4-9-7    | 200               | 20            | 32              |

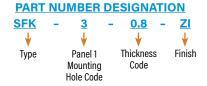


# SFK™ SpotFast® CLINCH/BROACH MOUNT FASTENERS









|                     |                   |                       | Pai  | nel 1                    |      |                   | Par  | nel 2                     |      |        |                       |                |      |      |          |         |          |     |                               |
|---------------------|-------------------|-----------------------|------|--------------------------|------|-------------------|------|---------------------------|------|--------|-----------------------|----------------|------|------|----------|---------|----------|-----|-------------------------------|
| Type<br>and<br>Size | Thickness<br>Code | Thick<br>±0.08<br>±.0 |      | Mounti<br>+0.08<br>+.003 |      | Thick<br>Mi<br>(1 | n.   | Mounti<br>+0.08<br>+.003" | mm / | (<br>M | C <sub>1</sub><br>ax. | ±0.08<br>±0.0± | -    | M    | E<br>ax. | I<br>Ma | L<br>ax. | Hol | ı. Dist<br>e <b>Ç</b><br>Edge |
|                     |                   | mm                    | in.  | mm                       | in.  | mm                | in.  | mm                        | in.  | mm     | in.                   | mm             | in.  | mm   | in.      | mm      | in.      | mm  | in.                           |
| SFK-3               | 0.8               | 0.8                   | .031 | 3                        | .118 | 1.6               | .063 | 2.5                       | .098 | 2.98   | .117                  | 2.9            | .114 | 3.53 | .139     | 2.31    | .091     | 3   | 0.12                          |
| SFK-3               | 1.0               | 1                     | .039 | 3                        | .118 | 1.6               | .063 | 2.5                       | .098 | 2.98   | .117                  | 2.9            | .114 | 3.76 | .148     | 2.51    | .099     | 3   | 0.12                          |
| SFK-3               | 1.2               | 1.2                   | .047 | 3                        | .118 | 1.6               | .063 | 2.5                       | .098 | 2.98   | .117                  | 2.9            | .114 | 3.76 | .148     | 2.72    | .107     | 3   | 0.12                          |
| SFK-3               | 1.6               | 1.6                   | .063 | 3                        | .118 | 1.6               | .063 | 2.5                       | .098 | 2.98   | .117                  | 2.9            | .114 | 3.76 | .148     | 3.12    | .123     | 3   | 0.12                          |
| SFK-5               | 0.8               | 0.8                   | .031 | 5                        | .197 | 1.6               | .063 | 4.5                       | .177 | 4.98   | .196                  | 4.9            | .193 | 5.56 | .219     | 2.31    | .091     | 5.1 | 0.20                          |
| SFK-5               | 1.0               | 1                     | .039 | 5                        | .197 | 1.6               | .063 | 4.5                       | .177 | 4.98   | .196                  | 4.9            | .193 | 5.56 | .219     | 2.51    | .099     | 5.1 | 0.20                          |
| SFK-5               | 1.2               | 1.2                   | .047 | 5                        | .197 | 1.6               | .063 | 4.5                       | .177 | 4.98   | .196                  | 4.9            | .193 | 5.56 | .219     | 2.72    | .107     | 5.1 | 0.20                          |
| SFK-5               | 1.6               | 1.6                   | .063 | 5                        | .197 | 1.6               | .063 | 4.5                       | .177 | 4.98   | .196                  | 4.9            | .193 | 5.56 | .219     | 3.12    | .123     | 5.1 | 0.20                          |

(1) Fastener will provide flush application at minimum sheet thickness.





Type SFK joining metal to PCB/plastic.



### MATERIAL AND FINISH SPECIFICATIONS

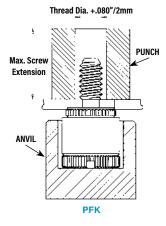
| Th                             |                                                    | reads <sup>(1)</sup> Fastener Materials            |                              |                                     |                               |       | Sta                                          | ndard Finishes                                  | 3                                                                                                                 | Optional F   | inish                                                                                                             |                  | For Use i                     | n Sheet H                     | ardness                       | : (3)                        |                                                                      |
|--------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------|-------------------------------------|-------------------------------|-------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|----------------------------------------------------------------------|
| Туре                           | Internal,<br>ASME<br>B1.1 2B/<br>ASME<br>B1.13M 6H | External,<br>ASME<br>B1.1 2A/<br>ASME<br>B1.13M 6g | Lead-Free<br>Carbon<br>Steel | 300<br>Series<br>Stainless<br>Steel | CDA-510<br>Phosphor<br>Bronze | Brass | Nylon,<br>Temp.<br>Limit<br>200° F/<br>93° C | Passivated<br>and/or<br>Tested Per<br>ASTM A380 | Electro-Plated<br>Tin ASTM<br>B 545, Class B<br>With Clear<br>Preservative<br>Coating,<br>annealed <sup>(4)</sup> | No<br>Finish | Electro-Plated<br>Tin ASTM<br>B 545, Class B<br>With Clear<br>Preservative<br>Coating,<br>annealed <sup>(4)</sup> | Black<br>Nitride | HRB 70 /<br>HB 125<br>or Less | HRB 65 /<br>HB 116<br>or Less | HRB 60 /<br>HB 107<br>or Less | HRB 55 /<br>HB 96<br>or Less | Aluminum,<br>Acrylic,<br>Castings,<br>Polycarbonate,<br>and PC board |
| KF2                            |                                                    |                                                    |                              |                                     |                               |       |                                              |                                                 |                                                                                                                   |              |                                                                                                                   |                  |                               |                               |                               |                              |                                                                      |
| KFS2                           | •                                                  |                                                    |                              | •                                   |                               |       |                                              | •                                               |                                                                                                                   |              |                                                                                                                   |                  | •                             |                               |                               |                              | •                                                                    |
| KFE                            |                                                    |                                                    |                              |                                     |                               |       |                                              |                                                 |                                                                                                                   |              |                                                                                                                   |                  |                               |                               |                               |                              |                                                                      |
| KFSE                           | •                                                  |                                                    |                              | •                                   |                               |       |                                              |                                                 |                                                                                                                   |              |                                                                                                                   |                  | •                             |                               |                               |                              | •                                                                    |
| KFB3                           |                                                    |                                                    |                              |                                     |                               |       |                                              |                                                 |                                                                                                                   |              |                                                                                                                   |                  |                               |                               |                               |                              |                                                                      |
| KSSB                           |                                                    |                                                    |                              |                                     |                               |       |                                              |                                                 |                                                                                                                   |              |                                                                                                                   |                  |                               |                               |                               |                              | •                                                                    |
| KFH                            |                                                    |                                                    |                              |                                     |                               |       |                                              |                                                 |                                                                                                                   |              |                                                                                                                   |                  |                               |                               |                               |                              |                                                                      |
| PFK                            |                                                    |                                                    |                              |                                     |                               |       |                                              |                                                 |                                                                                                                   |              |                                                                                                                   |                  |                               |                               |                               |                              |                                                                      |
| Retainer                       |                                                    |                                                    |                              |                                     |                               |       |                                              |                                                 |                                                                                                                   |              |                                                                                                                   |                  |                               |                               |                               |                              |                                                                      |
| Screw                          |                                                    | •                                                  |                              | •                                   |                               |       |                                              |                                                 |                                                                                                                   |              |                                                                                                                   |                  |                               |                               |                               |                              |                                                                      |
| Spring                         |                                                    |                                                    |                              | •                                   |                               |       |                                              |                                                 |                                                                                                                   |              |                                                                                                                   |                  |                               |                               |                               |                              |                                                                      |
| Retaining Ring                 |                                                    |                                                    |                              |                                     |                               |       | •                                            |                                                 |                                                                                                                   |              |                                                                                                                   |                  |                               |                               |                               |                              |                                                                      |
| Part Number Codes For Finishes |                                                    |                                                    |                              |                                     |                               | None  | ET                                           | Х                                               | ET                                                                                                                | BN           |                                                                                                                   |                  |                               |                               |                               |                              |                                                                      |

|               |                               | Threads (1)                                        |                                                    |                              | Faste                       | ener Materia                        | ls    |                 |                                                                       | Standard Finishes (2                                                                                           | 2)                                          | For Use in Sheet Hardness: <sup>(3)</sup> |          |  |
|---------------|-------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------|-----------------------------|-------------------------------------|-------|-----------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|----------|--|
| Туре          | Miniature<br>ISO 1501,<br>4H6 | Internal,<br>ASME<br>B1.1 2B/<br>ASME<br>B1.13M 6H | External,<br>ASME<br>B1.1 2A/<br>ASME<br>B1.13M 6g | Lead-Free<br>Carbon<br>Steel | Hardened<br>Carbon<br>Steel | 300<br>Series<br>Stainless<br>Steel | Brass | Zinc<br>Diecast | Zinc Plated<br>per ASTM B633,<br>SC1 (5µm),<br>Type III,<br>Colorless | Electro-Plated<br>Tin ASTM<br>B 545, Class A<br>With Clear<br>Preservative<br>Coating, annealed <sup>(4)</sup> | Bright<br>Nickel<br>Over<br>Copper<br>Flash | HRB 80 /<br>HB 150<br>or less             | PC board |  |
| SMTS0         | S1 to S1.4                    | 0-80 to 8-32/<br>M1.6 to M4                        |                                                    |                              |                             |                                     |       |                 |                                                                       | •                                                                                                              |                                             |                                           |          |  |
| SMTSOB        |                               | •                                                  |                                                    |                              |                             |                                     | •     |                 |                                                                       | (6)                                                                                                            |                                             |                                           | •        |  |
| SMTRA         |                               | •                                                  |                                                    |                              |                             |                                     |       | •               |                                                                       |                                                                                                                |                                             |                                           | •        |  |
| SMTPFLSM      |                               |                                                    |                                                    |                              |                             |                                     |       |                 |                                                                       |                                                                                                                |                                             |                                           |          |  |
| Retainer      |                               |                                                    |                                                    |                              |                             |                                     |       |                 |                                                                       |                                                                                                                |                                             |                                           |          |  |
| Screw         |                               |                                                    |                                                    |                              |                             |                                     |       |                 |                                                                       |                                                                                                                |                                             |                                           |          |  |
| Spring        |                               |                                                    |                                                    |                              |                             |                                     |       |                 |                                                                       |                                                                                                                |                                             |                                           |          |  |
| PSHP (5)      |                               |                                                    |                                                    |                              |                             |                                     |       |                 |                                                                       |                                                                                                                |                                             |                                           |          |  |
| SMTPR         |                               |                                                    |                                                    | F                            |                             |                                     |       |                 |                                                                       |                                                                                                                |                                             |                                           | •        |  |
| SFK           |                               |                                                    |                                                    | •                            |                             |                                     |       |                 |                                                                       | _                                                                                                              |                                             | •                                         | •        |  |
| SMTSSS        |                               |                                                    |                                                    |                              |                             |                                     |       |                 |                                                                       |                                                                                                                |                                             |                                           |          |  |
| SMTSK         |                               |                                                    |                                                    | •                            |                             |                                     |       |                 |                                                                       | •                                                                                                              |                                             |                                           |          |  |
| Part Number C | t Number Codes For Finishes   |                                                    |                                                    |                              |                             |                                     |       |                 | ZI                                                                    | ET                                                                                                             | CN                                          |                                           |          |  |

- (1) For plated studs, Class 2A/6g, the maximum major and pitch diameter, after plating, may equal basic sizes and can be gauged to Class 3A/6h, per ASME B1.1 Section 7, Paragraph 2 and ASME B1.13M, Section 8, Paragraph 8.2.
- (2) See PEM Technical Support section of our web site for related plating standards and specifications.
- (3) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (4) Optimal solderability life noted on packaging.
- (5) ABS cap on PSHP screw has a temperature limit of 200° F / 93° C.
- (6) The tin deposit on type SMTSOB meets the requirements of ASTM B545, Class A and although the copper and nickel barrier layers used under the tin do not strictly comply with ASTM B545 thickness requirements they have proven effective at preventing zinc migration and providing the specified solderable shelf life.

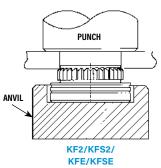
### **INSTALLATION**

### KF2™/KFS2™/KFE™/KFSE™/ PFK™ FASTENERS


- 1. Prepare properly sized mounting hole in board.
- 2. Place fastener into the anvil hole and place the mounting hole over the shank of the fastener as shown in drawing.
- **3.** With installation punch and anvil surfaces parallel, apply squeezing force until shoulder contacts the board.

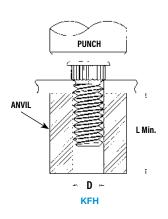
### **PEMSERTER® Installation Tooling**

| Туре     | Thread<br>Code     | Anvil Part<br>Number | Punch Part<br>Number |
|----------|--------------------|----------------------|----------------------|
| KFE/KFSE | 440/116 -4 to -8   | 975200846300         |                      |
| KFE/KFSE | 440/116 -10 to -12 | 975200847300         |                      |
| KFE/KFSE | 440/116 -16 to -20 | 975200848300         |                      |
| KFE/KFSE | 440/116 -20 to -24 | 975200882300         |                      |
| KFE/KFSE | M3 -3 to -6        | 975200846300         |                      |
| KFE/KFSE | M3 -8 to -10       | 975200847300         |                      |
| KFE/KFSE | M3 -12 to -14      | 975201222300         | 975200048            |
| KFE/KFSE | M3 -14 to -16      | 975200848300         |                      |
| KFE/KFSE | 632/143 -4 to -8   | 975200849300         |                      |
| KFE/KFSE | 632/143 -10 to -12 | 975200850300         |                      |
| KFE/KFSE | 632/143 -16 to -20 | 975200851300         |                      |
| KFE/KFSE | 632/143 -22 to -24 | 975200883300         |                      |
| KFE/KFSE | 632/143 -28 to -32 | 975200884300         |                      |
| KFE/KFSE | 3.6 -3 to -6       | 975200849300         |                      |
| KFE/KFSE | 3.6 -8 to -10      | 975200850300         |                      |
| KFE/KFSE | 3.6 -12 to -16     | 975200851300         |                      |
| KFE/KFSE | 4.2 -2             | 975201216300         | 975200048            |
| KFE/KFSE | 4.2 -3 to -6       | 975201217300         |                      |
| KFE/KFSE | 4.2 -8 to -10      | 975201218300         |                      |
| KFE/KFSE | 4.2 -12 to -14     | 975201220300         |                      |
| KFE/KFSE | 4.2 -14 to -16     | 975201219300         |                      |


### **PEMSERTER® Installation Tooling**

| Туре | Thread<br>Code | Anvil Part<br>Number | Punch Part<br>Number |  |  |
|------|----------------|----------------------|----------------------|--|--|
| PFK  | 440/M3         | 975200026            | 975200060            |  |  |
| PFK  | 632            | 975200027            | 975200061            |  |  |

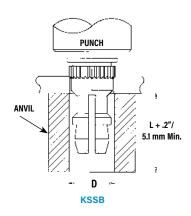



### **PEMSERTER®** Installation Tooling

| Туре     | Thread<br>Code     | Anvil Part<br>Number | Punch Part<br>Number |
|----------|--------------------|----------------------|----------------------|
| KF2/KFS2 | 080                | 8015899              |                      |
| KF2/KFS2 | 256/440/M2/M2.5/M3 | 975200904300         |                      |
| KF2/KFS2 | 632/M3.5           | 975200035            | 975200048            |
| KF2/KFS2 | 832/M4             | 975200037            |                      |
| KF2/KFS2 | 032/M5             | 975200905300         |                      |



### KSSB™/KFH™ FASTENERS


- 1. Prepare properly sized mounting hole in board.
- 2. Place fastener into mounting hole as shown.
- **3.** With installation punch and anvil surfaces parallel, apply squeezing force until head contacts the board.



### **PEMSERTER® Installation Tooling**

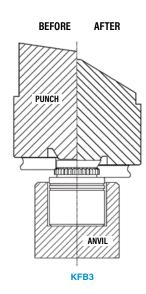
| Part<br>Number | D<br>+.003"000" | Punch<br>Part No. | Anvil<br>Part No.* |
|----------------|-----------------|-------------------|--------------------|
| KFH-440-L      | .113"           |                   | 970200006300       |
| KFH-632-L      | .140"           | 975200048         | 970200007300       |
| KFH-832-L      | .166"           |                   | 970200008300       |
| KFH-032-L      | .191"           |                   | 970200009300       |

| Part<br>Number | D<br>+0.08mm | Punch<br>Part No. | Anvil<br>Part No.* |
|----------------|--------------|-------------------|--------------------|
| KFH-M3-L       | 3.1mm        |                   | 970200229300       |
| KFH-M4-L       | 4.1mm        | 975200048         | 970200019300       |
| KFH-M5-L       | 5.1mm        |                   | 970200008300       |



### **PEMSERTER® Installation Tooling**

| Part<br>Number | D<br>+.003"000"/<br>+0.08mm | Punch<br>Part No. | Anvil for material<br>.050" / 1.27mm to<br>.065" / 1.65mm | Anvil for material<br>greater than<br>.065" / 1.65mm |  |
|----------------|-----------------------------|-------------------|-----------------------------------------------------------|------------------------------------------------------|--|
| KSSB-156-L     | .216"                       | 975200048         | 8022167                                                   | 970200015300                                         |  |
| KSSB-4mm-L     | 5.49mm                      | 373200046         | 0022107                                                   | 9/0200015300                                         |  |


### **KFB3™ FASTENERS**

- 1. Prepare properly sized mounting hole in board.
- 2. Place fastener into the anvil hole and place the mounting hole over the shank of the fastener as shown in diagram to the left.
- 3. Using a punch flaring tool and a recessed anvil, apply squeezing force until the shoulder of the fastener contacts the board. As the fastener seats itself in the proper position, the punch tool will flare the extended portion of the shank outward to complete the installation. The combination of broaching and flaring provides high pushout performance.

### PEMSERTER® Installation Tooling(1)

| Thread<br>Code | Length<br>Code | Anvil        | Punch<br>(Flaring Tool) |
|----------------|----------------|--------------|-------------------------|
| #4-40          | -2             | 975201213300 |                         |
| #4-40          | -4 to -8       | 975200846300 |                         |
| #4-40          | -10 to -12     | 975200847300 | 975201231400            |
| #4-40          | -16 to -20     | 975200848300 |                         |
| #4-40          | -20 to -24     | 975200882300 |                         |
| #6-32          | -2             | 975201215300 |                         |
| #6-32          | -4 to -8       | 975200849300 |                         |
| #6-32          | -10 to -12     | 975200850300 | 975201232400            |
| #6-32          | -16 to -20     | 975200851300 | 57 52 51 25 Z 7 6 0     |
| #6-32          | -22 to -24     | 975200883300 |                         |
| #6-32          | -28 to -32     | 975200884300 |                         |

| Thread<br>Code | Length<br>Code | Anvil        | Punch<br>(Flaring Tool) |
|----------------|----------------|--------------|-------------------------|
| М3             | -2             | 975201213300 |                         |
| М3             | -3 to -6       | 975200846300 |                         |
| М3             | -8 to -10      | 975200847300 | 975201231400            |
| М3             | -12 to -14     | 975201222300 |                         |
| М3             | -14 to -16     | 975200848300 |                         |
| M4             | -2             | 975201216300 |                         |
| M4             | -3 to -6       | 975201217300 |                         |
| M4             | -8 to -10      | 975201218300 | 975201221400            |
| M4             | -12 to -14     | 975201220300 |                         |
| M4             | -14 to -16     | 975201219300 |                         |



(1) PennEngineering manufactures and stocks the installation tooling for KFB3 fasteners.

### **SFK™ FASTENERS**

- **Step 1.** Prepare properly sized mounting hole in both panels.
- Step 2. Using only Panel 1, with the punch and anvil surfaces parallel, apply squeezing force until the fastener is flush with the top of Panel 1.
- Step 3. Place Panel 2 over fastener and apply squeezing force.

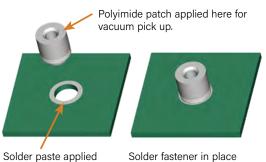
### PEMSERTER® Installation Tooling(1)

| Size  | C<br>±0.13/±.003<br>(mm) / (in.) | Punch<br>Part No. | Anvil<br>Part No.* |
|-------|----------------------------------|-------------------|--------------------|
| SFK-3 | 3.05 / .120                      | 975200048         | 970200229300       |
| SFK-5 | 5.05 / .199                      | 975200048         | 970200020300       |

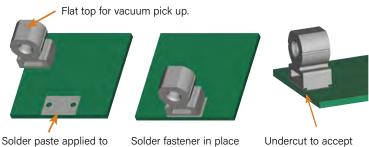
<sup>\*</sup> Part number for anvil used in Step 2

**Punch** Panel 1 Metal Anvil **Punch** C Step 2 Panel 2 PCB/plastic Panel 1 Anvil Step 3

NOTE: Fastener can be installed in both sheets at once when metal panel is adequately soft compared to the non-metal panel. E-mail techsupport@pemnet.com for more information.


### **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.

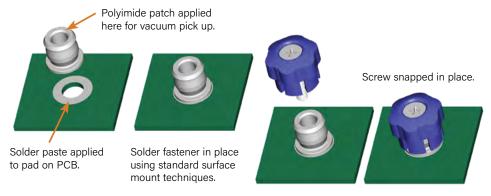

### **INSTALLATION**

to pad on PCB.

### **SMTSO™ NUTS AND STANDOFFS**

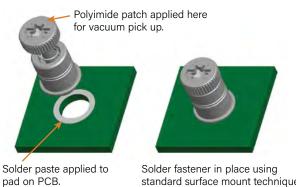


### SMTRA™ R'ANGLE® FASTENERS




Solder fastener in place using standard surface mount techniques.

using standard surface mount techniques.

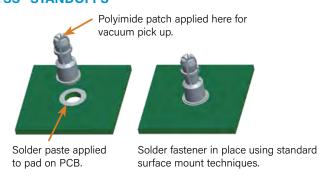

solder fillet and permit flush to edge installation.

### SMTPF™ CAPTIVE PANEL SCREWS

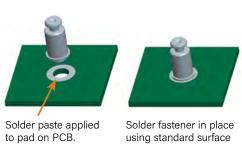


pad on PCB.

### SMTPFLSM™ CAPTIVE PANEL SCREWS




standard surface mount techniques.




Installs in retracted/unfastened position

### **SMTSS™ STANDOFFS**



### **SMTSK™ STANDOFFS**



mount techniques.

### PERFORMANCE DATA(1)

### KF2™/KFS2™/KFSE™/KFB3™/KFH™/PFK™ BROACHING AND BROACH/FLARE MOUNT FASTENERS

|   | Туре      | Thread<br>Code | Max. Nut<br>Tightening Torque<br>(in. lbs.) | Test Sheet Thickness<br>&<br>Test Sheet Material | Installation<br>(lbs.) | Pushout (2)<br>(lbs.) | Torque-out<br>(in. lbs.) |
|---|-----------|----------------|---------------------------------------------|--------------------------------------------------|------------------------|-----------------------|--------------------------|
|   |           | 256            | (3)                                         | .060" FR-4 Panel                                 | 400                    | 60                    | 6                        |
|   | KF2, KFS2 | 440            | (3)                                         | .060" FR-4 Panel                                 | 400                    | 65                    | 15                       |
|   | KFE, KFSE | 632            | (3)                                         | .060" FR-4 Panel                                 | 500                    | 80                    | 30                       |
|   |           | 832            | (3)                                         | .060" FR-4 Panel                                 | 700                    | 95                    | 35                       |
| Е |           | 032            | (3)                                         | .060" FR-4 Panel                                 | 700                    | 100                   | 40                       |
| Œ | KFB3      | 440            | (3)                                         | .060" FR-4 Panel                                 | 1,000                  | 140                   | 18                       |
| Z |           | 632            | (3)                                         | .060" FR-4 Panel                                 | 1,500                  | 170                   | 28                       |
| 7 |           | 440            | 4                                           | .060" FR-4 Panel                                 | 400                    | 65                    | 7                        |
|   | KFH       | 632            | 8                                           | .060" FR-4 Panel                                 | 400                    | 70                    | 11                       |
|   | ΝГП       | 832            | 15                                          | .060" FR-4 Panel                                 | 400                    | 80                    | 16                       |
|   |           | 032            | 18                                          | .060" FR-4 Panel                                 | 400                    | 90                    | 17                       |
|   | DEI       | 440            | (3)                                         | .060" FR-4 Panel                                 | 250                    | 55                    | (3)                      |
|   | PFK       | 632            | (3)                                         | .060" FR-4 Panel                                 | 400                    | 60                    | (3)                      |

|     | Туре      | Thread<br>Code | Max. Nut<br>Tightening Torque<br>(N-m) | Test Sheet Thickness<br>&<br>Test Sheet Material | Installation<br>(kN) | Pushout <sup>(2)</sup><br>(N) | Torque-out<br>(N-m) |
|-----|-----------|----------------|----------------------------------------|--------------------------------------------------|----------------------|-------------------------------|---------------------|
|     |           | M2             | (3)                                    | 1.5 mm FR-4 Panel                                | 2.2                  | 267                           | 0.68                |
|     | KF2, KFS2 | M3             | (3)                                    | 1.5 mm FR-4 Panel                                | 2.2                  | 290                           | 1.7                 |
| Jo  | KFE, KFSE | M4             | (3)                                    | 1.5 mm FR-4 Panel                                | 2.2                  | 420                           | 3.4                 |
| - H |           | M5             | (3)                                    | 1.5 mm FR-4 Panel                                | 2.9                  | 440                           | 4.5                 |
| ET  | KFB3      | M3             | (3)                                    | 1.5 mm FR-4 Panel                                | 4.4                  | 560                           | 2.03                |
| Σ   | INI DO    | M4             | (3)                                    | 1.5 mm FR-4 Panel                                | 6                    | 680                           | 3.2                 |
|     |           | M3             | 0.45                                   | 1.5 mm FR-4 Panel                                | 1.8                  | 285                           | 0.79                |
|     | KFH       | M4             | 1.6                                    | 1.5 mm FR-4 Panel                                | 1.8                  | 355                           | 1.8                 |
|     |           | M5             | 2.1                                    | 1.5 mm FR-4 Panel                                | 1.8                  | 400                           | 1.92                |
|     | PFK       | M3             | (3)                                    | 1.5 mm FR-4 Panel                                | 1.1                  | 245                           | (3)                 |

### KSSB™ BROACHING SNAP-TOP® STANDOFFS

| Δ: |      | Panel 1 (.060" FR-4 Fiberglass) <sup>(4)</sup> |                   | Panel 2 (Removable) (4)       |                                |                               |
|----|------|------------------------------------------------|-------------------|-------------------------------|--------------------------------|-------------------------------|
| FE | Туре | Installation<br>(lbs.)                         | Pushout<br>(lbs.) | Max. First On<br>Force (lbs.) | Min. First Off<br>Force (lbs.) | Min. 15th Off<br>Force (lbs.) |
| NO | KSSB | 500                                            | 110               | 13                            | 3.0                            | 1.0                           |

| ပ    |  |      | Panel 1 (1.5 mm FR-4 Fiberglass) <sup>(4)</sup> |                | Panel 2 (Removable) (4)    |                             |                            |
|------|--|------|-------------------------------------------------|----------------|----------------------------|-----------------------------|----------------------------|
| T.B. |  |      | Installation<br>(kN)                            | Pushout<br>(N) | Max. First On<br>Force (N) | Min. First Off<br>Force (N) | Min. 15th Off<br>Force (N) |
| ME   |  | KSSB | 2.2                                             | 484            | 57.7                       | 13.3                        | 4.4                        |

<sup>(1)</sup> Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/ or samples for this purpose.

- (2) These are typical values for parts installed in drilled mounting holes. Punched mounting holes yield values approximately 15% less.
- (3) Not applicable.
- (4) See Application Data drawing on page 91.

### SFK™ SpotFast® CLINCH/BROACH MOUNT FASTENERS

| Туре        | Thick- | Installation    | into Panel 1 | Installation into Panel 2 |         | Duchout of                        | Panel 2 (3) |
|-------------|--------|-----------------|--------------|---------------------------|---------|-----------------------------------|-------------|
| and<br>Size | ness   | Cold-roll       | ed Steel     | FR-4 Fib                  | erglass | Pushout of Panel 2 <sup>(3)</sup> |             |
| Size        | Code   | Code kN lbs. kN |              | kN                        | lbs.    | N                                 | lbs.        |
| SFK-3       | 0.8    | 6.2             | 1400         | 1.8                       | 400     | 200                               | 45          |
| SFK-3       | 1.0    | 8               | 1800         | 1.8                       | 400     | 200                               | 45          |
| SFK-3       | 1.2    | 8.9             | 2000         | 1.8                       | 400     | 200                               | 45          |
| SFK-3       | 1.6    | 10.2            | 2300         | 1.8                       | 400     | 200                               | 45          |
| SFK-5       | 0.8    | 11.1            | 2500         | 1.8                       | 400     | 400                               | 90          |
| SFK-5       | 1.0    | 13.5            | 3000         | 1.8                       | 400     | 400                               | 90          |
| SFK-5       | 1.2    | 15.6            | 3500         | 1.8                       | 400     | 400                               | 90          |
| SFK-5       | 1.6    | 17.8            | 4000         | 1.8                       | 400     | 400                               | 90          |

### SMTSO™/SMTSOB™ FASTENERS(1)(2)

|        | Thread/           |                   | Test Sheet Material062" Single Layer FR-4 |                          |                     |                                |
|--------|-------------------|-------------------|-------------------------------------------|--------------------------|---------------------|--------------------------------|
| Туре   | Thru-hole<br>Code | Pushout<br>(lbs.) | Pushout<br>(N)                            | Torque-out<br>(in. lbs.) | Torque-out<br>(N-m) | Current<br>Amps <sup>(6)</sup> |
| SMTS0  | 080               | 85.1              | 378.7                                     | 4,94                     | 0.56                | 11                             |
| SMTS0B | 000               | 00.1              | 370.7                                     | 4,34                     | 0.50                | _                              |
| SMTS0  | 256               | 56.5              | 251                                       | 8.56                     | 1                   | 25                             |
| SMTS0B | 230               | 30.3              | 231                                       | 0.50                     | '                   | 40                             |
| SMTS0  | 440               | 56.5              | 251                                       | 8.56                     | 1                   | 22                             |
| SMTSOB | 110               | 30.3              | 231                                       | 0.50                     | ·                   | 36                             |
| SMTS0  | 632               | 93.5              | 416                                       | 13.83                    | 1.6                 | 34                             |
| SMTSOB | 032               | 33.3              | 410                                       | 15.05                    | 1.0                 | 55                             |
| SMTS0  | 832               | 151.1             | 672                                       | 26,96                    | 3                   | 47                             |
| SMTSOB | 032               | 101.1             | 072                                       | 20.50                    | 3                   | 76                             |
| SMTS0  | 116               | _                 | _                                         | _                        | _                   | 22                             |
| SMTSOB | 110               |                   |                                           |                          |                     | 37                             |
| SMTS0  | 143               | _                 | _                                         | _                        | _                   | 33                             |
| SMTSOB | 110               |                   |                                           |                          |                     | 55                             |
| SMTS0  | M1                | 85.1              | 378.7                                     | 4,94                     | 0.56                | 11                             |
| SMTSOB |                   | COII              | 07011                                     | 110 1                    | 0.00                | _                              |
| SMTS0  | M1.2              | 85,1              | 378.7                                     | 4,94                     | 0.56                | 10                             |
| SMTSOB | 11112             | 0011              | 07011                                     | 110 1                    | 0.00                | _                              |
| SMTS0  | M1.4              | 85.1              | 378.7                                     | 4,94                     | 0.56                | 10                             |
| SMTSOB |                   | 0011              | 07017                                     | 110 1                    | 0.00                | _                              |
| SMTS0  | M1.6              | 85.1              | 378.7                                     | 4,94                     | 0.56                | 10                             |
| SMTSOB |                   |                   | 0.0                                       |                          | 0.00                | _                              |
| SMTS0  | M3                | 56.5              | 251                                       | 8,56                     | 1                   | 22                             |
| SMTSOB |                   | 55.5              | 20.                                       | 0.00                     | ·                   | 36                             |
| SMTS0  | M3.5              | 93.5              | 416                                       | 13.83                    | 1,6                 | 34                             |
| SMTSOB |                   |                   |                                           |                          |                     | 55                             |
| SMTS0  | M4                | 151,1             | 672                                       | 26,96                    | 3                   | 47                             |
| SMTSOB | *** *             |                   |                                           |                          |                     | 76                             |
| SMTS0  | 3.1               | _                 | _                                         | _                        | _                   | 22                             |
| SMTSOB |                   |                   |                                           |                          |                     | 36                             |
| SMTS0  | 3.6               | _                 | _                                         | _                        | _                   | 33                             |
| SMTSOB |                   |                   |                                           |                          |                     | 55                             |
| SMTS0  | 4.2               | _                 | _                                         | _                        | _                   | 46                             |
| SMTS0B |                   |                   |                                           |                          |                     | 75                             |

### SMTSS™ ReelFast® SNAP-TOP® STANDOFFS(1)(2)

|                         | Panel 1 (Bottom           | Panel 2 (Top) |                    |
|-------------------------|---------------------------|---------------|--------------------|
| Type, Material and Size | Test Sheet Material       | Pushout       | Max. Snap-on Force |
| SMTSSS-156              | .062" Single Layer FR-4   | 113 lbs.      | 20 lbs.            |
| SMTSSS-4MM              | 1.58 mm Single Layer FR-4 | 500 N         | 89 N               |

### SMTSK™ KEYHOLE® STANDOFFS(1)(2)

|               | Panel 1 (Bottom)          |          |  |  |
|---------------|---------------------------|----------|--|--|
| Type and Size | Test Sheet Material       | Pushout  |  |  |
| SMTSK-6060    | .062" Single Layer FR-4   | 113 lbs. |  |  |
| SMTSK-61.5    | 1.58 mm Single Layer FR-4 | 500 N    |  |  |

### SMTRA™ R'ANGLE® FASTENERS(1)(2)

| D  | Part          | Test Sheet Material062" Single Layer FR-4 |                  |  |  |  |  |  |
|----|---------------|-------------------------------------------|------------------|--|--|--|--|--|
| ш  | Number        | Pushout (lbs.)                            | Side Load (lbs.) |  |  |  |  |  |
| Ξ. | SMTRA256-8-6  | 51.7                                      | 7.1              |  |  |  |  |  |
| _  | SMTRA440-9-6  | 89.5                                      | 10.8             |  |  |  |  |  |
| Z  | SMTRA632-10-8 | 110.3                                     | 8.4              |  |  |  |  |  |
| _  | SMTRA832-12-9 | 137.2                                     | 21.2             |  |  |  |  |  |

|          | Part         | Test Sheet Material - 1.58 mm Single Layer FR-4 |               |  |  |  |  |  |  |
|----------|--------------|-------------------------------------------------|---------------|--|--|--|--|--|--|
| ျ        | Number       | Pushout (N)                                     | Side Load (N) |  |  |  |  |  |  |
| <u>د</u> | SMTRAM2-6-5  | 418.2                                           | 56.8          |  |  |  |  |  |  |
| <u> </u> | SMTRAM25-6-5 | 216.5                                           | 36.9          |  |  |  |  |  |  |
| ΙΞ       | SMTRAM3-7-5  | 257.6                                           | 41.3          |  |  |  |  |  |  |
|          | SMTRAM4-9-7  | 369.3                                           | 73.3          |  |  |  |  |  |  |

### SMTPFLSM™ FASTENERS(1)

| E D |              | Min. Tensile | Rec. Tightening           | Test Sheet Material |  |
|-----|--------------|--------------|---------------------------|---------------------|--|
| Ξ.  | Type and     | Strength     | Torque                    | .060" P.C. Board    |  |
| 14. | Thread Size  | (lbs.)       | (in. lbs.) <sup>(4)</sup> | Pull-off (lbs.) (5) |  |
| Z   | SMTPFLSM-440 | 556          | 4.4                       | 100                 |  |
| n   | SMTPFLSM-632 | 724          | 7.0                       | 105                 |  |

| TRIC | Type and<br>Thread Size | Min. Tensile<br>Strength<br>(N) | Rec. Tightening<br>Torque<br>(N-m) <sup>(4)</sup> | Test Sheet Material 1.5 mm P.C. Board Pull-off (N) (5) |
|------|-------------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------------|
| ш    | SMTPFLSM-M3             | 2900                            | 0.61                                              | 445                                                    |
| Σ    | SMTPFLSM-M3.5           | 3269                            | 0.8                                               | 465                                                    |

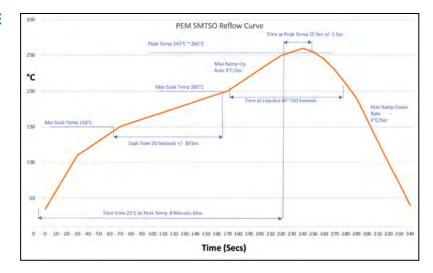
### SMTPR™ RETAINERS(1)

|             | Test Sheet Material062" Single Layer FR-4 |         |  |  |  |  |
|-------------|-------------------------------------------|---------|--|--|--|--|
| Part Number | Pushout                                   | Pushout |  |  |  |  |
|             | (lbs.)                                    | (N)     |  |  |  |  |
| SMTPR-6-1ET | 161.4                                     | 718     |  |  |  |  |

### **TESTING CONDITIONS FOR SURFACE MOUNTED FASTENERS**

Oven Quad ZCR convection oven w/ 4 zones Spokes 2 Spoke Pattern

 High Temp
 473 ° F / 245 ° C
 Paste
 Amtech NC559LF Sn96.5/3.0Ag/0.5Cu (SAC305) (SMTSO, SMTRA, SMTPR)


 Board Finish
 62% Sn, 38% Pb
 Alpha CVP-390 Sn96.5/3.0Ag/0.5Cu (SAC305) (SMTPFLSM, SMTSS, SMTSK)

Screen Printer Ragin Manual Printer Stencil .0067" / 0.17 mm thick (SMTSO, SMTRA, SMTPR, SMTSS, SMTSK)

Vias None .005" / 0.13 mm thick (SMTPFLSM)

- (1) With lead-free paste. Average values of 30 test points. The data presented here is for general comparison purposes only. Actual performance is dependent upon application variables. We will be happy to provide samples for you to install. If required, we can also test your installed hardware and provide you with the performance data specific to your application.
- (2) Further testing details can be found in our website's literature section.
- (3) In most applications, pullout strength of the SFK fastener in Panel 1 exceeds pushout strength of Panel 2.
- (4) Torque values shown will produce a preload of 70% minimum tensile with a nut factor "k" equal to .1.
- (5) Failure occurred at the solder joint. Screw retention strength is greater than the retainer.
- (6) The maximum carrying current for each of the above fasteners is calculated based on a heat transfer coefficient of 20 W/m² °K and a maximum temperature rise of 15°C / 27°F above ambient.

### SMTSO™ REFLOW CURVE



### OTHER FASTENERS FOR CONSIDERATION TO USE WITH PC BOARDS

### PF11MW™ FLOATING CAPTIVE PANEL SCREWS

### (See PEM® Bulletin PF)

Unique flare mount feature allow fasteners to "float" in mounting hole.

- Compensates for mating thread misalignment.
- Installs into any panel material.
- Appropriate for close center-line-to-edge applications.
- · Color coded knobs available.



### PF11MF™ FLARE-MOUNTED CAPTIVE PANEL SCREWS

### (See PEM® Bulletin PF)

- Appropriate for close centerline-to-edge applications.
- Doesn't require high installation force.
- Installs into any panel material.
- Installs flush on back side of panel.
- Color coded knobs available.

### Can install into PC Board, plastic or metal

### SGPC™ SWAGING COLLAR STUDS

### (See PEM® Bulletin FH)

- Can be installed into most materials, including stainless steel and rigid non-metallic panels.
- · Can be used to attach dissimilar materials.
- Can accommodate multiple panels as long as the total thickness does not exceed the maximum sheet thickness.
- Appropriate for close center-line-to-edge applications.



### **SOAG™/SOSG™ GROUNDING STANDOFFS**

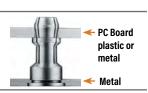
### (See PEM® Bulletin SO)

- Designed for clinching into steel or aluminum chassis.
- "Gripping teeth" on opposite side of standoff makes firm electrical contact with mating PC Board.



### SKC™ KEYHOLE® STANDOFFS

### (See PEM® Bulletin SK)


- Clinch feature mounts fastener permanently into metal sheet.
- Allows for quick attachment and detachment of PC Board.
- Head is flush or sub-flush in metal sheet.
- Makes horizontal or vertical component mounting possible.

# - PC Board plastic or metal Metal

### SSA™/SSC™/SSS™ SNAP-TOP® STANDOFFS

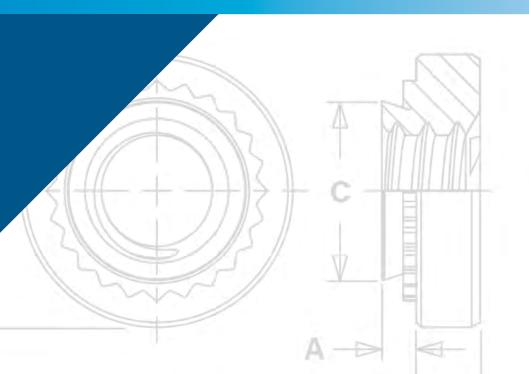
### (See PEM® Bulletin SSA)

- Spring action holds PC Boards and subassemblies securely, while allowing for guick removal.
- Screws and other threaded hardware are eliminated.





PEM® self-clinching locknuts prevent mating hardware from loosening.










# SELF-LOCKING FASTENERS





### PEM® SELF-CLINCHING LOCKNUTS PREVENT MATING HARDWARE FROM LOOSENING

PEM® self-clinching locknuts provide ideal solutions to prevent mating hardware from loosening in service due to vibration or other application-related factors. This family of fasteners includes a variety of types and different lockingfeature styles to satisfy a wide range of applications. Their use can save time and money compared with alternative chemical locking methods or patches.

### **ABOUT LOCKING THREADS**

PEM® locknuts include two locking designs:

1) PREVAILING TORQUE (CFN™, FE™, FEO™, UL™, LAS™, LAC™, LA4™, LKS™, LKS™, LKA™, PL™, PLC™ and SL™ locknuts) – a design feature of the lock nut produces friction between threads of mated components thereby increasing the force needed to tighten as well as loosen the nut. Prevailing torque locknuts provide essentially the same torque value regardless of the amount of axial load applied.

### Available in two types:

### All metal -

All PEM metal prevailing torque type locknuts achieve their prevailing torque by altering the shape of the nut in some way - most commonly by distorting the threads of the nut, which then grips the mating part during tightening. Screws for use with PEM prevailing torque locknuts should be Class 3A/4h fit or no smaller than Class 2A/6g.

### Available in three styles:

- Elliptically squeezed threads (UL™, FE™, FEO™, LAC™, LAS™ and LA4™ locknuts) the thread barrel is slightly deformed into an elliptical shape.
- Flexing jaws (LK™, LKS™ and LKA™ locknuts) the thread barrel is vertically slit and then the two sections are squeezed together.
- One or two deformed threads (SL™ locknuts) the last threads on the head side of the nut are deformed.

Typically prevailing torque locknuts utilizing a metal locking feature are treated with a dry film lubricant coating to afford some level of lubricity to reduce damage to the threads from repeated installation and removal of the screw and reduce required tightening torque. Care should be taken to be sure that lubricant is not removed in any post installed finishing operations.

### Nylon insert

The PL™, PLC™ and CFN™ locknuts use a plastic insert, typically made from nylon to generate the torque resistance. A nylon ring is attached to the self-clinching body on the screw exit side with an ID approximately at the screw pitch diameter. As the screw enters this ring, there is interference at the major diameter generating a prevailing torque. The major advantage of this locking method is the greatly reduced chance of any conductive debris being generated by repeated installation and removal of the screw.

2) FREE-RUNNING (PEM RT<sup>®</sup> locknuts) - a nut that requires tightening against a bearing surface in order for the locking mechanism to function. If the tightening force (clamp load) is removed for any reason, these nuts no longer provide any torsional resistance to rotation. The modified thread formation allows mating screws to spin freely during the attachment process until clamp load is induced during the screw-tightening process.

PEM free-running locknuts will accept a maximum material 6g/2A screw.



CFN™ broaching fasteners are available for thinner sheet, close-to-edge applications. The nylon locking element provides prevailing torque to eliminate loosening of mating threaded hardware - PAGE 107



Nylon Insert

FE<sup>™</sup>/FEO<sup>™</sup>/UL<sup>™</sup> miniature locking nuts, provide a smaller body for tight space, lightweight applications - PAGE 108



Elliptically Squeezed Threads

LAS™/LAC™/LA4™ nuts with self-locking, floating threads that permit up to .030″/0.76 mm adjustment for mating hole misalignment - PAGE 109



Elliptically Squeezed Threads

LK™/LKS™/LKA™ nuts have





Flexing Jaws

PL™/PLC™ PEMHEX® nuts with a nylon hexagonal element provide a locking option for applications where a metal on metal locking feature is not desired - PAGE 111



Nvlon Insert

SL™ locknuts offer a cost effective TRI-DENT® locking feature and effective prevailing locking torque - PAGE 112



Deformed Threads

**PEM RT®** locknuts are free-running until clamp load is induced. A modified thread angle on the loaded flank provides the vibration resistant locking feature- **PAGE 113** 



Free-running Threads

**Material and finish specifications - PAGES 114** 

Installation - PAGES 115 - 118

Performance data - PAGES 119 - 123

### **LOCKING NUT SELECTOR GUIDE**

|                    |             |                        |               | Application F | eatures |                   | Locking                    | Non-metal           |                       |          |                   |
|--------------------|-------------|------------------------|---------------|---------------|---------|-------------------|----------------------------|---------------------|-----------------------|----------|-------------------|
| PEM<br>Locking     | Page<br>No. | Locking<br>Performance | High<br>Clamp | Floating      | Light   | Close-to-<br>edge | Performance<br>Temperature | on Metal<br>Locking | Locking               | Covered  | by <sup>(1)</sup> |
| Nut                |             | Cycles                 | Strength      | Threads       | Weight  | Applications      | Limit                      | Feature             | Style                 | M45938/7 | M45938/11         |
| CFN                | 107         | 1                      | •             |               |         | •                 | (6)                        | •                   | Nylon Insert          |          |                   |
| FE                 | 108         | 15 <sup>(3)</sup>      |               |               | •       | •                 | (7)                        |                     | Elliptically Squeezed | •        |                   |
| FE0                | 108         | 15 <sup>(3)</sup>      |               |               | •       | •                 | (7)                        |                     | Elliptically Squeezed | •        |                   |
| UL                 | 108         | 5 <sup>(4)</sup>       |               |               | •       | •                 | (7)                        |                     | Elliptically Squeezed | •        |                   |
| LAS                | 109         | 15 <sup>(3)</sup>      | •             | •             |         |                   | (7)                        |                     | Elliptically Squeezed |          | •                 |
| LAC                | 109         | 15 <sup>(3)</sup>      | •             | •             |         |                   | (7)                        |                     | Elliptically Squeezed |          | •                 |
| LA4 <sup>(2)</sup> | 109         | 15 <sup>(3)</sup>      | •             | •             |         |                   | (7)                        |                     | Elliptically Squeezed |          |                   |
| LK                 | 110         | 15 <sup>(3)</sup>      |               |               |         |                   | (7)                        |                     | Flexing Jaws          |          |                   |
| LKS                | 110         | 15 <sup>(3)</sup>      | •             |               |         |                   | (7)                        |                     | Flexing Jaws          |          |                   |
| LKA                | 110         | 15 <sup>(3)</sup>      |               |               |         |                   | (9)                        |                     | Flexing Jaws          |          |                   |
| PL                 | 111         | 15 <sup>(3)</sup>      |               |               |         |                   | (6)                        | •                   | Nylon Insert          |          |                   |
| PLC                | 111         | 15 <sup>(3)</sup>      |               |               |         |                   | (6)                        | •                   | Nylon Insert          |          |                   |
| SL                 | 112         | 3                      | •             |               |         |                   | (8)                        |                     | Deformed Threads      |          |                   |
| PEM RT®            | 113         | (5)                    | •             |               |         |                   | (8)                        |                     | Free-running Threads  |          |                   |

<sup>(1)</sup> To meet national aerospace standards and to obtain testing documentation, product must be ordered using appropriate NASM45938 part number. Check our web site for a complete Military Specification and National Aerospace Standards Reference Guide (Bulletin NASM).

<sup>(2)</sup> Specifically designed to be installed into stainless steel sheets.

<sup>(3)</sup> See page 125 for information on NASM25027 as applied to PEM self-clinching, self-locking nuts.

<sup>(4)</sup> Meets torque requirements for NASM25027 through five cycles.

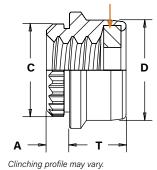
<sup>(5)</sup> Locking performance is not affected by the number of on/off cycles.

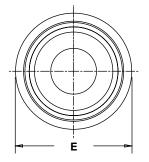
<sup>(6)</sup> Nylon locking element temperature limit is 250° F / 120° C.

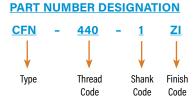
<sup>(7)</sup> Dry film lubricant rated for use up to 400° F / 204° C.

<sup>(8)</sup> The fastening strength of the locknut is maintained up to 800° F / 426° C. Temperatures above 300° F / 149° C will dehydrate the conversion coating.

<sup>(9)</sup> Aluminum material temperature limit is 250° F / 120° C.


# **CFN™ BROACHING LOCKNUT**





- For thinner sheets, close-to-edge applications.
- Prevailing torque locking element provides torque to eliminate loosening of mating threaded hardware.

Nylon locking element (Blue identifier\* for unified fasteners / black identifies metric fasteners)





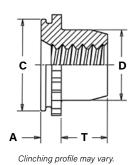


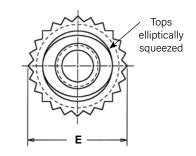


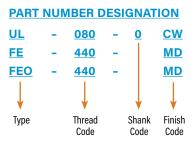
### All dimensions are in inches.

| FIED  | Thread<br>Size     | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>±.003 | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | C<br>±.002 | D<br>±.004 | E<br>+.001<br>004 | T<br>Max. | Min. Dist.<br>Hole <b>©</b><br>to Edge |
|-------|--------------------|------|----------------|---------------|-----------------------|----------------------------|-----------------------------------|------------|------------|-------------------|-----------|----------------------------------------|
| I N O | .112-40<br>(#4-40) | CFN  | 440            | 1             | .040                  | .043                       | .152                              | .162       | .175       | .203              | .104      | .115                                   |

| TRIC | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>±0.08 | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>±0.05 | D<br>±0.1 | E<br>+0.03<br>-0.1 | T<br>Max. | Min. Dist.<br>Hole <b>©</b><br>to Edge |
|------|---------------------------|------|----------------|---------------|-----------------------|----------------------------|--------------------------------|------------|-----------|--------------------|-----------|----------------------------------------|
| ME.  | M3 x 0.5                  | CFN  | M3             | 1             | 1.02                  | 1.1                        | 3.86                           | 4.11       | 4.45      | 5.16               | 2.65      | 2.93                                   |


<sup>\*</sup> PEM Trademark.


# FE™/FEO™/UL™ LOCKNUTS




- Strong, knurled collar guarantees against rotation of the fastener in the sheet.
- The torque-out resistance of the embedded knurl greatly exceeds the torque that can be exerted by the self-locking feature.









### All dimensions are in inches.

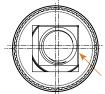
|      | Thread<br>Size      | Туре      | Thread<br>Code | Shank<br>Code<br>(1) | A<br>(Shank)<br>Max. | Sheet<br>Thickness<br>(2) | Hole Size<br>In Sheet<br>+.003<br>000 | C<br>+.000<br>005 | D<br>Max. | E<br>±.005 | T<br>+.015<br>000 | Min.<br>Dist.<br>Hole <b>©</b><br>to Edge | Max. Hole<br>In<br>Attached<br>Parts |
|------|---------------------|-----------|----------------|----------------------|----------------------|---------------------------|---------------------------------------|-------------------|-----------|------------|-------------------|-------------------------------------------|--------------------------------------|
|      | .060-80<br>(#0-80)  | UL        | 080            | 0                    | .020                 | .019022                   | .110                                  | .1095             | .076      | .125       | .050              | .09                                       | .080                                 |
|      | .073-64<br>(#1-64)  | UL        | 164            | 0                    | .020                 | .019022                   | .110                                  | .1095             | .090      | .125       | .050              | .09                                       | .093                                 |
| E D  | .086-56<br>(#2-56)  | UL        | 256            | 0                    | .020<br>.031         | .019022<br>.030036        | .144                                  | .1435             | .106      | .160       | .065              | .11                                       | .106                                 |
| NIFI | .112-40<br>(#4-40)  | FE0<br>FE | 440            |                      | .040<br>.060         | .039045<br>.059070        | .172                                  | .171              | .145      | .192       | .065              | .14                                       | .132                                 |
| Π    | .138-32<br>(#6-32)  | FE0<br>FE | 632            |                      | .040<br>.060         | .039045<br>.059070        | .213                                  | .212              | .180      | .244       | .075              | .17                                       | .158                                 |
|      | .164-32<br>(#8-32)  | FE0<br>FE | 832            |                      | .040<br>.060         | .039045<br>.059070        | .290                                  | .289              | .215      | .322       | .090              | .20                                       | .184                                 |
|      | .190-32<br>(#10-32) | FE0<br>FE | 032            |                      | .040<br>.060         | .039045<br>.059070        | .290                                  | .289              | .245      | .322       | .110              | .20                                       | .210                                 |
|      | 1/4-20<br>1/4-28    | FE        | 0420<br>0428   |                      | .060                 | .059070                   | .344                                  | .343              | .318      | .384       | .120              | .28                                       | .270                                 |

|   | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Shank<br>Code<br>(1) | A<br>(Shank)<br>Max. | Sheet<br>Thickness<br>(2) | Hole Size<br>In Sheet<br>+0.08 | C<br>-0.13 | D<br>Max. | E<br>±0.13 | T<br>+0.4 | Min.<br>Dist.<br>Hole <b>⊈</b><br>to Edge | Max. Hole<br>In<br>Attached<br>Parts |
|---|---------------------------|------|----------------|----------------------|----------------------|---------------------------|--------------------------------|------------|-----------|------------|-----------|-------------------------------------------|--------------------------------------|
|   | M2 x 0.4                  | UL   | M2             | 1                    | 0.76                 | 0.76 - 0.91               | 3.61                           | 3.6        | 2.5       | 4.07       | 1.65      | 2.8                                       | 2.5                                  |
| 2 | M3 x 0.5                  | FE0  | М3             | 1.02 0.99 - 1.14     | 4.07                 | 407                       | 400                            | 10         | 3.6       | 0.5        |           |                                           |                                      |
| T |                           | FE   |                |                      | 1.53                 | 1.5 - 1.78                | 4.39                           | 4.37       | 3.96      | 4.88       | 1.9       | 3.0                                       | 3.5                                  |
| Ξ | M40.7                     | FE0  | M4             |                      | 1.02                 | 0.99 - 1.14               | 7.39                           | 7.37       | 5.23      | 8.17       | 2.55      | 5.2                                       | 45                                   |
| _ | M4 x 0.7                  | FE   |                |                      | 1.53                 | 1.5 - 1.78                |                                |            |           | 0.17       |           |                                           | 4.5                                  |
|   | M5 0.0                    | FE0  | МЕ             |                      | 1.02                 | 0.99 - 1.14               | 7.39                           | 7.37       | 6.48      | 8.17       | 3.05      |                                           |                                      |
|   | M5 x 0.8                  | FE   | M5             |                      | 1.53                 | 1.5 - 1.78                | 1.33                           | 1.31       | 0.40      | 0.17       |           | 5.2                                       | 5.5                                  |
|   | M6 x 1                    | FE   | M6             |                      | 1.53                 | 1.5 - 1.78                | 8.74                           | 8.72       | 7.72      | 9.74       | 3.3       | 7.1                                       | 6.5                                  |

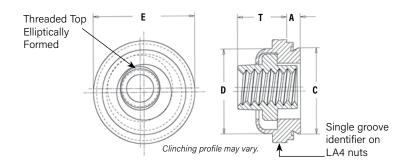
<sup>(1)</sup> Shank code applicable only to UL fasteners.

<sup>(2)</sup> In applications between the sheet thicknesses for your thread size, see last paragraph of installation data on page 115. Knurled collar may fracture if fastener is used in sheets thicker than the specified range and the screw is tightened beyond maximum tightening torque.

# LAS™/LAC™/LA4™ LOCKNUTS




- Provide load-bearing threads in thin sheets and permit a minimum of .030"/0.76 mm adjustment for mating hole misalignment.
- Extra strength and support in assembly is obtained by the threads of the floating nut extending into the retainer shank.
- Thread locking torque performance is equivalent to applicable NASM25027 specifications.
- LA4 floating fasteners are specifically designed to be installed into stainless steel sheets.


To meet national aerospace standards and to obtain testing documentation, product must be ordered to US NASM45938/11 specifications. Check our web site for a complete Military Specification and National Aerospace Standards Reference Guide (Bulletin NASM)



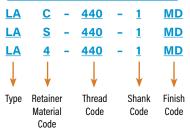
PEM® Double Squares are a registered trademark.



Float - .015"/0.38 mm minimum, in all directions from center, .030"/0.76 mm total.



### All dimensions are in inches.

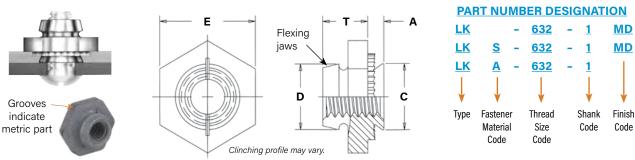

|   |                     |       | Туре                    |                         |                |               | _            |               | Hole             | _         | _         | _          | _                      |                             |
|---|---------------------|-------|-------------------------|-------------------------|----------------|---------------|--------------|---------------|------------------|-----------|-----------|------------|------------------------|-----------------------------|
|   | Thread<br>Size      |       | Fastener Material       |                         | Thread<br>Code | Shank<br>Code | A<br>(shank) | Min.<br>Sheet | Size in<br>Sheet | C<br>Max. | D<br>Max. | E<br>±.015 | T <sub>2</sub><br>Max. | Min. Dist.<br>Hole <b>⊈</b> |
|   | <u> </u>            | Steel | 300 Series<br>Stainless | 400 Series<br>Stainless | 0000           |               | Max.         | Thickness     | +.003            |           |           | 2.0.0      |                        | to Edge                     |
|   | .112-40             | LAS   | LAC                     | LA4                     | 440            | 1             | .038         | .038          | .290             | .289      | .290      | .360       | .190                   | .30                         |
|   | (#4-40)             |       | -                       |                         |                | 2 (1)         | .054         | .054          |                  |           |           |            |                        |                             |
| ۵ | .138-32             | LAS   | LAC                     | LA4                     | 632            | 1             | .038         | .038          | .328             | .327      | .335      | .390       | .200                   | .32                         |
| ш | (#6-32)             | L/IO  | LAO                     | D/H                     |                | 2 (1)         | .054         | .054          | 1020             | 1021      | .000      | .000       | 1200                   | 102                         |
| ū | .164-32             | LAS   | LAC                     | LA4                     | 022            | 1             | .038         | .038          | .368             | .367      | .365      | .440       | .210                   | .34                         |
| Į | (#8-32)             | LAS   | LAC                     | LA4                     | 832            | 2 (1)         | .054         | .054          | .500             | .307      | .303      | .440       | .210                   | .54                         |
| 5 | .190-24             | LAS   | LAC                     | LA4                     | 024            | 1             | .038         | .038          | .406             | .405      | .405      | .470       | .270                   | .36                         |
|   | (#10-24)            | LAS   | LAC                     | LA4                     | 024            | 2             | .054         | .054          | .400             | .405      | .405      | .470       | .270                   | .30                         |
|   | .190-32             | LAS   | LAC                     | 1.4.4                   | 020            | 1             | .038         | .038          | 400              | .405      | .405      | .470       | 070                    | .36                         |
|   | (#10-32)            | LAS   | LAC                     | LA4                     | 032            | 2 (1)         | .054         | .054          | .406             | .405      | .405      | .470       | .270                   | .30                         |
|   | .250-20<br>(1/4-20) | LAS   | LAC                     | -                       | 0420           | 2             | .054         | .054          | .515             | .514      | .510      | .600       | .310                   | .42                         |
|   | .250-28<br>(1/4-28) | LAS   | LAC                     | -                       | 0428           | 2             | .054         | .054          | .515             | .514      | .510      | .600       | .310                   | .42                         |

### All dimensions are in millimeters.

|          |   | Thread<br>Size x |       | Type<br>Fastener Material |                         | Thread<br>Code | Shank<br>Code | A<br>(shank) | Min.<br>Sheet | Hole<br>Size in<br>Sheet | C<br>Max. | D<br>Max. | E<br>±0.38 | T <sub>2</sub><br>Max. | Min. Dist.<br>Hole <b>⊄</b> |
|----------|---|------------------|-------|---------------------------|-------------------------|----------------|---------------|--------------|---------------|--------------------------|-----------|-----------|------------|------------------------|-----------------------------|
| ر        |   | Pitch            | Steel | 300 Series<br>Stainless   | 400 Series<br>Stainless |                |               | `Max.´       | Thickness     | +0.08                    |           |           |            |                        | to Edge                     |
| -        | - | M3 x 0.5         | LAS   | LAC                       | LA4                     | M3             | 1             | 0.97         | 0.97          | 7.37                     | 7.35      | 7.37      | 9.14       | 4.83                   | 7.62                        |
| <u>a</u> |   | INIO X 0.0       | LAS   | LAC                       | LA4                     | IVIO           | 2 (1)         | 1.38         | 1.38          | 1.51                     | 1.33      | 1.31      | 3.14       | 4.03                   | 1.02                        |
| Ц        |   | M4 x 0.7         | LAS   | LAC                       | LA4                     | M4 -           | 1             | 0.97         | 0.97          | 9,35                     | 9,33      | 9.28      | 11.18      | 5.34                   | 8.64                        |
| 2        |   | WI4 X U.7        | LAS   | LAC                       | LA4                     | IVI-4          | 2 (1)         | 1.38         | 1.38          | 3.00                     | 3,33      | 3.20      | 11.10      | 3,34                   | 0.04                        |
|          | Г | M5 x 0.8         | LAS   | LAC                       | LA4                     | M5             | 1             | 0.97         | 0.97          | 10.31                    | 10,29     | 10,29     | 11.94      | 6.86                   | 9.14                        |
|          | L | INIO X 0.0       | LAS   | LAC                       | LA4                     | IVIO           | 2 (1)         | 1.38         | 1.38          | 10.31                    | 10.23     | 10.23     | 11.34      | 0.00                   | 3.14                        |
|          |   | M6 x 1           | LAS   | LAC                       | -                       | M6             | 2             | 1.38         | 1.38          | 13.08                    | 13.06     | 12.96     | 15.24      | 7.88                   | 10.67                       |

(1) This shank code is not available for LA4 nuts.

### **PART NUMBER DESIGNATION**




# LK™/LKS™/LKA™ PEMFLEX® LOCKNUTS



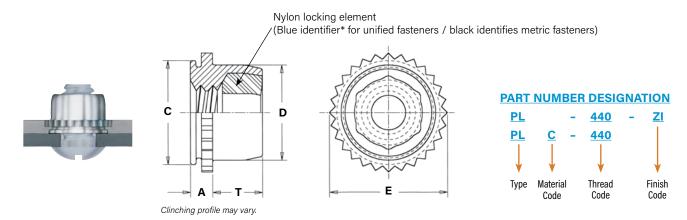
The PEM design utilizes two rugged, semicircular flexing jaws instead of several less-supported segments. The greater ruggedness and retention of this PEMFLEX® action prevents relaxation and loosening of the fastener in severe service. This design also protects the screw threads. Clearances obtained by only two interruptions of a full circumference, together with the spreading of the jaws by the entering screw, minimize the possibility of thread damage.

- Hex shoulder provides increased pull-through performance and a positive stop during installation.
- The flexing action of locking feature permits repeated use and effective locking torque.
- Thread locking performance of LK and LKS fasteners (with MD finish) and LKA fasteners (lubricated) are equivalent to applicable NASM25027 specifications.



All dimensions are in inches.

|   | Thread   |              | Type<br>Fastener Material |          | Thread | Shank | A<br>(Shank) | Min. Sheet | Hole Size<br>In Sheet | С    | D    | E    | T     | Min. Dist.<br>Hole <b>¢</b> |
|---|----------|--------------|---------------------------|----------|--------|-------|--------------|------------|-----------------------|------|------|------|-------|-----------------------------|
|   | Size     | Carbon Steel | Stainless Steel           | Aluminum | Code   | Code  | Max.         | Thickness  | +.003<br>000          | Max. | Max. | Nom. | ±.010 | to Edge                     |
|   | .086-56  | LIK          | 11/0                      | 11/4     | 050    | 1     | .038         | .040       | 170                   | 171  | 105  | 050  | 105   | 150                         |
| 6 | (#2-56)  | LK           | LKS                       | LKA      | 256    | 2     | .054         | .056       | .172                  | .171 | .165 | .250 | .135  | .156                        |
| 4 |          | LIK          | 11/0                      | 11/4     | 440    | 1     | .038         | .040       | 107                   | 100  | 105  | 050  | 105   | 150                         |
| 4 | (#4-40)  | LK           | LKS                       | LKA      | 440    | 2     | .054         | .056       | .187                  | .186 | .185 | .250 | .135  | .156                        |
| 2 |          |              | 11/0                      | 11/4     | 000    | 1     | .038         | .040       | 010                   | 010  | 000  | 010  | 445   | 107                         |
| ľ | (#6-32)  | LK           | LKS                       | LKA      | 632    | 2     | .054         | .056       | .219                  | .218 | .220 | .312 | .145  | .187                        |
|   | .164-32  | 116          | 11/0                      | 11/4     | 000    | 1     | .038         | .040       | 000                   | 005  | 050  | 0.40 | 475   | 200                         |
|   | (#8-32)  | LK           | LKS                       | LKA      | 832    | 2     | .054         | .056       | .266                  | .265 | .250 | .343 | .175  | .203                        |
|   | .190-32  | 11/          | 11/0                      | 11/4     | 000    | 1     | .038         | .040       | 010                   | 044  | 205  | 075  | 005   | 010                         |
|   | (#10-32) | LK           | LKS                       | LKA      | 032    | 2     | .054         | .056       | .312                  | .311 | .285 | .375 | .205  | .218                        |


### All dimensions are in millimeters.

|          | Thread<br>Size x |              | Type<br>Fastener Material |          | Thread<br>Code | Shank<br>Code | A<br>(Shank) | Min. Sheet<br>Thickness | Hole Size<br>In Sheet | C<br>Max. | D<br>May | E<br>Nom | T     | Min. Dist.<br>Hole <b>©</b> |
|----------|------------------|--------------|---------------------------|----------|----------------|---------------|--------------|-------------------------|-----------------------|-----------|----------|----------|-------|-----------------------------|
|          | Pitch            | Carbon Steel | Stainless Steel           | Aluminum | Code           | Code          | Max.         | HIICKHESS               | +0.08                 | Wax.      | Max.     | Nom.     | ±0.25 | to Edge                     |
| ں        | MOEVOAE          | LK           | LKS                       | LKA      | МОГ            | 1             | 0.97         | 1                       | 4.07                  | 4.35      | 4.45     | 6.35     | 2.42  | 2.0                         |
| <u> </u> | M2.5 X 0.45      | LK           | LK2                       | LKA      | M2.5           | 2             | 1.38         | 1.4                     | 4.37                  | 4.35      | 4.45     | 0.35     | 3.43  | 3.9                         |
| Η.       | мауог            | 11/          | LIVE                      | 1.1/4    | MO             | 1             | 0.97         | 1                       | 4.75                  | 4.70      | 4.05     | C 2F     | 2.42  | 4                           |
|          | M3 X 0.5         | LK           | LKS                       | LKA      | M3             | 2             | 1.38         | 1.4                     | 4.75                  | 4.73      | 4.85     | 6.35     | 3.43  | 4                           |
|          | 144 1/ 0 7       |              | 11/0                      | 11/4     |                | 1             | 0.97         | 1                       | 0.70                  | 0.70      |          | 0.70     | 4.45  |                             |
|          | M4 X 0.7         | LK           | LKS                       | LKA      | M4             | 2             | 1.38         | 1.4                     | 6.76                  | 6.73      | 6.2      | 8.73     | 4.45  | 5.2                         |
|          | MEVOO            | 11/          | 11/0                      | 1.1/4    | м              | 1             | 0.97         | 1                       | 700                   | 70        | 7.4      | 0.50     | F 01  | F.0                         |
|          | M5 X 0.8         | LK           | LKS                       | LKA      | M5             | 2             | 1.38         | 1.4                     | 7.92                  | 7.9       | 7.4      | 9.53     | 5.21  | 5.6                         |

# PL™/PLC™ PEMHEX® LOCKNUTS



- Thread locking torque performance is equivalent to applicable NASM25027 specifications.
- The strong knurled collar receives the installation force and resists torque.
- The spin resistance of the knurl greatly exceeds the torque that can be exerted by the self-locking feature.



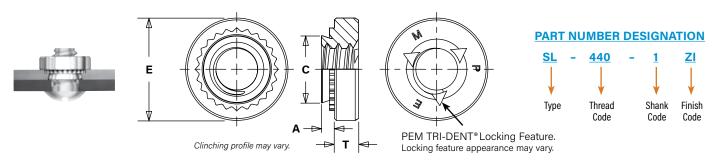
### All dimensions are in inches.

|       | Thread              | Tyl<br>Fastener Mate |                    | Thread | A<br>(Shank) | Sheet<br>Thickness | Hole Size<br>In Sheet | С    | D    | E    | Ţ    | Min. Dist.<br>Hole <b>©</b> | Max.<br>Hole In   |
|-------|---------------------|----------------------|--------------------|--------|--------------|--------------------|-----------------------|------|------|------|------|-----------------------------|-------------------|
|       | Size                | Steel                | Stainless<br>Steel | Code   | Max.         | (1) (2)            | +.003000              | Max. | Max. | Max. | Max. | to Edge                     | Attached<br>Parts |
| I E D | .112-40<br>(#4-40)  | PL                   | PLC                | 440    | .060         | .040070            | .234                  | .233 | .215 | .274 | .130 | .170                        | .132              |
| I N O | .138-32<br>(#6-32)  | PL                   | PLC                | 632    | .060         | .040070            | .265                  | .264 | .246 | .305 | .130 | .190                        | .158              |
|       | .164-32<br>(#8-32)  | PL                   | PLC                | 832    | .060         | .040070            | .297                  | .296 | .278 | .338 | .155 | .220                        | .184              |
|       | .190-32<br>(#10-32) | PL                   | PLC                | 032    | .060         | .040070            | .312                  | .311 | .293 | .353 | .165 | .250                        | .210              |

### All dimensions are in millimeters.

|     | Thread<br>Size x | Tyl<br>Fastener Mat |                    | Thread | A<br>(Shank) | Sheet<br>Thickness | Hole Size<br>In Sheet | С    | D    | E    | т    | Min. Dist.<br>Hole <b>©</b> | Max.<br>Hole In   |
|-----|------------------|---------------------|--------------------|--------|--------------|--------------------|-----------------------|------|------|------|------|-----------------------------|-------------------|
| RIC | Pitch            | Steel               | Stainless<br>Steel | Code   | Max.         | (1) (2)            | +0.08                 | Max. | Max. | Max. | Max. | to Edge                     | Attached<br>Parts |
| E   | M3 x 0.5         | PL                  | PLC                | M3     | 1.53         | 1 - 1.78           | 6                     | 5.98 | 5.52 | 7.01 | 3.56 | 4.32                        | 3.5               |
| Σ   | M4 x 0.7         | PL                  | PLC                | M4     | 1.53         | 1 - 1.78           | 7.5                   | 7.48 | 7.01 | 8.54 | 4.2  | 5.59                        | 4.5               |
|     | M5 x 0.8         | PL                  | PLC                | M5     | 1.53         | 1 - 1.78           | 8                     | 7.98 | 7.52 | 9    | 4.45 | 6.35                        | 5.5               |

<sup>(1)</sup> Can be used in panel thickness of .040" to .060"/1 mm to 1.53 mm provided the fastener is not fully installed. The knurled collar must be left protruding above the sheet to the degree that the sheet thickness is less than .060"/1.53 mm. See installation instructions.


<sup>(2)</sup> Knurled collar may fracture if fastener is used in sheets thicker than .070"/1.78 mm and screw is tightened beyond maximum tightening torque.

<sup>\*</sup> PEM Trademark.

# **SL™ TRI-DENT® LOCKNUTS**



- SL locknuts meet 3 cycle locking performance <sup>(1)</sup>.
- Recommended for use in sheets HRB (Rockwell "B" scale) 80 or less and HB (Hardness Brinell) 150 or less.

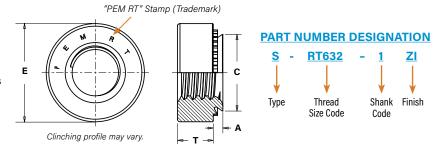


### All dimensions are in inches.

|     | Thread<br>Size | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min. Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | C<br>Max. | E<br>±.010 | T<br>±.010 | Min. Dist.<br>Hole <b>⊄</b><br>to Edge |
|-----|----------------|------|----------------|---------------|----------------------|-------------------------|-----------------------------------|-----------|------------|------------|----------------------------------------|
|     | .112-40        | 01   | 440            | 1             | .038                 | .040                    | 100                               | 105       | 050        | 070        | 10                                     |
|     | (#4-40)        | SL   | 440            | 2             | .054                 | .056                    | .166                              | .165      | .250       | .070       | .19                                    |
|     | .138-32        | 01   | 200            | 1             | .038                 | .040                    | 1075                              | 107       | 200        | 070        | 00                                     |
| E D | (#6-32)        | SL   | 632            | 2             | .054                 | .056                    | .1875                             | .187      | .280       | .070       | .22                                    |
| Ξ   | .164-32        | SL   | 832            | 1             | .038                 | .040                    | .213                              | .212      | .310       | .090       | .27                                    |
| Z   | (#8-32)        | 3L   | 032            | 2             | .054                 | .056                    | .213                              | .212      | .310       | .090       | .21                                    |
|     | .190-32        | 01   | 000            | 1             | .038                 | .040                    | 050                               | 040       | 240        | 000        | 00                                     |
|     | (#10-32)       | SL   | 032            | 2             | .054                 | .056                    | .250                              | .249      | .340       | .090       | .28                                    |
|     | .250-20        | 01   | 0.400          | 1             | .054                 | .056                    | 044                               | 0.40      | 440        | 170        | 0.4                                    |
|     | (1/4-20)       | SL   | 0420           | 2             | .087                 | .091                    | .344                              | .343      | .440       | .170       | .34                                    |
|     | .313-18        | 01   | 0510           | 1             | .054                 | .056                    | 410                               | 410       | 500        | 000        | 20                                     |
|     | (5/16-18)      | SL   | 0518           | 2             | .087                 | .091                    | .413                              | .412      | .500       | .230       | .38                                    |

### All dimensions are in millimeters.

|     | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min. Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>Max. | E<br>±0.25 | T<br>±0.25 | Min. Dist<br>Hole <b>©</b><br>to Edge |
|-----|---------------------------|------|----------------|---------------|----------------------|-------------------------|--------------------------------|-----------|------------|------------|---------------------------------------|
|     | M3 x 0.5                  | SL   | M3             | 1             | 0.98                 | 1                       | 4.22                           | 4.2       | 6.35       | 1.5        | 4.8                                   |
|     | WIS X U.S                 | JL.  | WIS            | 2             | 1.38                 | 1.4                     | 4.22                           | 7.2       | 0.55       | 1.0        | 4.0                                   |
|     |                           |      |                | 1             | 0.98                 | 1                       | 4.75                           | 4.73      | 7.11       | 1.5        | 5.6                                   |
|     | M3.5 x 0.6                | SL   | M3.5           | 2             | 1.38                 | 1.4                     | 4.75                           | 4.73      | 7.11       | 1.5        | 5.0                                   |
| 0   | M4 x 0.7                  | SL   | M4             | 1             | 0.98                 | 1                       | 5.41                           | 5.38      | 7.87       | 2          | 6.9                                   |
| T B | W14 X U.7                 | )L   | IVI4           | 2             | 1.38                 | 1.4                     | 5,41                           | 3.30      | 7.07       | 2          | 0.9                                   |
| ш   | M5 x 0.8                  | SL   | M5             | 1             | 0.98                 | 1                       | 6.35                           | 6.33      | 8.64       | 2          | 7.1                                   |
| Σ   | O'O X CIM                 | )L   | CINI           | 2             | 1.38                 | 1.4                     | 0.55                           | 0.33      | 0.04       | 2          | 7.1                                   |
|     | M6 x 1                    | SL   | M6             | 1             | 1.38                 | 1.4                     | 8.75                           | 8.73      | 11.18      | 4.08       | 8.6                                   |
|     | IVIO X I                  | )L   | IVIO           | 2             | 2.21                 | 2.3                     | 0.75                           | 0.73      | 11.10      | 4.00       | 0.0                                   |
|     | M0 1.05                   | 01   | Mo             | 1             | 1.38                 | 1.4                     | 10.5                           | 10.47     | 10.7       | 5.47       | 0.7                                   |
|     | M8 x 1.25                 | SL   | M8             | 2             | 2.21                 | 2.3                     | 10.5                           | 10.47     | 12.7       | 5.47       | 9.7                                   |
|     | M10 1.5                   | 01   | 1410           | 1             | 2.21                 | 2.29                    | 14                             | 10.07     | 1705       | 740        | 10.5                                  |
|     | M10 x 1.5                 | SL   | M10            | 2             | 3.05                 | 3.18                    | 14                             | 13.97     | 17.35      | 7.48       | 13.5                                  |


(1) Achieved using steel socket head cap screws, 180 ksi / property class 12.9 with standard finish of thermal oxide and light oil.

### PEM RT® FREE-RUNNING LOCKNUTS

Free-running locking feature allows screw to turn freely until clamp load is applied. If the tightening force is removed, these nuts no longer provide any torsional resistance to rotation until clamp load is reapplied.

- Resistant to vibrational loosening.
- Back side of panel is flush or sub-flush for screw installation.
- Locking feature reusability is not affected by number of on/off cycles.
- Uses same mounting hole and installation tooling as standard S™ nuts.
- Recommended for use in steel or aluminum sheets HRB 80 / HB 150 or less.





### All dimensions are in inches.

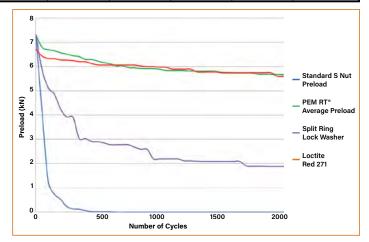
|   | Thread<br>Size | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Rec.<br>Min. Sheet<br>Thickness (1) | Hole Size<br>In Sheet<br>+.003000 | C<br>Max. | E<br>±.010 | T<br>±.010 | Min. Dist<br>Hole <b>⊈</b><br>To Edge |
|---|----------------|------|----------------|---------------|----------------------|-------------------------------------|-----------------------------------|-----------|------------|------------|---------------------------------------|
|   | .112-40        |      |                | 0             | .030                 | .030                                |                                   |           |            |            |                                       |
|   | (#4-40)        | S    | RT440          | 1             | .038                 | .040                                | .166                              | .165      | .250       | .070       | .19                                   |
|   | (#4-40)        |      |                | 2             | .054                 | .056                                |                                   |           |            |            |                                       |
|   | .138-32        |      |                | 0             | .030                 | .030                                |                                   |           |            |            |                                       |
| Q | (#6-32)        | S    | RT632          | 1             | .038                 | .040                                | .1875                             | .187      | .280       | .070       | .22                                   |
| ш | (#0-32)        |      |                | 2             | .054                 | .056                                |                                   |           |            |            |                                       |
| 盂 | .164-32        |      |                | 0             | .030                 | .030                                |                                   |           |            |            |                                       |
|   | (#8-32)        | S    | RT832          | 1             | .038                 | .040                                | .213                              | .212      | .310       | .090       | .27                                   |
| 2 | (#0-32)        |      |                | 2             | .054                 | .056                                |                                   |           |            |            |                                       |
|   | .190-32        |      |                | 0             | .030                 | .030                                |                                   |           |            |            |                                       |
|   | (#10-32)       | SS   | RT032          | 1             | .038                 | .040                                | .250                              | .249      | .340       | .090       | .28                                   |
|   | (#10-32)       |      |                | 2             | .054                 | .056                                |                                   |           |            |            |                                       |
|   | .250-20        |      |                | 0             | .045                 | .047                                |                                   |           |            |            |                                       |
|   |                | S    | RT0420         | 1             | .054                 | .056                                | .344                              | .343      | .440       | .170       | .34                                   |
|   | (1/4-20)       |      |                | 2             | .087                 | .090                                |                                   |           |            |            |                                       |
|   | .313-18        | S    | RT0518         | 1             | .054                 | .056                                | .413                              | .412      | .500       | .230       | .38                                   |
|   | (5/16-18)      | 3    | 110310         | 2             | .087                 | .090                                | .413                              | .412      | .500       | .230       | .30                                   |

### All dimensions are in millimeters

|    | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Rec.<br>Min. Sheet<br>Thickness (1) | Hole Size<br>In Sheet<br>+0.08 | C<br>Max. | E<br>±0.25 | T<br>±0.25 | Min. Dist<br>Hole <b>©</b><br>To Edge |
|----|---------------------------|------|----------------|---------------|----------------------|-------------------------------------|--------------------------------|-----------|------------|------------|---------------------------------------|
|    |                           |      |                | 0             | 0.77                 | 0.8                                 |                                |           |            |            |                                       |
|    | M3 x 0.5                  | S    | RTM3           | 1             | 0.97                 | 1                                   | 4.22                           | 4.2       | 6.35       | 1.5        | 4.8                                   |
|    |                           |      |                | 2             | 1.38                 | 1.4                                 |                                |           |            |            |                                       |
|    |                           |      |                | 0             | 0.77                 | 0.8                                 |                                |           |            |            |                                       |
| 2  | M4 x 0.7                  | S    | RTM4           | 1             | 0.97                 | 1                                   | 5.41                           | 5.38      | 7.87       | 2          | 6.9                                   |
| ~  |                           |      |                | 2             | 1.38                 | 1.4                                 |                                |           |            |            |                                       |
| ΕŢ |                           |      |                | 0             | 0.77                 | 0.8                                 |                                |           |            |            |                                       |
| Ξ  | M5 x 0.8                  | SS   | RTM5           | 1             | 0.97                 | 1                                   | 6.35                           | 6.33      | 8.64       | 2          | 7.1                                   |
| _  |                           |      |                | 2             | 1.38                 | 1.4                                 |                                |           |            |            |                                       |
|    |                           |      |                | 00            | 0.89                 | 0.92                                |                                |           |            |            |                                       |
|    | M6 x 1                    | s    | RTM6           | 0             | 1.15                 | 1.2                                 | 8.75                           | 8.73      | 11.18      | 4.08       | 8.6                                   |
|    | IVIO X I                  | 3    | niwo           | 1             | 1.38                 | 1.4                                 | 0.75                           | 0.73      | 11.10      | 4.00       | 0.0                                   |
|    |                           |      |                | 2             | 2.21                 | 2.29                                |                                |           |            |            |                                       |
|    | M8 x 1.25                 | S    | RTM8           | 1             | 1.38                 | 1.4                                 | 10.49                          | 10.47     | 12.7       | 5,47       | 9.7                                   |
|    | INIO V 1.23               | 3    | ITTIVIO        | 2             | 2.21                 | 2.29                                | 10,43                          | 10.47     | 12.7       | 3.47       | 3.1                                   |

The graph represents the clamp load of the joint versus the amount of cycles during transverse vibration testing for a PEM RT® free-running locknut, a standard S nut, a split ring lock washer and Loctite Red 271.

### **Testing conditions:**


Transverse vibration testing.

M6 thread size nuts, average of 30 pieces.

Clamp load applied using metric property class 10.9 screws. Nuts tested until loss of clamp load or 2,000 cycles is reached.

Details on PEM RT® vibration resistant thread technology can be found on our web site at:





# **MATERIAL AND FINISH SPECIFICATIONS**

|         |                                 |                                 | Threads                                                            |                                |                 |                 |                    |                     | Fastener Material                                                 |                      |                                        |                      |                      |
|---------|---------------------------------|---------------------------------|--------------------------------------------------------------------|--------------------------------|-----------------|-----------------|--------------------|---------------------|-------------------------------------------------------------------|----------------------|----------------------------------------|----------------------|----------------------|
| Туре    | Internal,<br>ASME<br>B1.1, 2B / | Internal,<br>ASME<br>B1.1, 3B / | Internal,<br>UNJ Class 3B per<br>ASME B1.15 /<br>MJ Class 4H6H per | (1)<br>Modified<br>Thread Form | Hardened        |                 | 300<br>Series      | (2)                 | Nylon Locking<br>Element<br>Blue or Black<br>Temperature<br>Limit | Retainer<br>Hardened | Floating Retainer  Hardened 400 Series | Retainer  300 Series | Nut<br>300<br>Series |
|         | ASME<br>B1.13M, 6H              | ASME<br>B1.13M, 6H              | ASME B1.21M<br>(M6 thread 4H5H)                                    | on Loaded<br>Flank             | Carbon<br>Steel | Carbon<br>Steel | Stainless<br>Steel | 7075-T6<br>Aluminum | 250° F/<br>120° C                                                 | Carbon<br>Steel      | Stainless<br>Steel                     | Stainless<br>Steel   | Stainless<br>Steel   |
| CFN     | •                               |                                 |                                                                    |                                |                 | •               |                    |                     | •                                                                 |                      |                                        |                      |                      |
| FE      |                                 |                                 | •                                                                  |                                |                 |                 | -                  |                     |                                                                   |                      |                                        |                      |                      |
| FE0     |                                 |                                 | •                                                                  |                                |                 |                 | -                  |                     |                                                                   |                      |                                        |                      |                      |
| UL      |                                 |                                 | •                                                                  |                                |                 |                 | -                  |                     |                                                                   |                      |                                        |                      |                      |
| LAS     |                                 |                                 | •                                                                  |                                |                 |                 |                    |                     |                                                                   | •                    |                                        |                      | •                    |
| LAC     |                                 |                                 | •                                                                  |                                |                 |                 |                    |                     |                                                                   |                      |                                        | •                    | •                    |
| LA4     |                                 |                                 | •                                                                  |                                |                 |                 |                    |                     |                                                                   |                      | •                                      |                      | •                    |
| LK      |                                 | •                               |                                                                    |                                | •               |                 |                    |                     |                                                                   |                      |                                        |                      |                      |
| LKS     |                                 | •                               |                                                                    |                                |                 |                 | •                  |                     |                                                                   |                      |                                        |                      |                      |
| LKA     |                                 | •                               |                                                                    |                                |                 |                 |                    | •                   |                                                                   |                      |                                        |                      |                      |
| PL      | •                               |                                 |                                                                    |                                | •               |                 |                    |                     | •                                                                 |                      |                                        |                      |                      |
| PLC     | •                               |                                 |                                                                    |                                |                 |                 | •                  |                     | •                                                                 |                      |                                        |                      |                      |
| SL      | •                               |                                 |                                                                    |                                | •               |                 |                    |                     |                                                                   |                      |                                        |                      |                      |
| PEM RT® |                                 |                                 |                                                                    | •                              | •               |                 |                    |                     |                                                                   |                      |                                        |                      |                      |

|              |                                                                          |                                                    |                                          | Stand                                 | dard Finishes                                              | (3)   |                                           |                                                    |                               | Optional<br>Finish (3)(4)                                             |                              | For Use                      | In Sheet Hard                | dness: (5)                   |                             |
|--------------|--------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|---------------------------------------|------------------------------------------------------------|-------|-------------------------------------------|----------------------------------------------------|-------------------------------|-----------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|
|              |                                                                          |                                                    |                                          |                                       |                                                            |       |                                           | loating Fasten                                     |                               |                                                                       |                              |                              |                              |                              |                             |
| Туре         | Zinc Plated<br>per ASTM<br>B633, SC1<br>(5µm),<br>Type III,<br>Colorless | Passivated<br>and/or<br>Tested Per<br>ASTM<br>A380 | Passivated Plus Clear Dry-film Lubricant | (6)<br>Black<br>Dry-film<br>Lubricant | (7)<br>Black<br>Dry-film<br>Lubricant<br>Over<br>Phosphate | Plain | Zinc<br>Plated,<br>5µm,<br>Color-<br>less | Passivated<br>and/or<br>Tested Per<br>ASTM<br>A380 | Nut  Black Dry-film Lubricant | Zinc Plated<br>per ASTM<br>B633, SC1<br>(5µm),<br>Type III,<br>Yellow | HRB 88/<br>HB 183<br>or Less | HRB 80/<br>HB 150<br>or Less | HRB 70/<br>HB 125<br>or Less | HRB 60/<br>HB 107<br>or Less | HRB 50/<br>HB 89<br>or Less |
| CFN          | •                                                                        |                                                    |                                          |                                       |                                                            |       |                                           |                                                    |                               | •                                                                     |                              |                              |                              | •                            |                             |
| FE           |                                                                          |                                                    |                                          | •                                     |                                                            |       |                                           |                                                    |                               |                                                                       |                              |                              |                              |                              |                             |
| FE0          |                                                                          |                                                    |                                          | •                                     |                                                            |       |                                           |                                                    |                               |                                                                       |                              |                              |                              |                              |                             |
| UL           |                                                                          |                                                    | •                                        |                                       |                                                            |       |                                           |                                                    |                               |                                                                       |                              |                              |                              |                              |                             |
| LAS          |                                                                          |                                                    |                                          |                                       |                                                            |       |                                           |                                                    |                               |                                                                       |                              |                              |                              |                              |                             |
| LAC          |                                                                          |                                                    |                                          |                                       |                                                            |       |                                           |                                                    |                               |                                                                       |                              |                              |                              |                              |                             |
| LA4          |                                                                          |                                                    |                                          |                                       |                                                            |       |                                           | •                                                  |                               |                                                                       | •                            |                              |                              |                              |                             |
| LK           |                                                                          |                                                    |                                          |                                       | •                                                          |       |                                           |                                                    |                               |                                                                       |                              |                              |                              |                              |                             |
| LKS          |                                                                          |                                                    |                                          | •                                     |                                                            |       |                                           |                                                    |                               |                                                                       |                              |                              | •                            |                              |                             |
| LKA          |                                                                          |                                                    |                                          |                                       |                                                            |       |                                           |                                                    |                               |                                                                       |                              |                              |                              |                              | -                           |
| PL           | •                                                                        |                                                    |                                          |                                       |                                                            |       |                                           |                                                    |                               | •                                                                     |                              |                              | •                            |                              |                             |
| PLC          |                                                                          | •                                                  |                                          |                                       |                                                            |       |                                           |                                                    |                               |                                                                       |                              |                              | •                            |                              |                             |
| SL           | •                                                                        |                                                    |                                          |                                       |                                                            |       |                                           |                                                    |                               |                                                                       |                              | •                            |                              |                              |                             |
| PEM RT®      |                                                                          |                                                    |                                          |                                       |                                                            |       |                                           |                                                    |                               |                                                                       |                              | •                            |                              |                              |                             |
| Finish Codes | ZI                                                                       | None                                               | CW                                       | MD                                    | MD                                                         |       |                                           | MD                                                 |                               | ZC                                                                    |                              |                              |                              |                              |                             |

- (1) Will accept a maximum material 6g/2A screw.
- (2) Mating screws must be lubricated.
- (3) See PEM Technical Support section of our web site for related plating standards and specifications.
- (4) Special order with additional charge.
- (5) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (6) MD finish on stainless steel provides a minimum of 100 hours of salt spray resistance.
- (7) MD finish on steel provides a minimum of 24 hours of salt spray resistance.

### **INSTALLATION**

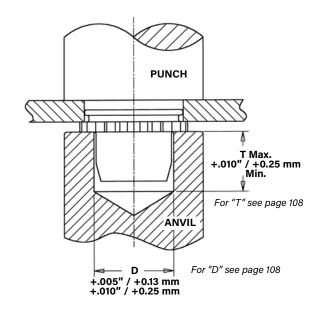
### **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.

### **CFN™ NUTS**

- Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- Insert fastener into the anvil hole and place the mounting hole over the shank of the fastener (preferably the punch side) as shown in drawing.
- With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the fastener contacts the sheet.

# PUNCH SHEET


### **PEMSERTER®** Installation Tooling

| Туре | Thread<br>Code | Anvil<br>Part<br>Number | Punch<br>Part<br>Number |
|------|----------------|-------------------------|-------------------------|
| CFN  | 440/M3         | 8012038                 | 975200048               |

### FE™/FEO™/UL™ NUTS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- Insert fastener into the anvil hole and place the mounting hole (preferably the punch side) over the shank of the fastener as shown in the drawing.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force to the knurled collar until knurled collar is flush with top of the sheet for sheets .060"/1.5 mm thick and up, or until shank is flush with the bottom of the sheet for sheets .040" / 1 mm to .060"/1.5 mm thick for FE/FEO nuts.

PEM miniature fasteners must be installed by a force applied through parallel surfaces. Since force must not be applied to the barrel, a cavity must be used in either the punch or anvil so that the installation force is applied to the knurled collar. "D" dimensions for the punch or anvil cavity are given in the tables on page 5.

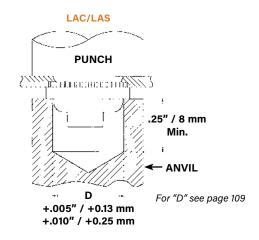


### INSTALLATION RECOMMENDATION

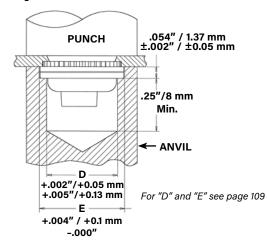
In applications for sheet thicknesses between the two ranges (see "Sheet Thickness" on page 5) use the fastener with the larger "A" dimension. For example, if you want a #4-40 thread and your sheet thickness is between .045"/1.14 mm and .059"/1.49 mm, you should use FE or FEX nuts. This is not recommended installation practice, but in this case if it is necessary, you should install the fastener so that the bottom of the shank is flush with the underside of the sheet (instead of having the top of the knurled collar flush with the top of the sheet). When this method is used, care must be taken to protect the fastener against crushing which would damage the threads. This method will also result in reduced pushout and torque-out values.

# **PEMSERTER® Installation Tooling**

| Туре   | Thread<br>Code | Anvil<br>Part<br>Number | Punch<br>Part<br>Number |
|--------|----------------|-------------------------|-------------------------|
| UL     | 256/M2         | 975200020               | 975200048               |
| FE/FE0 | 440/M3         | 975200021               | 975200048               |
| FE/FE0 | 632/M3.5       | 975200022               | 975200048               |
| FE/FE0 | 832/M4         | 975200023               | 975200048               |
| FE/FE0 | 032/M5         | 975200024               | 975200048               |
| FE/FE0 | 0420           | 975200025               | 975200048               |
| FE/FE0 | М6             | 8013143                 | 975200048               |


### LAS™/LAC™/LA4™ NUTS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into the anvil hole and place the mounting hole (preferably the punch side) over the shank of the fastener.
- 3. With installation punch and anvil surfaces parallel, apply sufficient squeezing force until flange contacts mounting sheet (LAC/LAS) or until anvil contacts the mounting sheet (LA4). Drawings show suggested tooling for applying these forces.

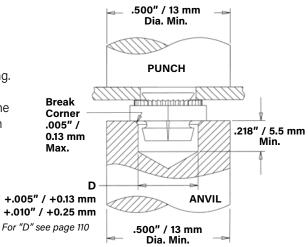

### **PEMSERTER® Installation Tooling**

| Туре    | Thread<br>Code | Anvil<br>Part<br>Number | Punch<br>Part<br>Number |
|---------|----------------|-------------------------|-------------------------|
| LAC/LAS | 440/M3         | 975200006               | 975200048               |
| LAC/LAS | 632            | 8013890                 | 975200048               |
| LAC/LAS | 832/M4         | 8013891                 | 975200048               |
| LAC/LAS | 032/M5         | 8013892                 | 975200048               |
| LAC/LAS | 0420/M6        | 975200010               | 975200048               |

| Туре | Thread<br>Code | Anvil<br>Part<br>Number | Punch<br>Part<br>Number |
|------|----------------|-------------------------|-------------------------|
| LA4  | 440/M3         | 8013889                 | 975200048               |
| LA4  | 632            | 8013890                 | 975200048               |
| LA4  | 832/M4         | 8013891                 | 975200048               |
| LA4  | 032/M5         | 8013892                 | 975200048               |



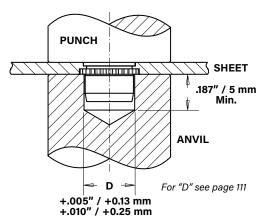
LA4
Tooling for installation into stainless steel sheets




### LK™/LKS™/LKA™ NUTS

- **1.** Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert fastener into the anvil hole and place the mounting hole over the shank of fastener (preferably the punch side) as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until hexagonal shoulder contacts mounting sheet. Sketch at the right shows suggested tooling for applying these forces. Installation force and performance data shown below.

### **PEMSERTER® Installation Tooling**

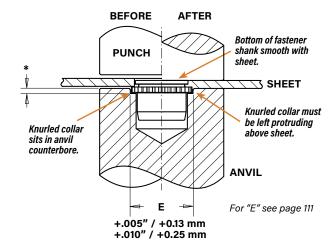

| Туре       | Thread<br>Code | Anvil<br>Part Number | Punch<br>Part Number |
|------------|----------------|----------------------|----------------------|
| LK/LKS/LKA | 256/M2.5       | 975200015            | 975200048            |
| LK/LKS/LKA | 440/M3         | 975200016            | 975200048            |
| LK/LKS/LKA | 632            | 975201242            | 975200048            |
| LK/LKS/LKA | 832/M4         | 975201241            | 975200048            |
| LK/LKS/LKA | 032/M5         | 975200019            | 975200048            |



### PL™/PLC™ NUTS

### Sheet thickness .060" to .070" / 1.53 mm to 1.78 mm

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert fastener into the anvil hole and place the mounting hole over the shank of the fastener (preferably the punch side) as shown in drawing.
- 3. With the punch and anvil surfaces parallel, apply a squeezing force until the knurled collar is flush with the top sheet.




### **PEMSERTER® Installation Tooling**

| T  | уре ( | Thread<br>Code | Anvil<br>Part<br>Number | Punch<br>Part<br>Number |
|----|-------|----------------|-------------------------|-------------------------|
| PL | /PLC  | 440/M3         | 975200011               | 975200048               |
| PL | /PLC  | 632            | 975200012               | 975200048               |
| PL | /PLC  | 832/M4         | 975200013               | 975200048               |
| PL | /PLC  | 032/M5         | 975200014               | 975200048               |

### Sheet thickness .040" to .060" / 1 mm to 1.53 mm

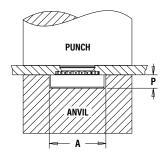
- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert fastener into the anvil hole and place the mounting hole over the shank of the fastener (preferably the punch side) as shown in drawing.
- 3. With the punch and anvil surfaces parallel, apply a squeezing force until the fastener shank is flush with the underside of the sheet. This should be accomplished by setting the depth of the counterbore in the anvil to the difference between the "A" dimension and the sheet thickness\*. When this method is used, care must be taken to protect the fastener against crushing which would damage the threads. This method will also result in reduced pushout and torque-out values.



### **SL™ NUTS**

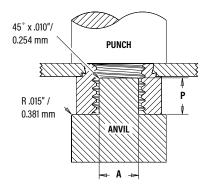
- **1.** Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert fastener into the anvil hole and place the mounting hole over the shank of the fastener (preferably the punch side) as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the head of the nut comes into contact with the sheet material.

### **PEMSERTER® Installation Tooling**


|   |                | Anvil Dimensions (in.) |            |                      |                      |
|---|----------------|------------------------|------------|----------------------|----------------------|
| Q | Thread<br>Code | A<br>±.002             | P<br>±.005 | Anvil Part<br>Number | Punch Part<br>Number |
| ш | 440            | .267                   | .045       | 975200034            | 975200048            |
| 盂 | 632            | .298                   | .045       | 975200035            | 975200048            |
| = | 832            | .330                   | .070       | 975200036            | 975200048            |
| Z | 032            | .361                   | .070       | 975200037            | 975200048            |
| 7 | 0420           | .454                   | .150       | 975200038            | 975200048            |
|   | 0518           | .515                   | .200       | 975200039            | 975200048            |
|   | 0616           | .280                   | .250       | 975200045(1)         | 975200048            |

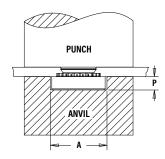
|          |                | Anvil Dimensions (mm) |            |                      |                      |
|----------|----------------|-----------------------|------------|----------------------|----------------------|
| ပ        | Thread<br>Code | A<br>±0.05            | P<br>±0.13 | Anvil Part<br>Number | Punch Part<br>Number |
|          | M3             | 6.78                  | 1.14       | 975200034            | 975200048            |
| <u>«</u> | M3.5           | 7.57                  | 1.14       | 975200035            | 975200048            |
| ш        | M4             | 8.38                  | 1.78       | 975200036            | 975200048            |
| Ξ        | M5             | 9.17                  | 1.78       | 975200037            | 975200048            |
| -        | M6             | 11.53                 | 3.81       | 975200038            | 975200048            |
|          | M8             | 13.08                 | 5.08       | 975200039            | 975200048            |
|          | M10            | 7.62                  | 6.35       | 8005682(1)           | 975200901400         |

(1) Large nut anvils use protrusion to locate part instead of counterbore.


### COUNTERBORE ANVIL

Thread Sizes #2-56 to 5/16 and M2 to M8




### PROTRUSION ANVIL

CLS/S Nuts Thread Sizes 3/8,1/2, M10 and M12



### **PEM RT® NUTS**

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- Place fastener into the anvil hole and place the mounting hole (preferably the punch side) over the shank of the fastener as shown in diagram to the right.
- With installation punch and anvil surfaces parallel, apply squeezing force until the head of the nut comes into contact with the sheet material.



### **PEMSERTER® Installation Tooling**

|   |        | Anvil Dimensions (in.) |       |            |            |
|---|--------|------------------------|-------|------------|------------|
|   | Thread | A                      | P     | Anvil Part | Punch Part |
| Q | Code   | ±.002                  | ±.005 | Number     | Number     |
| ш | RT440  | .267                   | .045  | 975200034  | 975200048  |
| 正 | RT632  | .298                   | .045  | 975200035  | 975200048  |
| Ξ | RT832  | .330                   | .070  | 975200036  | 975200048  |
| n | RT032  | .361                   | .070  | 975200037  | 975200048  |
|   | RT0420 | .454                   | .150  | 975200038  | 975200048  |
|   | RT0518 | .517                   | .200  | 975200039  | 975200048  |

|    |                | Anvil Dimensions (mm) |            |                      |                      |
|----|----------------|-----------------------|------------|----------------------|----------------------|
| ပ  | Thread<br>Code | A<br>±0.05            | P<br>±0.13 | Anvil Part<br>Number | Punch Part<br>Number |
| RI | RTM3           | 6.78                  | 1.14       | 975200034            | 975200048            |
| ΕT | RTM4           | 8.38                  | 1.78       | 975200036            | 975200048            |
| M  | RTM5           | 9.17                  | 1.78       | 975200037            | 975200048            |
|    | RTM6           | 11.53                 | 3.81       | 975200038            | 975200048            |
|    | RTM8           | 13.08                 | 5.08       | 975200039            | 975200048            |

### **CLINCH FASTENER PERFORMANCE DATA**

### **CFN™ NUTS** (1)

|         |        | Thread Locking                              | Specifications                               | Test Sheet Material    |                         |                          |
|---------|--------|---------------------------------------------|----------------------------------------------|------------------------|-------------------------|--------------------------|
| ΞD      | Thread | Max.                                        |                                              |                        | .040" Cold-rolled Steel |                          |
| UNIFIED | Code   | First On<br>Prevailing Torque<br>(in. lbs.) | First Off<br>Prevailing Torque<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.)       | Torque-out<br>(in. lbs.) |
|         | 440    | 3                                           | 0.38                                         | 1000                   | 10                      | 4                        |

|       |        | Thread Locking                         | Test Sheet Material                     |                      |                 |                     |
|-------|--------|----------------------------------------|-----------------------------------------|----------------------|-----------------|---------------------|
| ပ     | Thread | Max.                                   | Min.                                    | 1 mr                 | n Cold-rolled S | iteel               |
| METRI | Code   | First On<br>Prevailing Torque<br>(N-m) | First Off<br>Prevailing Torque<br>(N-m) | Installation<br>(kN) | Pushout<br>(N)  | Torque-out<br>(N•m) |
|       | М3     | 0.339                                  | 0.042                                   | 4.45                 | 44.5            | 0.45                |

### FE™/FEO™/UL™ NUTS (1)(2)

|          |      |        |                        |                   | Test Shee                | t Material             |                   |                          |
|----------|------|--------|------------------------|-------------------|--------------------------|------------------------|-------------------|--------------------------|
|          |      | Thread |                        | 5052-H34 Aluminum |                          |                        | Cold-rolled Steel |                          |
|          | Туре | Code   | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Installation<br>(Ibs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
|          | FE0  | 440    | 900                    | 88                | 12                       | 1500                   | 140               | 12                       |
| E D      | FE   | 440    | 900                    | 135               | 12                       | 1500                   | 210               | 12                       |
| E        | FE0  | 632    | 1200                   | 105               | 20                       | 2100                   | 185               | 20                       |
| I        | FE   | 632    | 1300                   | 175               | 20                       | 2100                   | 255               | 20                       |
| <b>-</b> | FE0  | 832    | 1500                   | 155               | 48                       | 2500                   | 260               | 48                       |
|          | FE   | 032    | 1300                   | 255               | 40                       | 2500                   | 360               | 40                       |
|          | FE0  |        | 1500                   | 155               | 48                       | 2500                   | 260               | 48                       |
|          | FE   | 032    | 1300                   | 255               | 40                       | 2500                   | 360               | 40                       |
|          | FE   | 0420   | 2100                   | 320               | 110                      | 3500                   | 420               | 110                      |
|          | , .  | 0428   | 2100                   | 320               | 110                      | 3300                   | 420               | 110                      |

|      |      |                  |                      |                   | Test Sheet          | Material             |                   |                     |
|------|------|------------------|----------------------|-------------------|---------------------|----------------------|-------------------|---------------------|
|      |      |                  |                      | 5052-H34 Aluminum |                     |                      | Cold-rolled Steel |                     |
| TRIC | Туре | Thread<br>Code   | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N•m) | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N-m) |
|      | FE0  | M3               | 4 -                  | 391               | 1,35                | 6.7                  | 622               | 1.35                |
|      | FE   | IVIO             | 4                    | 600               | 1.55                | 0.7                  | 934               | 1.55                |
| M    | FE0  | M4               | 6.7                  | 689               | 5,42                | 11,1                 | 1156              | 5,42                |
| Σ    | FE   | IVI <del>*</del> | 0.7                  | 1134              | 3.42                | 11.1                 | 1601              | 3.42                |
|      | FE0  | M5 6.7 689 5.42  | 11,1                 | 1156              | 5.42                |                      |                   |                     |
|      | FE   | M5               | 0.7                  | 1134              | 0.42                | 16.1                 | 1601              | 5.42                |
|      | FE   | M6               | 9.4                  | 1423              | 12.43               | 15.6                 | 1868              | 12.43               |

|     |      |        |       |                        |                   | Test Sheet Mate          | rial                   |                   |                          |
|-----|------|--------|-------|------------------------|-------------------|--------------------------|------------------------|-------------------|--------------------------|
|     |      | Thread | Shank |                        | 5052-H34 Aluminum |                          |                        | Cold-rolled Steel |                          |
| E D | Туре | Code   | Code  | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
| Ξ   |      | 080    | 0     | 750                    | 20                | 2                        | 1000                   | 30                | 2                        |
| z   | UL   | 164    | 0     | 750                    | 20                | 3                        | 1000                   | 30                | 3                        |
|     |      | 256    | 0     | 1000                   | 20                | 4                        | 1200                   | 20                | 4                        |
|     |      | 200    | 1     | 1000                   | 20                | 4                        | 1300                   | 30                | 4                        |

| ,  |    |        |       |      |                   | Test Shee | t Material   |         |            |
|----|----|--------|-------|------|-------------------|-----------|--------------|---------|------------|
| ۱Ľ |    | Throad | Shank |      | 5052-H34 Aluminum |           | Installation |         |            |
| ۳. |    |        | Code  |      | Pushout           |           |              | Pushout | Torque-out |
| ٦٤ |    | ouc    | Couc  | (kN) | (N)               | (N-m)     | (kN)         | (N)     | (N-m)      |
| Σ  | UL | M2     | 1     | 4    | 89                | 0.45      | 5.8          | 133     | 0.45       |

<sup>(1)</sup> Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/ or samples for this purpose.

<sup>(2)</sup> For FE and FEO fasteners, thread locking performance is equivalent to applicable NASM25027 specifications. For details, see chart on page 124.

### LASTM/LACTM NUTS (1)(2)

|   |              |       |                        |                               |                                      |                        | Test Sheet Material           |                                      |                        |                               |                                      |
|---|--------------|-------|------------------------|-------------------------------|--------------------------------------|------------------------|-------------------------------|--------------------------------------|------------------------|-------------------------------|--------------------------------------|
|   | Thread       | Shank |                        | 2024-T3 Aluminum              |                                      |                        | 5052-H34 Aluminum             |                                      |                        | Cold-Rolled Steel             |                                      |
|   | Code         | Code  | Installation<br>(lbs.) | Retainer<br>Pushout<br>(lbs.) | Retainer<br>Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Retainer<br>Pushout<br>(lbs.) | Retainer<br>Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Retainer<br>Pushout<br>(lbs.) | Retainer<br>Torque-out<br>(in. lbs.) |
|   | 440          | 1     | 3000                   | 220                           | 65                                   | 1500                   | 215                           | 65                                   | 3000                   | 300                           | 85                                   |
| = | 440          | 2     |                        | 225                           | 150                                  | 2000                   | 225                           | 80                                   | 3000                   | 300                           | 150                                  |
| 4 | 632          | 1     | 3000                   | 235                           | 110                                  | 2000                   | 240                           | 140                                  | 3000                   | 300                           | 150                                  |
| Z | 032          | 2     |                        | 275                           | 150                                  | 2000                   | 250                           | 150                                  | 3000                   | 300                           | 175                                  |
|   | 832          | 1     | 3000                   | 240                           | 110                                  | 2000                   | 250                           | 140                                  | 3000                   | 300                           | 150                                  |
|   | 032          | 2     | 3000                   | 300                           | 150                                  | 2000                   | 265                           | 150                                  | 3000                   | 400                           | 200                                  |
|   | 032          | 1     | 3500                   | 300                           | 150                                  | 2000                   | 300                           | 150                                  | 3500                   | 400                           | 150                                  |
|   | 032          | 2     | 3300                   | 300                           | 200                                  | 2000                   | 350                           | 175                                  | 3300                   | 450                           | 200                                  |
|   | 0420<br>0428 | 2     | 5000                   | 300                           | 325                                  | 3000                   | 400                           | 325                                  | 5000                   | 500                           | 325                                  |

|      |        |       |                      |                            |                                 |                      | Test Sheet Material        |                                 |                      |                            |                                 |  |
|------|--------|-------|----------------------|----------------------------|---------------------------------|----------------------|----------------------------|---------------------------------|----------------------|----------------------------|---------------------------------|--|
|      | Thread | Shank |                      | 2024-T3 Aluminum           |                                 |                      | 5052-H34 Aluminum          |                                 | Cold-Rolled Steel    |                            |                                 |  |
| 2    | Code   | Code  | Installation<br>(kN) | Retainer<br>Pushout<br>(N) | Retainer<br>Torque-out<br>(N-m) | Installation<br>(kN) | Retainer<br>Pushout<br>(N) | Retainer<br>Torque-out<br>(N-m) | Installation<br>(kN) | Retainer<br>Pushout<br>(N) | Retainer<br>Torque-out<br>(N-m) |  |
| T.B. | М3     | 1     | 13.3                 | 978                        | 7.3                             | 6.7                  | 956                        | 7.3                             | 13.3                 | 1334                       | 9.6                             |  |
| ш    | IVIO   | 2     | 13.3                 | 1000                       | 16.9                            | 8.9                  | 1000                       | 9                               | 13.3                 | 1334                       | 16.9                            |  |
| Σ    | MA     | 1     | 13.3                 | 1067                       | 12.4                            | 8.9                  | 1112                       | 15.8                            | 13.3                 | 1334                       | 16.9                            |  |
|      | M4     | 2     | 15.6                 | 1334                       | 16.9                            | 8.9                  | 1178                       | 16.9                            | 13.3                 | 1779                       | 22.6                            |  |
|      | МГ     | 1     | 15.6                 | 1334                       | 16.9                            | 8.9                  | 1334                       | 16.9                            | 15.6                 | 1779                       | 16.9                            |  |
|      | M5     | 2     | 16.6                 | 1334                       | 22.6                            | 8.9                  | 1556                       | 19.7                            | 15.6                 | 2001                       | 22.6                            |  |
|      | M6     | 2     | 22.2                 | 1334                       | 36.7                            | 13.3                 | 1779                       | 36.7                            | 22.2                 | 2224                       | 36.7                            |  |

### LA4<sup>™</sup> NUTS (1)(2)

|      |        |                        | Test Sheet Material           |                                      |
|------|--------|------------------------|-------------------------------|--------------------------------------|
|      | Thread |                        | 300 Series Stainless Steel    |                                      |
| FIED | Code   | Installation<br>(lbs.) | Retainer<br>Pushout<br>(lbs.) | Retainer<br>Torque-out<br>(in. lbs.) |
| Ξ    | 440    | 9000                   | 200                           | 85                                   |
|      | 632    | 10000                  | 200                           | 85                                   |
|      | 832    | 12000                  | 200                           | 85                                   |
|      | 032    | 13000                  | 250                           | 125                                  |

|       |        |                      | Test Sheet Material        |                                 |
|-------|--------|----------------------|----------------------------|---------------------------------|
|       | Thread |                      | 300 Series Stainless Steel |                                 |
| ETRIC | Code   | Installation<br>(kN) | Retainer<br>Pushout<br>(N) | Retainer<br>Torque-out<br>(N-m) |
| M     | М3     | 40                   | 890                        | 9.6                             |
|       | M4     | 53                   | 890                        | 9.6                             |
|       | M5     | 57                   | 1100                       | 14.1                            |

<sup>(1)</sup> Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/ or samples for this purpose.

<sup>(2)</sup> Thread locking performance is equivalent to applicable NASM25027 specifications. For details, see chart on page 124.

### LKTM/LKSTM/LKATM NUTS (1)(2)

|    |        |        |                        |                   | Test Sheet               | Material               |                   |                          |
|----|--------|--------|------------------------|-------------------|--------------------------|------------------------|-------------------|--------------------------|
|    | Thread | Shank  |                        | 5052-H34 Aluminum |                          |                        | Cold-rolled Steel |                          |
|    | Code   | Code   | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
|    | 256    | 1      | 1600                   | 130               | 20                       | 3000                   | 150               | 20                       |
| ED | 230    | 2      | 2000                   | 150               | 30                       | 3000                   | 160               | 20                       |
| Ξ  | 440    | 1      | 1600                   | 130               | 25                       | 3000                   | 150               | 30                       |
| Ξ  | 440    | 2      | 2000                   | 200               | 35                       | 3000                   | 250               | 40                       |
| 5  | 632    | 1      | 2400                   | 130               | 25                       | 4000                   | 150               | 45                       |
|    | 032    | 2      | 2700                   | 225               | 45                       | 4300                   | 275               | 50                       |
|    | 832    | 1      | 2700                   | 150               | 45                       | 4000                   | 190               | 50                       |
|    | 032    | 2      | 3000                   | 250               | 50                       | 4300                   | 300               | 70                       |
|    | 032    | 1 2200 | 150                    | 90                | 4000                     | 250                    | 100               |                          |
|    | 032 —  | 2      | 3200                   | 250               | 105                      | 4300                   | 300               | 120                      |

|    |        |       |                      |                   | Test Sheet          | Material             |                   |                     |
|----|--------|-------|----------------------|-------------------|---------------------|----------------------|-------------------|---------------------|
|    | Thread | Shank |                      | 5052-H34 Aluminum |                     |                      | Cold-rolled Steel |                     |
|    | Code   | Code  | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N-m) | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N-m) |
| ပ  | M2.5   | 1     | 7.1                  | 578               | 2.3                 | 13.3                 | 667               | 2.3                 |
| ~  | C.ZIVI | 2     | 8.9                  | 667               | 3.4                 | 13.3                 | 711               | 2.3                 |
| EΤ | М3     | 1     | 7.1                  | 578               | 2.8                 | 13.3                 | 667               | 3.4                 |
| Σ  | IVIO   | 2     | 8.9                  | 890               | 4                   | 13.3                 | 1112              | 4.5                 |
|    | M4     | 1     | 12                   | 667               | 5.1                 | 17.8                 | 845               | 5.6                 |
|    | IVI4   | 2     | 13.3                 | 1112              | 5.7                 | 19.1                 | 1334              | 7.9                 |
|    | M5     | 1     | 14.2                 | 667               | 10.2                | 17.8                 | 1112              | 11.3                |
|    | CIVI   | 2     | 14.2                 | 1112              | 11.9                | 19.1                 | 1334              | 13.6                |

# PLTM/PLCTM NUTS (1)(2)

|     |        |                        | Test Sheet Material |                          |                        |                    |                          |                        |                     |                          |                        |                     |                          |  |  |
|-----|--------|------------------------|---------------------|--------------------------|------------------------|--------------------|--------------------------|------------------------|---------------------|--------------------------|------------------------|---------------------|--------------------------|--|--|
|     | Thread | .06                    | 0" 5052-H34 Alumir  | num                      | .04                    | 0" 5052-H34 Alumii | num                      | .0                     | 60" Cold-rolled Ste | el                       | .0                     | 48" Cold-rolled Ste | eel                      |  |  |
| D   | Code   | Installation<br>(lbs.) | Pushout<br>(lbs.)   | Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.)  | Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.)   | Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.)   | Torque-out<br>(in. lbs.) |  |  |
| 314 | 440    | 2000                   | 225                 | 20                       | 1500                   | 160                | 20                       | 3000                   | 260                 | 20                       | 3000                   | 225                 | 20                       |  |  |
| Z   | 632    | 2000                   | 285                 | 30                       | 1500                   | 180                | 25                       | 3000                   | 290                 | 30                       | 3000                   | 270                 | 30                       |  |  |
|     | 832    | 2000                   | 290                 | 60                       | 1500                   | 180                | 28                       | 3000                   | 290                 | 60                       | 3000                   | 270                 | 60                       |  |  |
|     | 032    | 2000                   | 300                 | 70                       | 1500                   | 180                | 40                       | 3000                   | 350                 | 70                       | 3000                   | 310                 | 70                       |  |  |

|     |        |                      |                   |                       |                      |                   | Test Sheet            | Material             |                   |                       |                          |                |                       |
|-----|--------|----------------------|-------------------|-----------------------|----------------------|-------------------|-----------------------|----------------------|-------------------|-----------------------|--------------------------|----------------|-----------------------|
|     | Thread | 1.5 m                | nm 5052-H34 Alumi | inum                  | 1 mi                 | n 5052-H34 Alumin | num                   | 1.5                  | mm Cold-rolled St | eel                   | 1.2 mm Cold-rolled Steel |                |                       |
| RIC | Code   | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N • m) | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N • m) | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N • m) | Installation<br>(kN)     | Pushout<br>(N) | Torque-out<br>(N • m) |
| ETF | М3     | 8.9                  | 1000              | 2.25                  | 6.67                 | 710               | 2.25                  | 13.34                | 1156              | 2.25                  | 13.34                    | 1000           | 2.25                  |
| Σ   | M4     | 8.9                  | 1290              | 6.77                  | 6.67                 | 800               | 3.16                  | 13.34                | 1290              | 6.77                  | 13.34                    | 1200           | 6.77                  |
|     | M5     | 8.9                  | 1330              | 7.9                   | 6.67                 | 800               | 4.51                  | 13.34                | 1557              | 7.9                   | 13.34                    | 1380           | 7.9                   |

<sup>(1)</sup> Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/ or samples for this purpose.

<sup>(2)</sup> Thread locking performance is equivalent to applicable NASM25027 specifications. For details, see chart on page 124.

### SL™ NUTS (1)

|   |        |       | Thread Locking               | Specifications               |                        |                   | Test Sheet               | Material               |                   |                          |
|---|--------|-------|------------------------------|------------------------------|------------------------|-------------------|--------------------------|------------------------|-------------------|--------------------------|
|   | Thread | Shank | Max. Prevailing Torque       | Min. Prevailing Torque       | 5                      | 052-H34 Aluminun  | 1                        |                        | Cold-rolled Steel |                          |
|   | Code   | Code  | (1st thru 3rd)<br>(in. lbs.) | (1st thru 3rd)<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
|   | 440    | 1     | 5.75                         | 0,4                          | 1500 - 2000            | 90                | 10                       | 2500 - 3500            | 125               | 15                       |
|   | 440    | 2     | 5.75                         | 0.4                          | 1300 - 2000            | 170               | 13                       | 2300 - 3300            | 230               | 18                       |
| Q | 632    | 1     | 10.5                         | 0,8                          | 2500 - 3000            | 95                | 17                       | 3000 - 6000            | 130               | 20                       |
| ш | 032    | 2     | 10.0                         | 0.0                          | 2300 3000              | 190               | 22                       | 3000 0000              | 275               | 28                       |
| 盂 | 832    | 1     | 18                           | 1.2                          | 2500 - 3000            | 105               | 23                       | 4000 - 6000            | 145               | 35                       |
| _ | 032    | 2     | 10                           | 1.2                          | 2300 3000              | 220               | 35                       | 4000 0000              | 285               | 45                       |
| Z | 032    | 1     | 21                           |                              | 2500 - 3000            | 110               | 32                       | 4000 - 9000            | 180               | 40                       |
|   | 002    | 2     | 21                           |                              | 2000 0000              | 190               | 50                       | 1000 0000              | 250               | 60                       |
|   | 0420   | 1     | 35                           | 2.75                         | 4000 - 7000            | 360               | 90                       | 6000 - 9000            | 400               | 150                      |
|   | 0420   | 2     | 30                           | 3.73                         | 1000 7000              | 360               | 125                      | 0000 - 9000            | 400               | 150                      |
|   | 0518   | 1     | 53                           | 4.75                         | 4000 - 7000            | 380               | 120                      | 6000 - 8000            | 420               | 165                      |
|   | 0010   | 2     | ນວ                           |                              | 4000 - 7000            | 380               | 160                      | 0000 - 0000            | 420               | 180                      |
|   | 0616   | 1     | 95                           |                              | 5000 - 8000            | 400               | 270                      | 7000 - 11000           | 460               | 320                      |
|   | 0010   | 2     | 30                           |                              | 3000 - 0000            | 400               | 270                      | 7000 - 11000           | 460               | 320                      |

|   |        |       | Thread Locking          | Specifications          |                      |                   | Test Sheet          | Material             |                   |                     |
|---|--------|-------|-------------------------|-------------------------|----------------------|-------------------|---------------------|----------------------|-------------------|---------------------|
|   | Thread | Shank | Max. Prevailing Torque  | Min. Prevailing Torque  |                      | 5052-H34 Aluminun | 1                   |                      | Cold-rolled Steel |                     |
|   | Code   | Code  | (1st thru 3rd)<br>(N-m) | (1st thru 3rd)<br>(N-m) | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N-m) | Installation<br>(kN) | Pushout<br>(N)    | Torque-out<br>(N-m) |
|   | M3     | 1     | 0.67                    | 0.04                    | 6.7 - 8.9            | 400               | 1.13                | 11.2 - 15.6          | 550               | 1.7                 |
|   | WIS    | 2     | 1.2                     | 0.04                    | 0.7 0.3              | 750               | 1.47                | 11.2 15.0            | 1010              | 2.03                |
| ပ | M3.5   | 1     |                         | 0.08                    | 11.2 - 13.5          | 400               | 1.92                | 13.4 - 26.7          | 570               | 2.3                 |
| = | WIS.5  | 2     | 1.Z                     | 0.00                    | 11.2 15.5            | 840               | 2.5                 | 13.4 20.7            | 1210              | 2.3                 |
| ~ | M4     | 1     | 21                      | 0.13                    | 11.2 - 13.4          | 470               | 2.6                 | 18 - 27              | 645               | 4                   |
| 1 |        | 2     | 2.11                    | Ollo                    | 1112 1011            | 970               | 4                   | 10 27                | 1250              | 5.1                 |
| Σ | M5     | 1     | 2.4                     | 0.18                    | 11.2 - 15.6          | 480               | 3.6                 | 18 - 38              | 800               | 4.5                 |
|   | mo     | 2     | 211                     | ono                     | 1112 1010            | 845               | 5.7                 | 10 00                | 1112              | 6.8                 |
|   | M6     | 1     | 4                       | 0.3                     | 18 - 32              | 1580              | 10.2                | 27 - 36              | 1760              | 17                  |
|   | mo     | 2     |                         | 0.0                     | 10 02                | 1580              | 14.1                | 27 00                | 1760              | 17                  |
|   | M8     | 1     | 6                       | 0.5                     | 18 - 32              | 1570              | 13.6                | 27 - 36              | 1870              | 18.7                |
|   | ino.   | 2     | 3                       | 0.0                     | 10 02                | 1570              | 18.1                | 27 00                | 1870              | 20.3                |
|   | M10    | 1     | 12                      | 0.8                     | 22 - 36              | 1760              | 32.7                | 32 - 50              | 2020              | 36.2                |
|   | 10     | 2     | - 4<br>- 6<br>- 12      | 5.0                     |                      | 1760              | 32.7                | 3 <u>2</u> 00        | 2020              | 36.2                |

<sup>(1)</sup> Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.

### PEM RT® NUTS (1)

|      | Туре | Thread<br>Code | Shank<br>Code    | Test Sheet<br>Material | Installation<br>(lbs.) | Pushout<br>(lbs.)      | Torque-out<br>(in. lbs.) |
|------|------|----------------|------------------|------------------------|------------------------|------------------------|--------------------------|
|      |      |                | 0                | 5052-H34<br>Aluminum   | 1500-2000              | 63<br>90               | 8 10                     |
|      | S    | RT440          | 0 1              | Cold-rolled<br>Steel   | 2500-3500              | 170<br>105<br>125      | 13<br>13<br>15           |
|      |      |                | 2<br>0<br>1<br>2 | 5052-H34<br>Aluminum   | 2500-3000              | 230<br>63<br>95<br>190 | 18<br>16<br>17<br>22     |
|      | S    | RT632          | 0 1 2            | Cold-rolled<br>Steel   | 3000-6000              | 110<br>130<br>275      | 16<br>20<br>28           |
| E D  |      | DTOO           | 0<br>1<br>2      | 5052-H34<br>Aluminum   | 2500-3000              | 68<br>105<br>220       | 21<br>23<br>35           |
| NIFI | S    | RT832          | 0<br>1<br>2      | Cold-rolled<br>Steel   | 4000-6000              | 110<br>145<br>285      | 26<br>35<br>45           |
| U    | SS   | RT032          | 0<br>1<br>2      | 5052-H34<br>Aluminum   | 2500-3500              | 68<br>110<br>190       | 26<br>32<br>50           |
|      | 55   | K1032          | 0<br>1<br>2      | Cold-rolled<br>Steel   | 4000-9000              | 120<br>180<br>320      | 32<br>40<br>60           |
|      | S    | RT0420         | 0<br>1<br>2      | 5052-H34<br>Aluminum   | 4000-7000              | 220<br>360             | 70<br>90<br>125          |
|      | 5    | N1U42U         | 0<br>1<br>2      | Cold-rolled<br>Steel   | 6000-8000              | 315<br>400             | 115<br>150               |
|      | S    | RT0518         | 1 2              | 5052-H34<br>Aluminum   | 4000-7000              | 380                    | 120<br>160               |
|      | 3    | MICUIN         | 1 2              | Cold-rolled<br>Steel   | 6000-8000              | 420                    | 165<br>180               |

|          | Туре | Thread<br>Code | Shank<br>Code | Test Sheet<br>Material | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N•m) |
|----------|------|----------------|---------------|------------------------|----------------------|----------------|---------------------|
|          |      |                | 0             | 5052-H34               |                      | 280            | 0.9                 |
|          |      |                | 1             | Aluminum               | 6.7-8.9              | 400            | 1.13                |
|          | S    | RTM3           | 2             | Alullillulli           |                      | 750            | 1.47                |
|          |      | 1111115        | 0             | Cold-rolled            |                      | 470            | 1.47                |
|          |      |                | 1             | Steel                  | 11.2-15.6            | 550            | 1.7                 |
|          |      |                | 2             | 31661                  |                      | 1010           | 2.03                |
|          |      |                | 0             | 5052-H34               |                      | 300            | 2.37                |
|          |      |                | 1             | Aluminum               | 11.2-13.4            | 470            | 2.6                 |
|          | S    | RTM4           | 2             | Alullillulli           |                      | 970            | 4                   |
| ပ        | ٠    | 1111111-7      | 0             | Cold-rolled            |                      | 490            | 2.95                |
| I – I    |      |                | 1             | Steel                  | 18-27                | 645            | 4                   |
| <u>«</u> |      |                | 2             | 01001                  |                      | 1250           | 5.1                 |
| ΕŢ       |      |                | 0             | 5052-H34               |                      | 300            | 3                   |
| Ξ        |      |                | 1             | Aluminum               | 11.2-15.6            | 480            | 3.6                 |
| -        | SS   | RTM5           | 2             | / Mullimulii           |                      | 845            | 5.7                 |
|          | 00   | 1111110        | 0             | Cold-rolled            |                      | 530            | 3.6                 |
|          |      |                | 1             | Steel                  | 18-38                | 800            | 4.5                 |
|          |      |                | 2             | 0.00.                  |                      | 1112           | 6.8                 |
|          |      |                | 00            |                        |                      | 750            | 6.5                 |
|          |      |                | 0             | 5052-H34               | 18-32                | 970            | 7.9                 |
|          |      |                | 1             | Aluminum               | 10-32                | 1580           | 10.2                |
|          | S    | RTM6           | 2             |                        |                      | 1300           | 14.1                |
|          | ٥    | TITIVIO        | 00            |                        |                      | 900            | 10                  |
|          | I    |                | 0             | Cold-rolled            | 27-36                | 1380           | 13                  |
|          |      |                | 1 2           | Steel                  | 27 50                | 1760           | 17                  |

<sup>(1)</sup> Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.

# **AXIAL STRENGTH AND TIGHTENING TORQUE COMPARISON**

|    |        | _                                    |                                           |                                        |                                      |                                           |                                                   | - Increa                             | asing Axial S                  | trength —                              |                                      |                                           |                                                   |                                      |                                | <b>→</b>                               |
|----|--------|--------------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------------|----------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------------|----------------------------------------|
|    |        | 1                                    | ypes UL-0/FEC                             | )                                      |                                      | Types UL-1/FE                             |                                                   |                                      | Types PL/PLC                   |                                        |                                      | Type SL                                   |                                                   | Types LK/                            | LKA/LKS/LAC/                   | LAS/LA4                                |
|    | Thread | Locknut                              | Mating                                    | Screw                                  | Locknut                              | Mating                                    | Screw                                             | Locknut                              | Mating                         | Screw                                  | Locknut                              | Mating                                    | Screw                                             | Locknut                              | Mating                         | Screw                                  |
|    | Code   | Min. Axial<br>Strength<br>(lbs.) (1) | Strength<br>Level<br>(ksi) <sup>(2)</sup> | Tightening<br>Torque<br>(in. lbs.) (3) | Min. Axial<br>Strength<br>(lbs.) (1) | Strength<br>Level<br>(ksi) <sup>(2)</sup> | Tightening<br>Torque<br>(in. lbs.) <sup>(3)</sup> | Min. Axial<br>Strength<br>(lbs.) (1) | Strength<br>Level<br>(ksi) (2) | Tightening<br>Torque<br>(in. lbs.) (3) | Min. Axial<br>Strength<br>(lbs.) (4) | Strength<br>Level<br>(ksi) <sup>(4)</sup> | Tightening<br>Torque<br>(in. lbs.) <sup>(5)</sup> | Min. Axial<br>Strength<br>(lbs.) (7) | Strength<br>Level<br>(ksi) (7) | Tightening<br>Torque<br>(in. lbs.) (5) |
|    | 080    | 125                                  | 69                                        | 1.0                                    | _                                    | _                                         | _                                                 | -                                    | _                              | _                                      | _                                    | _                                         | _                                                 | _                                    | _                              | _                                      |
| ED | 164    | 125                                  | 49                                        | 1.2                                    | _                                    | _                                         | _                                                 | _                                    | _                              | _                                      | _                                    | ı                                         | -                                                 | -                                    | -                              | _                                      |
| Ξ  | 256    | 169                                  | 46                                        | 1.9                                    | 316                                  | 85                                        | 3.5                                               | -                                    | _                              | _                                      | _                                    | _                                         | _                                                 | _                                    | _                              | _                                      |
| Ξ  | 440    | 465                                  | 77                                        | 6.8                                    | 705                                  | 117                                       | 10.3                                              | 897                                  | 149                            | 13.1                                   | 1,085                                | 180                                       | 15.8                                              | 1,085                                | 180                            | 15.8                                   |
|    | 632    | 546                                  | 60                                        | 9.8                                    | 847                                  | 93                                        | 15.2                                              | 1,036                                | 114                            | 18.6                                   | 1,636                                | 180                                       | 29.4                                              | 1,636                                | 180                            | 29.4                                   |
|    | 832    | 779                                  | 56                                        | 16.6                                   | 1,213                                | 87                                        | 25.9                                              | 1,179                                | 84                             | 25.1                                   | 2,270 (6)                            | 180                                       | 48.4                                              | 2,522                                | 180                            | 53.8                                   |
|    | 032    | 779                                  | 39                                        | 19.2                                   | 1,213                                | 61                                        | 30.0                                              | 1,246                                | 62                             | 30.8                                   | 2,880 (6)                            | 180                                       | 71.1                                              | 3,600                                | 180                            | 88.9                                   |
|    | 0420   | _                                    | _                                         | _                                      | 1,412                                | 44                                        | 45.9                                              | -                                    | _                              | _                                      | 5,728                                | 180                                       | 186                                               | 5,728                                | 180                            | 186                                    |
|    | 0518   | _                                    | _                                         | _                                      | _                                    | _                                         | _                                                 | -                                    | _                              | _                                      | 9,437                                | 180                                       | 383                                               | _                                    | _                              | _                                      |
|    | 0616   | _                                    | _                                         | _                                      | _                                    | _                                         | _                                                 | _                                    | _                              | _                                      | 13,948                               | 180                                       | 680                                               | _                                    | _                              | _                                      |

|    |        | _                                  |                                |                                              |                                    |                                |                                              | Increa                             | asing Axial S                  | trength —                                    |                                               |                                           |                                              |                                               |                                           | <b>→</b>                                     |
|----|--------|------------------------------------|--------------------------------|----------------------------------------------|------------------------------------|--------------------------------|----------------------------------------------|------------------------------------|--------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------|
|    |        | 1                                  | ypes UL-0/FEC                  | )                                            |                                    | Types UL-1/FE                  |                                              |                                    | Types PL/PLC                   |                                              |                                               | Type SL                                   |                                              | Types LK/                                     | LKA/LKS/LAC/                              | LAS/LA4                                      |
|    | Thread | Locknut                            | Mating                         | Screw                                        | Locknut                            | Mating                         | Screw                                        | Locknut                            | Mating                         | Screw                                        | Locknut                                       | Mating                                    | Screw                                        | Locknut                                       | Mating                                    | Screw                                        |
| O  | Code   | Min. Axial<br>Strength<br>(kN) (1) | Strength<br>Level<br>(MPa) (2) | Tightening<br>Torque<br>(N•m) <sup>(3)</sup> | Min. Axial<br>Strength<br>(kN) (1) | Strength<br>Level<br>(MPa) (2) | Tightening<br>Torque<br>(N-m) <sup>(3)</sup> | Min. Axial<br>Strength<br>(kN) (1) | Strength<br>Level<br>(MPa) (2) | Tightening<br>Torque<br>(N•m) <sup>(3)</sup> | Min. Axial<br>Strength<br>(kN) <sup>(4)</sup> | Strength<br>Level<br>(MPa) <sup>(4)</sup> | Tightening<br>Torque<br>(N-m) <sup>(5)</sup> | Min. Axial<br>Strength<br>(kN) <sup>(7)</sup> | Strength<br>Level<br>(MPa) <sup>(7)</sup> | Tightening<br>Torque<br>(N-m) <sup>(5)</sup> |
| =  | M2     | _                                  | -                              | ı                                            | 1.39                               | 432                            | 0.36                                         | -                                  | ı                              | _                                            | -                                             | -                                         | _                                            | _                                             | -                                         | _                                            |
| -  | М3     | 2.08                               | 267                            | 0.81                                         | 3.16                               | 405                            | 1.23                                         | 4.03                               | 517                            | 1.57                                         | 6.14                                          | 1220                                      | 2.39                                         | 6.14                                          | 1220                                      | 2.39                                         |
| ME | M4     | 3.48                               | 255                            | 1.81                                         | 5.42                               | 398                            | 2.82                                         | 5.21                               | 382                            | 2.71                                         | 9.64 (6)                                      | 1220                                      | 5.01                                         | 10.71                                         | 1220                                      | 5.57                                         |
|    | M5     | 3.48                               | 158                            | 2.26                                         | 5.42                               | 246                            | 3.52                                         | 5.6                                | 255                            | 3.64                                         | 12.63 (6)                                     | 1220                                      | 8.21                                         | 17.3                                          | 1220                                      | 11.2                                         |
|    | M6     | -                                  | -                              | -                                            | 6.28                               | 201                            | 4.9                                          | -                                  | -                              | -                                            | 24.55                                         | 1220                                      | 19.1                                         | 24.55                                         | 1220                                      | 19.1                                         |
|    | M8     | _                                  | -                              | -                                            | -                                  | _                              | -                                            | -                                  | -                              | _                                            | 44.66                                         | 1220                                      | 46.5                                         | _                                             | -                                         | _                                            |
|    | M10    | -                                  | -                              | -                                            | -                                  | _                              | -                                            | -                                  | -                              | -                                            | 70.75                                         | 1220                                      | 92                                           | -                                             | -                                         | -                                            |

- (1) Axial strength for UL, FEO, FE, PL and PLC locknuts are limited by knurled ring strength.
- (2) Screw strength level shown is the minimum needed to develop full nut strength, higher strength screws may be used.
- (3) Tightening torque shown will induce preload of 65% of locknut min axial strength with K or nut factor is equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value. If heat treated steel screw strength is less than the value shown, tightening torque should be proportionately reduced by multiplying the torque shown by the actual screw strength over the screw strength shown. For screws of other materials, never exceed the lower of this reduced torque or the tightening torque recommended for the screw. If higher strength screws are used, torque is not adjusted upward because assemble strength is still limited by locknut strength.
- (4) Unless otherwise noted, (see note 6) SL locknuts have axial strength exceeding the min tensile strength of 180 ksi/Property Class 12.9 screws. Contact tech support regarding assemble strength for higher strength screws.
- (5) Tightening torque shown will induce preload of 65% of locknut min axial strength with K or nut factor is equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value. All tightening torques shown are based on 180 ksi/ Property Class 12.9 screws. For lower strength heat treated steel screws the tightening torque is proportionately less. For example, for 120 ksi screws (Grade 5), torque is 67% of value shown. For 900 MPa screws (Property Class 9.8) torque value is 74% of value shown. For screws of other materials, never exceed the lower of this reduced torque or the tightening torque recommended for the screw.
- (6) Due to limited nut height in this size, failure mode is screw stripping and axial strength value shown is slightly less than min tensile strength of 180 ksi/ Property class 12.9 screw.
- (7) All LK, LKS, LKA, LAC, LAS and LA4 locknuts have axial strength exceeding the min tensile strength of 180 ksi/Property Class 12.9 screws. Contact tech support regarding assemble strength for higher strength screws.

### NASM25027 AS APPLIED TO PEM® SELF-CLINCHING, SELF-LOCKING NUTS

PEM FE, FEO, LAS, LAC, LA4, LK, LKS, LKA, PL and PLC locknuts are produced to meet the prevailing locking torque requirements of NASM25027. Specification NASM25027 is a rather lengthy spec which includes many requirements for attributes such as tensile strength and wrenching strength which are not applicable to PEM self-clinching, self-locking nuts. It is difficult for those not familiar with the specification to determine exactly which portions of it apply to the locking torque of PEM self-clinching, self-locking nuts. This matter is further complicated by the fact that many of the requirements in the specification that do apply, apply only to qualification and are not so called "quality conformance inspections" which need to be applied to every lot of product. The fact of the matter is that only one test (room ambient temperature locking torque per the first row of Table IV) needs to be applied on a regular basis of PEM self-clinching, self-locking nuts. This requirement is defined by Table XIV and the permanent set test is not required per footnote 1. The requirements for this test are given in Paragraphs 3.8.2.2.1 and 3.8.2.2.2. The test method is specified in paragraphs 4.5.3.3. and 4.5.3.3.4.1. For convenience of those who do not have access to this specification and/or are not familiar with specification language, these test requirements and test methods are re-stated below in layman's terms.

The one required test is a 15 cycle re-usability test. There are two values of torque which are required by specification. The first is a maximum torque value which dare not be exceeded anytime during the 15 installation and removal cycles. The second is a minimum breakaway torque which must be met during the 15th removal cycle. These torque values are shown in Table III of specifications NASM25027. They are also listed below for PEM fastener sizes only and also for metric sizes.

Details of the test procedure and significant definitions can be found on our web site at: http://www.pemnet.com/files/design\_info/techsheets/NASM25027.pdf

|             | Maximum Lo<br>(Any ( |      |          | 15th Cycle<br>ay Torque |
|-------------|----------------------|------|----------|-------------------------|
| Thread Size | in. lbs.             | N-m  | in. lbs. | N-m                     |
| #2-56       | 2.5                  | 0.28 | 0.2      | 0.023                   |
| #4-40       | 5                    | 0.57 | 0.5      | 0.057                   |
| #6-32       | 10                   | 1.13 | 1.0      | 0.113                   |
| #8-32       | 15                   | 1.7  | 1.5      | 0.17                    |
| #10-24      | 18                   | 2.03 | 2.0      | 0.226                   |
| #10-32      | 18                   | 2.03 | 2.0      | 0.226                   |
| 1/4-20      | 30                   | 3.39 | 4.5      | 0.509                   |
| 1/4-28      | 30                   | 3.39 | 3.5      | 0.396                   |
| M2.5        | 3.8                  | 0.43 | 0.38     | 0.043                   |
| M3          | 5                    | 0.56 | 0.5      | 0.056                   |
| M3.5        | 10                   | 1.13 | 1.0      | 0.113                   |
| M4          | 15                   | 1.7  | 1.5      | 0.17                    |
| M5          | 18                   | 2.03 | 2.0      | 0.22                    |
| M6          | 28.3                 | 3.2  | 3.3      | 0.37                    |

PEM® Double Squares (Registered Trademark)



PEM® Blue Nylon Locking Element (Registered Trademark)



PEM® Stamp (Registered Trademark)



PEM RT® Stamp (Trademark) /



To be sure that you are getting genuine PEM® brand fasteners, look for the unique PEM product markings and identifiers.



### **IDEAL FOR TODAY'S AND TOMORROW'S COMPACT ELECTRONICS**

- Wearables (smart watches, cameras, fitness bands, headphones, etc.)
- Laptops
- Tablets/eReaders
- Cell/Smart Phones
- Gaming/Hand Held Devices/Virtual Reality
- Infotainment/Automotive Electronics



Parts for smaller and/or thinner applications have been designed. Please contact us for more information.



### MPP™ microPEM® Self-clinching Pins

Ideal for positioning and alignment applications-**PAGE 129** 



### MSO4™ microPEM® Self-clinching Standoffs

Designed for mounting and/or spacing in extremely limited space applications - PAGE 129



### TA™/T4™ microPEM® TackPin® Fasteners

Enable sheet-to-sheet attachment, replacing costly screw installation in applications where disassembly is not required - PAGE 130



## TKA™/TK4™ microPEM® TackSert® Pins

Enables attachment of metal sheets to plastic, replacing costly screw installation in applications where disassembly is not required - PAGE 131



### TFA™ microPEM® FLEXTACK™ FASTENERS

The Bellville washer shaped head of the microPEM® FlexTack™ fastener is designed to increase vertical installation tolerance in designs - PAGE 132



### TS4™ microPEM® TackScrew™ Fasteners

Enable cost effective sheet-to-sheet attachment by simply pressing into place. Can be removed by simply unscrewing, similar to other threaded fasteners - PAGE 132



### **CDS™ microPEM® ClampDisk® Fasteners**

threads, adhesive, rivets and other small fasteners - PAGE 133



# Press straight onto a 1 mm pin to replace



Fastener drawings and models are available at www.pemnet.com

### MSIA™/MSIB™ microPEM® Inserts For Plastics

Designed for use in straight or tapered holes. The symmetrical design eliminates the need for orientation. They are installed by pressing them into the mounting hole with ultrasonic equipment or with a thermal press - PAGE 134



### MSOFS™ microPEM® Flaring Standoffs

Attach permanently in any type of panel, including metal, plastic and PC board. Flaring feature allows for captivation of multiple panels - PAGE 135



### **SMTSO™** microPEM® Surface Mount Fasteners

These fasteners for compact electronic assemblies attach to PC boards for nut/standoff applications. These fasteners mount on PC boards in the same manner and at the same time as other surface mount components prior to the automated reflow solder process - PAGE 136



### microPEM® Screws

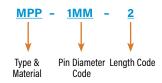
Available in thread codes as small as M0.8 and lengths as short as 1 mm / .039" - PAGE 137

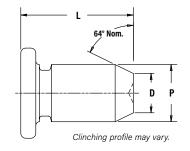


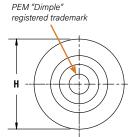
**Material and finish specifications - PAGE 138** 

Installation - PAGES 139 - 142

Performance data - PAGES 143 - 144





### MPP™ microPEM® SELF-CLINCHING PINS


- Satisfy demanding micro positioning and alignment applications
- Head mounts flush into panels as thin as 0.5 mm / .020"
- Chamfered end makes mating hole alignment easy
- Can be installed into stainless steel sheets
- **Excellent corrosion resistance**
- Can be installed automatically



### **PART NUMBER DESIGNATION**

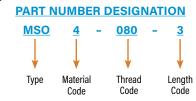


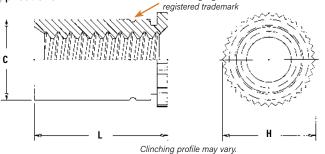




| Pin<br>Diameter<br>P | Type<br>Stainless<br>Steel | Pin<br>Diameter<br>Code |   |   |   | Code "L" ± 0<br>Code in mill |   |   |    |     | in.<br>eet<br>(ness | Hole :<br>In Sh<br>+0.025<br>+.00 | eet<br>mm / | 0<br>1.0±<br>10.± |      | ±0.25<br>±.0 | 10"  | Mi<br>Dista<br>Hole<br>to E | ance<br>e <b>©</b><br>dge |
|----------------------|----------------------------|-------------------------|---|---|---|------------------------------|---|---|----|-----|---------------------|-----------------------------------|-------------|-------------------|------|--------------|------|-----------------------------|---------------------------|
| ±0.038mm             |                            |                         |   |   |   |                              |   |   |    | mm  | in.                 | mm                                | in.         | mm                | in.  | mm           | in.  | mm                          | in.                       |
| 1                    | MPP                        | 1MM                     | 2 | 3 | 4 | 5                            | - | - | -  | 0.5 | .020                | 1.05                              | .041        | 0.7               | .028 | 1.6          | .063 | 2.05                        | .081                      |
| 1.5                  | MPP                        | 1.5MM                   | - | 3 | 4 | 5                            | 6 | 8 | -  | 0.5 | .020                | 1.55                              | .061        | 1.03              | .041 | 2.24         | .088 | 2.6                         | .102                      |
| 2                    | MPP                        | 2MM                     | - | - | 4 | 5                            | 6 | 8 | 10 | 0.5 | .020                | 2.05                              | .081        | 1.36              | .054 | 3.02         | .119 | 4.4                         | .173                      |

### MSO4™ microPEM® SELF-CLINCHING STANDOFFS


Designed for mounting and/or spacing in extremely limited space applications


Can be installed into stainless steel sheets<sup>(1)</sup>

 Have stronger threads than weld standoffs because they are made from heat-treated 400 Series Stainless Steel

Can be installed automatically





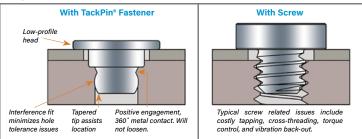


PEM® "single groove"

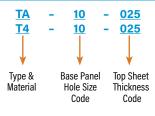
All dimensions are in inches.

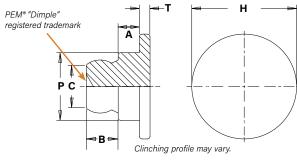
| ED | Thread<br>Size         | Type<br>Stainless Steel | Thread<br>Code | Length<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.002000 | C<br>Max. | H<br>Nom. | L<br>+.002003 | Min. Dist.<br>Hole <b>位</b><br>To Edge |
|----|------------------------|-------------------------|----------------|----------------|----------------------------|-----------------------------------|-----------|-----------|---------------|----------------------------------------|
| Ξ  | .060-80                | MS04                    | 080            | 3              | .012                       | .095                              | .094      | .125      | .094          | .090                                   |
| Z  | (#0-80) <sup>(2)</sup> | IVI3U4                  | 000            | 4              | .012                       | .033                              | .034      | .123      | .125          | .030                                   |
|    | .086-56                | MS04                    | 256            | 3              | .012                       | .125                              | .124      | .156      | .094          | .120                                   |
|    | (#2-56) <sup>(2)</sup> | IVISOT                  | 230            | 4              | .012                       | 1123                              | .124      | .150      | .125          | .120                                   |

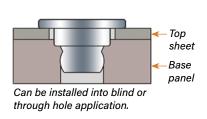
### All dimensions are in millimeters.


|     | Thread<br>Size            | Type<br>Stainless Steel | Thread<br>Code | Length<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.05 | C<br>Max. | H<br>Nom. | L<br>+0.05 - 0.08 | Min. Dist.<br>Hole <b>⊈</b><br>To Edge |
|-----|---------------------------|-------------------------|----------------|----------------|----------------------------|--------------------------------|-----------|-----------|-------------------|----------------------------------------|
| ပ   | M1 x 0.25 (3)             | MSO4                    | M1             | 3              | 0.3                        | 2.41                           | 2.39      | 3.18      | 2                 | 2.3                                    |
| TRI | M1.2 x 0.25 (3)           | MS04                    | M1.2           | 3              | 0.3                        | 2.41                           | 2.39      | 3.18      | 2 3               | 2.3                                    |
| ME  | M1.4 x 0.3 <sup>(4)</sup> | MSO4                    | M1.4           | 2 3            | 0.3                        | 2.41                           | 2.39      | 3.18      | 2 3               | 2.3                                    |
|     | M1.6 x 0.35 (5)           | MSO4                    | M1.6           | 2 3            | 0.3                        | 2.41                           | 2.39      | 3.18      | 2 3               | 2.3                                    |
|     | M2 x 0.4 <sup>(5)</sup>   | MS04                    | M2             | 3              | 0.3                        | 3.18                           | 3.16      | 3.96      | 2                 | 3                                      |

- (1) MSO4 standoffs are designed for use in sheet hardness HRB 88 / HB 183 or less. For installation into harder sheets (up to HRC 36), contact our Tech Support line or your local representative.
- (2) Unified ASME B1.1, 2B
- (3) Miniature ISO 68-1, 5H
- (4) Miniature ISO 68-1, 6H
- (5) Metric ASME B1.13M, 6H


### TA™/T4™ microPEM® TackPin® FASTENERS


- Reduce installation time vs. a screw
- Simple, press in installation eliminates many costs and concerns associated with micro screws:
  - Cross threading
  - Tapping
  - Tightening torque control
  - Vibrational back-out
- Low profile head provides space savings
- Tapered tip aligns fastener in hole
- Interference fit minimizes hole tolerance issues
- Easily installed automatically


# Comparison of TackPin® fastener to screw installation.



# PART NUMBER DESIGNATION







| Type<br>Alumi- | Stain-<br>less | Base<br>Panel<br>Hole<br>Size | Top<br>Sheet<br>Thick-<br>ness | To<br>She<br>Thick | eet     | Ba<br>Par<br>Min. S<br>Thickr | nel<br>Sheet | Hole<br>±0.05 | lole Size H<br>1.05 mm / -0<br>±.002" |      | Panel<br>Size<br>mm /<br>02" | A<br>±0.025<br>±.00 |      | ±0.075<br>±.00 |      | C<br>Ma |      | ±0.1 | H<br>mm /<br>)04" | ±0.05<br>±.0 |      | 1<br>1 1.0±<br>0.± |      | Di<br>Hole | lin.<br>ist.<br>e <b>©</b><br>Edge |
|----------------|----------------|-------------------------------|--------------------------------|--------------------|---------|-------------------------------|--------------|---------------|---------------------------------------|------|------------------------------|---------------------|------|----------------|------|---------|------|------|-------------------|--------------|------|--------------------|------|------------|------------------------------------|
| num            | Steel          | Code                          | Code                           | mm                 | in.     | mm                            | in.          | mm            | in.                                   | mm   | in.                          | mm                  | in.  | mm             | in.  | mm      | in.  | mm   | in.               | mm           | in.  | mm                 | in.  | mm         | in.                                |
| TA             | T4             | 10                            | 025                            | 0.2-0.28           | .008011 | 0.89                          | .035         | 1.47          | .058                                  | 1.02 | .040                         | 0.406               | .016 | 0.610          | .024 | 0.89    | .035 | 2    | .079              | 1.3          | .051 | 0.2                | .008 | 1          | .039                               |
| TA             | T4             | 10                            | 050                            | 0.48-0.56          | .019022 | 0.89                          | .035         | 1.47          | .058                                  | 1.02 | .040                         | 0.686               | .027 | 0.610          | .024 | 0.89    | .035 | 2    | .079              | 1.3          | .051 | 0.2                | .008 | 1          | .039                               |
| TA             | -              | 10                            | 075                            | 0.71-0.79          | .028031 | 0.89                          | .035         | 1.47          | .058                                  | 1.02 | .040                         | 0.914               | .036 | 0.610          | .024 | 0.89    | .035 | 2    | .079              | 1.3          | .051 | 0.2                | .008 | 1          | .039                               |

(1) 0.89 mm / .035" for blind holes and 0.5 mm / .020" for through holes.

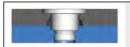
TackPin® and TackSert® fasteners have been specified to replace screws to attach a super-thin membrane to a very thin substrate in keyboards. The switch to TackPin® fasteners significantly reduced assembly costs.



### CUSTOM microPEM® TackPin® FASTENER SOLUTIONS

### Countersunk TackPin® Fastener




- Installs into a countersunk hole, replacing countersunk screws.
- Offers flush or near flush appearance.

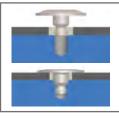
### **Large Head TackPin® Fastener**



- TackPin with a large head installed into boss of bottom panel.
- Holds down top panel that is free to rotate around the boss.

### Flush-head TackPin® Fastener



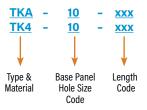

 TackPin installed into a thicker, softer top-sheet and pressed flush.

### Thin Sheet TackPin® Fastener

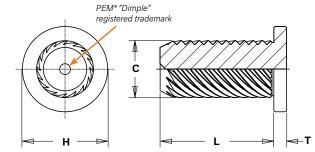


- Simple, press-in installation.
- Enables sheet-to-sheet attachment of multiple layers.
- Flush or sub-flush on both sides of sheet.
- Head mounts flush into top sheets as thin as .008" / 0.2 mm.

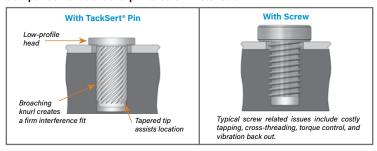
### FlexTack™ Fastener

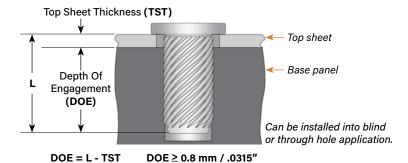



- The belleville shaped head flattens upon a simple press-in installation.
- Draws panels together to accommodate vertical stack tolerances.


### TKA™/TK4™ microPEM® TackSert® PINS

- Suitable for installation into plastics, metal castings and other brittle materials
- Reduce installation time vs. a screw
- Simple, press in installation (does not require heat or ultrasonics) eliminates many costs and concerns associated with micro screws:
  - Cross threading
  - Use of inserts / tapping
  - Tightening torque control
  - Vibrational back-out
- Low profile head provides space savings
- Tapered tip aligns fastener in hole
- Easily installed automatically


### **PART NUMBER DESIGNATION**








### Comparison of TackSert® pin to screw installation.





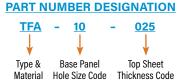
### For through hole applications

DOE - 0.25 mm / .010" = Min. Sheet

### For blind hole applications

DOE + 0.25 mm / .010" = Min. Blind Hole Depth

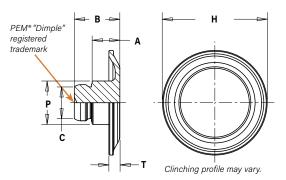
| Fastener | Type<br>Material<br>400 series | Base<br>Panel<br>Hole Size | Length | Top S<br>Hole<br>±0.05 mr | Size | Hole | Panel<br>Size<br>m/002" |     | Sheet<br>(ness<br>ax. | (<br>Ma | C<br>ax. |     | H<br>8 mm/<br>003" |     | L<br>6 mm/<br>102" | ±0.08<br>±.0 | T<br>3 mm/<br>03" | Но   | . Dist.<br>le <b>©</b><br>dge (1) |
|----------|--------------------------------|----------------------------|--------|---------------------------|------|------|-------------------------|-----|-----------------------|---------|----------|-----|--------------------|-----|--------------------|--------------|-------------------|------|-----------------------------------|
| Aluminum | stainless steel                | Code                       | Code   | mm                        | in.  | mm   | in.                     | mm  | in.                   | mm      | in.      | mm  | in.                | mm  | in.                | mm           | in.               | mm   | in.                               |
| TKA      | TK4                            | 10                         | 100    | 1.3                       | .051 | 1    | .039                    | 0.2 | .008                  | 1.2     | .047     | 1.8 | .071               | 1   | .039               | 0.27         | .011              | 1.18 | .047                              |
| TKA      | TK4                            | 10                         | 150    | 1.3                       | .051 | 1    | .039                    | 0.7 | .028                  | 1.2     | .047     | 1.8 | .071               | 1.5 | .059               | 0.27         | .011              | 1.18 | .047                              |
| TKA      | TK4                            | 10                         | 200    | 1.3                       | .051 | 1    | .039                    | 1.2 | .047                  | 1.2     | .047     | 1.8 | .071               | 2   | .079               | 0.27         | .011              | 1.18 | .047                              |
| TKA      | TK4                            | 10                         | 250    | 1.3                       | .051 | 1    | .039                    | 1.7 | .067                  | 1.2     | .047     | 1.8 | .071               | 2.5 | .098               | 0.27         | .011              | 1.18 | .047                              |
| TKA      | TK4                            | 10                         | 300    | 1.3                       | .051 | 1    | .039                    | 2.2 | .087                  | 1.2     | .047     | 1.8 | .071               | 3   | .118               | 0.27         | .011              | 1.18 | .047                              |


<sup>(1)</sup> Minimum boss diameter is twice centerline-to-edge value.

### TFA™ microPEM® FLEXTACK™ FASTENERS

The Bellville washer shaped head of the microPEM® FlexTack™ fastener is designed to increase vertical installation tolerance in designs.

- Alternative to using micro-screws, eliminating the need to tap or use threaded inserts.
- Installation time to simply press the part in (1.5 seconds) is less than the time to thread a screw in, equals less total installed cost.
- The Belleville-shaped head allows for stack-up tolerance relief in a design.
- Lowers overall total installed costs from the elimination of the following:
  - Cost of screw, patch to prevent loosening, threaded insert or tapped hole and driver bits
  - Cost of rework due to cross-threading or driver bit "cam-out"

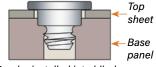




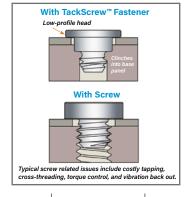





The Belleville shaped head flattens upon a simple press-in installation and draws panels together to accommodate vertical stack tolerances.

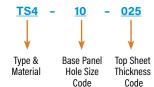


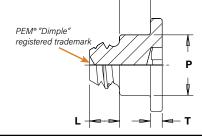

| Туре | Base<br>Panel<br>Hole Size | Top<br>Sheet<br>Thickness | To<br>Sho<br>Thick | eet     | Base<br>Min. S<br>Thickr | Sheet | Hole<br>±0.05 | Sheet<br>e Size<br>i mm /<br>002" | Hole | Panel<br>Size<br>mm /<br>02" | ±0.04<br>±.00 | -    | ±0.08<br>±.0 |      | (<br>Ma | ;<br>IX. | ±0.1 | H<br>mm /<br>104" | ±0.05 | P<br>mm /<br>02" | ±0.1<br>±.0 |      | Di<br>Hole | lin.<br>ist.<br>e <b>©</b><br>Edge |
|------|----------------------------|---------------------------|--------------------|---------|--------------------------|-------|---------------|-----------------------------------|------|------------------------------|---------------|------|--------------|------|---------|----------|------|-------------------|-------|------------------|-------------|------|------------|------------------------------------|
|      | Code                       | Code                      | mm                 | in.     | mm                       | in.   | mm            | in.                               | mm   | in.                          | mm            | in.  | mm           | in.  | mm      | in.      | mm   | in.               | mm    | in.              | mm          | in.  | mm         | in.                                |
| TFA  | 10                         | 025                       | 0.18 - 0.28        | .007011 | 0.89                     | .035  | 1.47          | .058                              | 1.02 | .040                         | 0.67          | .026 | 1.16         | .046 | 0.89    | .035     | 2.91 | .115              | 1.21  | .048             | 0.3         | .012 | 1          | .039                               |
| TFA  | 10                         | 035                       | 0.28 - 0.38        | .011015 | 0.89                     | .035  | 1.47          | .058                              | 1.02 | .040                         | 0.77          | .030 | 1.26         | .050 | 0.89    | .035     | 2.91 | .115              | 1.21  | .048             | 0.3         | .012 | 1          | .039                               |
| TFA  | 10                         | 045                       | 0.38 - 0.48        | .015019 | 0.89                     | .035  | 1.47          | .058                              | 1.02 | .040                         | 0.87          | .034 | 1.37         | .054 | 0.89    | .035     | 2.91 | .115              | 1.21  | .048             | 0.3         | .012 | 1          | .039                               |
| TFA  | 10                         | 055                       | 0.48 - 0.58        | .019023 | 0.89                     | .035  | 1.47          | .058                              | 1.02 | .040                         | 0.97          | .038 | 1.47         | .058 | 0.89    | .035     | 2.91 | .115              | 1.21  | .048             | 0.3         | .012 | 1          | .039                               |


<sup>(1) 0.89</sup> mm / .035" for blind holes and 0.5 mm / .020" for through holes.

### TS4™ microPEM® TackScrew™ FASTENERS

- Allows for 1-cycle re-usability by unscrewing and then reinstallation with thread locking adhesive
- Reduce installation time vs. a screw
- Simple, press in installation eliminates many costs and concerns associated with micro screws:
  - Cross threading
  - Tapping
  - Tightening torque control
  - Vibrational back-out
- Low profile head provides space savings
- Tapered tip aligns fastener in hole
- Interference fit minimizes hole tolerance issues
- Easily installed automatically





Can be installed into blind or through hole applications.



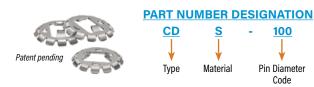


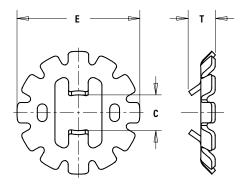






| 2IP Torx Plus driver |
|----------------------|


| Type<br>Material<br>Hardened<br>Stainless | Base<br>Panel<br>Hole<br>Size | Top<br>Sheet<br>Thickness | S           | Top<br>heet<br>ckness | Pa<br>Min. | nse<br>nel<br>Sheet<br>ness <sup>(2)</sup> |      |      |      |      | ±0.05<br>±.0 |      | +0.1<br>±0.1<br>±.0 |      | ±0.1<br>±.0 | L<br>mm /<br>104" | £0.05<br>±.0 |      | ±0.1<br>±.0 |      | l . | ist.<br>e Œ |
|-------------------------------------------|-------------------------------|---------------------------|-------------|-----------------------|------------|--------------------------------------------|------|------|------|------|--------------|------|---------------------|------|-------------|-------------------|--------------|------|-------------|------|-----|-------------|
| Steel                                     | Code                          | Code                      | mm          | in.                   | mm         | in.                                        | mm   | in.  | mm   | in.  | mm           | in.  | mm                  | in.  | mm          | in.               | mm           | in.  | mm          | in.  | mm  | in.         |
| TS4                                       | 10                            | 025                       | 0.2 - 0.28  | .008011               | 0.91       | .036                                       | 1.47 | .058 | 0.99 | .039 | 0.406        | .016 | 2                   | .079 | 0.64        | .025              | 1.3          | .051 | 0.25        | .010 | 1   | .039        |
| TS4                                       | 10                            | 050                       | 0.48 - 0.56 | .019022               | 0.91       | .036                                       | 1.47 | .058 | 0.99 | .039 | 0.686        | .027 | 2                   | .079 | 0.64        | .025              | 1.3          | .051 | 0.25        | .010 | 1   | .039        |

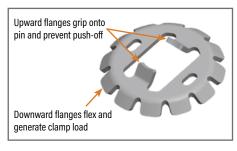

(2) Minimum sheet to prevent protrusion from through hole or minimum blind hole depth.

### **CDS™ microPEM® CLAMPDISK® FASTENERS**

The CDS™ microPEM® ClampDisk® fastener presses straight onto a 1 mm pin to replace threads, adhesive, rivets and other small fasteners. The upward flanges of the disk grip onto the pin and prevent push-off while the downward flanges flex and generate clamp load.

- Clamp load generation
- Simple installation
- Removability
- Works with multiple panels of any material
- Limited installation stress to assemble
- Tamper resistant



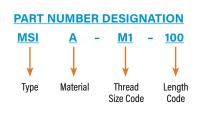


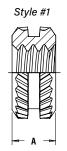

The ClampDisk® fastener can be used with a self-clinching pin. Contact techsupport@pemnet.com for information on pin material options.

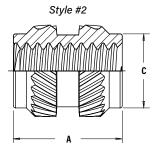
### All dimensions are in millimeters.

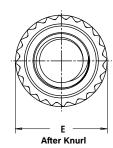
| TRIC | Type and | Pin Diameter | Pin Diameter | Pin Length | C    | E    | T    |
|------|----------|--------------|--------------|------------|------|------|------|
|      | Material | Code         | +0.05 -0.03  | Min.       | Nom. | Nom. | Nom. |
| ME   | CDS      | 100          | 1            | 0.8        | 0.91 | 3.2  | 0.69 |







# MSIA™/MSIB™ microPEM® INSERTS FOR PLASTICS


- Symmetrical design eliminates the need for orientation
- Provides excellent performance in wide range of plastics
- Aluminum inserts offer light weight, lead-free alternative



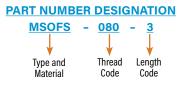


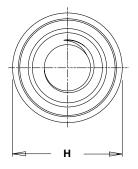


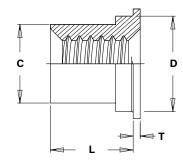




### All dimensions are in millimeters.


|    | Thread                  | Ту       | ре     |                |                    |           |            |           | N                                     | lounting Hole in Mater | ial                    |
|----|-------------------------|----------|--------|----------------|--------------------|-----------|------------|-----------|---------------------------------------|------------------------|------------------------|
|    | Size x<br>Pitch         | Aluminum | Brass  | Thread<br>Code | Length<br>Code     | A<br>±0.1 | E<br>± 0.1 | C<br>Max. | Min. Wall<br>Thickness <sup>(6)</sup> | Hole Depth<br>Min.     | Hole Diameter<br>+0.05 |
|    | M1 x 0.25 (3)           | MSIA     | MSIB   | M1             | 100(1)             | 1         | 2,1        | _         | 0.7                                   | 1.77                   | 1.75                   |
| ပ  | WITX 0.25 **            | NISIA    | IVIOID | IVII           | 250 <sup>(2)</sup> | 2.5       | 2.1        | 1.75      | 0.7                                   | 3.27                   | 1.70                   |
| =  | M1.2 x 0.25 (3)         | MSIA     | MSIB   | M1.2           | 100(1)             | 1         | 2.1        | _         | 0.7                                   | 1.77                   | 1.75                   |
| Η. | IVII.Z X U.ZJ           | IVISIA   | IVIOID | IVI I.Z        | 250 <sup>(2)</sup> | 2.5       | 2.1        | 1.75      |                                       | 3.27                   | 1.75                   |
| Σ  | M1.4 x 0.3 (4)          | MSIA     | MSIB   | M1.4           | 150 <sup>(2)</sup> | 1.5       | 2,5        | 2,15      | 0.8                                   | 2.27                   | 2.15                   |
| _  | IVII.4 X U.S            | WISIA    | WISID  | WILT           | 300 <sup>(2)</sup> | 3         | 2.0        | 2.13      | 0.0                                   | 3.77                   | 2.10                   |
|    | M1.6 x 0.35 (5)         | MSIA     | MSIB   | M1.6           | 150 <sup>(2)</sup> | 1.5       | 2,5        | 2.15      | 0.8                                   | 2.27                   | 2.15                   |
|    | WILO X 0.33             | WISIA    | WISID  | IVII.O         | 300 <sup>(2)</sup> | 3         | 2.0        | 2.13      | 0.8                                   | 3.77                   | 2.10                   |
|    | M2 x 0.4 <sup>(5)</sup> | MSIA     | MSIB   | M2             | 300 <sup>(2)</sup> | 3         | 3.2        | 2,85      | 1.6                                   | 3.77                   | 2.85                   |
|    | IVIZ X U.4 **           | NISIN    | INIOID | IVIZ           | 400(2)             | 4         | 3.2        | 2.00      | 1.0                                   | 4.77                   | 2.00                   |


- (1) Style #1 length codes less than 150
- (2) Style #2 length codes 150 and greater
- (3) Metric ISO 68-1, 5H
- (4) Metric ISO 68-1, 6H
- (5) Metric ASME B1.13M, 6H
- (6) Refers to wall thickness of boss as tested in ABS and polycarbonate.


### MSOFS™ microPEM® FLARING STANDOFFS

- MSOFS™ microPEM® flaring standoffs attach permanently in thin panels of any hardness, including stainless steel
- No minimum sheet thickness
- Can be installed into any type or hardness of panel, including metal, plastic and PC board
- Flaring feature allows for captivation of multiple panels
- Fastener captivation method allows for reduced centerline-to-edge designs

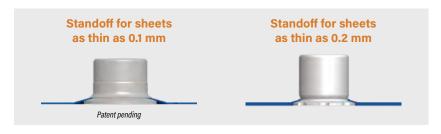








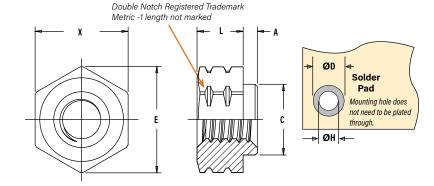
### All dimensions are in inches.


| IED | Thread<br>Size                    | Туре  | Thread<br>Code | Length<br>Code | Sheet<br>Thickness | Hole Size<br>in Sheet<br>+.002000 | C<br>Max. | D<br>Max. | H<br>Nom. | L<br>+.002003 | T<br>±.002 | Min. Dist.<br>Hole <b>⊉</b><br>to Edge |
|-----|-----------------------------------|-------|----------------|----------------|--------------------|-----------------------------------|-----------|-----------|-----------|---------------|------------|----------------------------------------|
| L   | .060-80<br>(#0-80) <sup>(1)</sup> | MSOFS | 080            | 3 4            | .008012            | .118                              | .094      | .117      | .138      | .093<br>.125  | .010       | .069                                   |
| n   | .086-56<br>(#2-56) <sup>(1)</sup> | MSOFS | 256            | 3 4            | .008012            | .138                              | .113      | .137      | .157      | .093<br>.125  | .010       | .079                                   |

### All dimensions are in millimeters.

|       | Thread<br>Size x<br>Pitch  | Туре  | Thread<br>Code | Length<br>Code | Sheet<br>Thickness | Hole Size<br>in Sheet<br>+0.05 | C<br>Max. | D<br>Max. | H<br>Nom. | L<br>+0.05 -0.08 | T<br>±0.05 | Min. Dist.<br>Hole <b>©</b><br>to Edge |
|-------|----------------------------|-------|----------------|----------------|--------------------|--------------------------------|-----------|-----------|-----------|------------------|------------|----------------------------------------|
| ن     | M1 x 0.25 (2)              | MSOFS | M1             | 3              | 0.2 - 0.3          | 3                              | 2.39      | 2.97      | 3.5       | 2 3              | 0.25       | 1.75                                   |
| T B - |                            | MSOFS | M1.2           | 3              | 0.2 - 0.3          | 3                              | 2.39      | 2.97      | 3.5       | 3                | 0.25       | 1.75                                   |
| Σ     |                            | MSOFS | M1.4           | 3              | 0.2 - 0.3          | 3                              | 2.39      | 2.97      | 3.5       | 3                | 0.25       | 1.75                                   |
|       | M1.6 x 0.35 <sup>(4)</sup> | MSOFS | M1.6           | 3              | 0.2 - 0.3          | 3.5                            | 2.87      | 3.48      | 4         | 3                | 0.25       | 2                                      |
|       | M2 x 0.4 <sup>(4)</sup>    | MSOFS | M2             | 3              | 0.2 - 0.3          | 3.5                            | 2.87      | 3.48      | 4         | 2 3              | 0.25       | 2                                      |

- (1) Internal, ASME B1.1, 2B
- (2) Metric ISO 68-1, 5H
- (3) Metric ISO 68-1, 6H
- (4) Metric ASME B1.13M, 6H

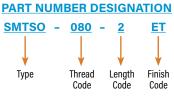

### **ALTERNATIVE THIN SHEET CLINCH FASTENER SOLUTIONS**



Contact techsupport@pemnet.com for more information.

### SMTSO™ microPEM® SURFACE MOUNT FASTENERS

- Hex shaped barrel provides optimal size/performance
- Provided on tape and reel
- Reduces board handling
- Can be installed automatically














### All dimensions are in inches.

|   | FIED | Thread<br>Size         | Туре    | Thread<br>Code | Length<br>Code | Min.<br>Sheet<br>Thickness | A<br>Max. | C<br>Max. | E<br>Ref. | L<br>±.003 | X<br>Nom. | ØH Hole Size<br>In Sheet<br>+.003000 | ØD<br>Min. Solder<br>Pad |
|---|------|------------------------|---------|----------------|----------------|----------------------------|-----------|-----------|-----------|------------|-----------|--------------------------------------|--------------------------|
| ı | Z    | .060-80                | SMTS0   | 080            | 2              | .020                       | .019      | .095      | .144      | .062       | .125      | .098                                 | .165                     |
|   | Π    | (#0-80) <sup>(1)</sup> | SIVITSU | 000            | 4              | .020                       | 610.      | .050      | .144      | .125       | 120       | .030                                 | .00                      |

### All dimensions are in millimeters.

|   |      | Thread<br>Size             | Туре  | Thread<br>Code | Length<br>Code | Min.<br>Sheet<br>Thickness | A<br>Max. | C<br>Max. | E<br>Ref. | L<br>±0.08  | X<br>Nom. | ØH Hole Size<br>In Sheet<br>+0.08 | ØD<br>Min. Solder<br>Pad |
|---|------|----------------------------|-------|----------------|----------------|----------------------------|-----------|-----------|-----------|-------------|-----------|-----------------------------------|--------------------------|
|   | ပ    | S1 <sup>(2)</sup>          | SMTS0 | M1             | 1<br>2<br>3    | 0.5                        | 0.48      | 2.41      | 3.66      | 1<br>2<br>3 | 3.18      | 2.5                               | 4.19                     |
| ľ | METR | S1.2 <sup>(2)</sup>        | SMTS0 | M1.2           | 1<br>2<br>3    | 0.5                        | 0.48      | 2.41      | 3.66      | 1<br>2<br>3 | 3.18      | 2.5                               | 4.19                     |
|   |      | S1.4 <sup>(2)</sup>        | SMTS0 | M1.4           | 1<br>2<br>3    | 0.5                        | 0.48      | 2.41      | 3.66      | 1<br>2<br>3 |           | 2.5                               | 4.19                     |
|   |      | M1.6 x 0.35 <sup>(3)</sup> | SMTS0 | M1.6           | 1 2 3          | 0.5                        | 0.48      | 2.41      | 3.66      | 1<br>2<br>3 | 3.18      | 2.5                               | 4.19                     |

- (1) Unified ASME B1.1, 2B
- (2) Miniature ISO 1501, 4H6
- (3) Metric ASME B1.13M, 6H

# NUMBER OF PARTS PER REEL / PITCH (MM) FOR EACH SIZE

| Thread/Thru-Hole     |          |          |          | Length Code |   |   |    |    |
|----------------------|----------|----------|----------|-------------|---|---|----|----|
| Size                 | 1        | 2        | 3        | 4           | 6 | 8 | 10 | 12 |
| 080                  | -        | 3500 / 8 | -        | 2000 / 8    | - | - | -  | -  |
| M1, M1.2, M1.4, M1.6 | 3500 / 8 | 2500 / 8 | 2000 / 8 | -           | - | - | 1  | -  |

A polyimide patch is supplied to allow for reliable vacuum pickup. Fasteners are also available without a patch which may provide a lower cost alternative, depending on your installation methods/requirements.

Packaged on 330 mm recyclable reels. Tape width is 24 mm. Reels conform to EIA-481.

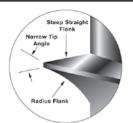


### microPEM® SCREWS (Available on special order. Minimum quantities may apply)

- Smallest thread code: M0.8
- Shortest length: 1 mm / .039"
- Fastener material: steel, stainless steel and aluminum
- Driver types: Torx®/Torx Plus®/Microstix®, cross-recess/internal hex
- Head styles: flat head/pan head/socket-head/wafer-head
- Special features: Locking patch, TAPTITE 2000°, FASTITE 2000°, PT° and DELTA PT°
- Platings: zinc, nickel, black nickel and black oxide






### **DELTA PT® SCREWS**

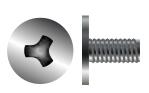


- Minimal radial tension due to optimized flank angle
- High clamp load
- High tensile and torsion strength
- Increased cycle stress stability
- High strength under vibration

### **REMFORM® SCREWS**






- Designed primarily for plastic applications
- Provides superior performance in a wide range of plastics
- Asymmetrical thread minimizes radial hoop stress to reduce boss bursting
- Narrow tip angle reduces stress in plastic nut member
- Suitable for other ductile materials such as wood and soft metals

### **TORX PLUS® DRIVE SYSTEM**



- 0° drive angle
- Elliptical geometric configuration maximizes drive bit engagement
- Large cross-sectional area at lobes
- Vertical sidewalls
- Optimizes torque transfer
- Virtually eliminates cam-out
- Reduces end load and worker fatigue
- Reduces annual drive bit costs

### MICROSTIX® ULTRA-THIN-HEAD PRECISION SCREWS



- No cam-out
- No driving force
- High workability
- High torque transmission
- High precision bits
- Tamper proof
- High durability
- Better fit between bits and screws

PennEngineering is a licensee of Acument Global Technologies (Torx\*, Torx Plus\*), Reminc (REMFORM\*, TAPTITE 2000\*, FASTITE 2000\*), EJOT\* (PT\* and DELTA PT\*) and OSG Corporation and OSG System Products Co., Ltd. (Microstix®).

### MATERIAL AND FINISH SPECIFICATIONS

|           |                               |                                               | Faste                            | ener Materi                                  | als                  |          |                                       | Sta                                             | andard Finishes (1)                                                                               |                 |                              | Fo                            | r Use in S                    | heet Har    | dness: (2 | )                                       |                          |
|-----------|-------------------------------|-----------------------------------------------|----------------------------------|----------------------------------------------|----------------------|----------|---------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------|------------------------------|-------------------------------|-------------------------------|-------------|-----------|-----------------------------------------|--------------------------|
| Туре      | Carbon<br>Steel               | Age<br>Hardened<br>A286<br>Stainless<br>Steel | 300 Series<br>Stainless<br>Steel | Hardened<br>400 Series<br>Stainless<br>Steel | Hardened<br>Aluminum | Aluminum | Free-<br>Machining<br>Leaded<br>Brass | Passivated<br>and/or<br>Tested Per<br>ASTM A380 | Electro-Plated Tin<br>ASTM B 545,<br>Class A, with Clear<br>Preservative Coating,<br>Annealed (3) | Plain<br>Finish | HRB 50 /<br>HB 89<br>or Less | HRB 88 /<br>HB 183<br>or Less | HRB 92 /<br>HB 202<br>or Less | PC<br>Board | Plastics  | Castings<br>and<br>Brittle<br>Materials | Any<br>Panel<br>Hardness |
| MPP       |                               |                                               |                                  |                                              |                      |          |                                       | •                                               |                                                                                                   |                 |                              |                               | •                             |             |           |                                         |                          |
| MS04      |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   |                 |                              | •                             |                               |             |           |                                         |                          |
| SMTS0     |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   |                 |                              |                               |                               |             |           |                                         |                          |
| TA        |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   | •               | •                            |                               |                               |             |           |                                         |                          |
| T4        |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   |                 |                              |                               |                               |             |           |                                         |                          |
| TKA       |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   | •               |                              |                               |                               |             |           |                                         |                          |
| TK4       |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   |                 |                              |                               |                               |             |           |                                         |                          |
| TFA       |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   |                 | •                            |                               |                               |             |           |                                         |                          |
| TS4       |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   |                 |                              |                               |                               |             |           |                                         |                          |
| CDS       |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   |                 |                              |                               |                               |             |           |                                         | <b>4</b> (4)             |
| MSIA      |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   |                 |                              |                               |                               |             |           |                                         |                          |
| MSIB      |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   |                 |                              |                               |                               |             | •         |                                         |                          |
| MS0FS     |                               |                                               |                                  |                                              |                      |          |                                       |                                                 |                                                                                                   |                 |                              |                               |                               |             |           |                                         |                          |
| Part Numb | art Number Codes For Finishes |                                               |                                  |                                              |                      |          |                                       |                                                 | ET                                                                                                | None            |                              |                               |                               |             |           |                                         |                          |

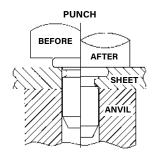
- (1) See PEM Technical Support section of our web site for related plating standards and specifications.
- (2) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (3) Optimal solderability life noted on packaging.
- (4) The top panel can be any material and the pin must be under a max hardness of HRB 90 / HB 192.

### A NOTE ABOUT HARDENED 400 SERIES STAINLESS STEEL

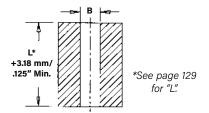
In order for self-clinching fasteners to work properly, the fastener must be harder than the sheet into which it is being installed. In the case of stainless steel panels, fasteners made from 300 Series Stainless Steel do not meet this hardness criteria. It is for this reason that 400 series fasteners (MSO4, T4, TK4 and TS4) are offered. However, while these 400 Series fasteners install and perform well in 300 Series stainless sheets they should not be used if the end product:

- Will be exposed to any appreciable corrosive presence
- Requires non-magnetic fasteners
- Will be exposed to any temperatures above 300°F (149°C)

If any of the these are issues, please contact techsupport@pemnet.com for other options.


### **INSTALLATION**

### **MPP PINS**


- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert pin through mounting hole (preferably the punch side) of sheet and into anvil hole.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force to embed the head of the pin flush in the sheet.

### **PEMSERTER® Installation Tooling**

| Туре | Pin Diameter<br>Code | Anvil Dimensions (mm)<br>B ±0.02 | Anvil<br>Part Number | Punch<br>Part Number |
|------|----------------------|----------------------------------|----------------------|----------------------|
| MPP  | 1MM                  | 1.07                             | 8014168              | 8014167              |
| MPP  | 1.5MM                | 1.57                             | 8014169              | 8014167              |
| MPP  | 2MM                  | 2.07                             | 8014170              | 8014167              |

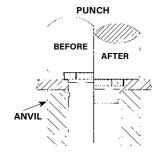


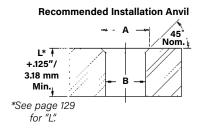
### **Recommended Installation Anvil**



### **Requirements for Installation into Stainless Steel**

- 1. Sheet hardness must be less than the specified limit for the fastener.
- 2. Panel material should be in the annealed condition.
- 3. Fastener should be installed in punch side of hole.
- 4. Mounting hole punch should be kept sharp to minimize work hardening around hole.
- 5. Maintain the mounting hole punch diameter to no greater than .025 mm / .001" over the minimum recommended mounting hole.
- 6. When installing fastener adjacent to bends or other highly cold-worked areas, use the C/L to edge values listed in the catalog.


### **MSO4 STANDOFFS**


- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert standoff through mounting hole (preferably the punch side) and into anvil as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply only enough squeezing force to embed the head of the standoff flush in the sheet.

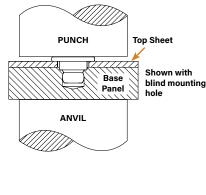
### **PEMSERTER® Installation Tooling**

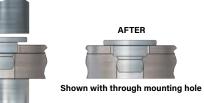
| D    | _    | Thread Anvil Dimensions (inches) |         | Anvil   | Punch       |             |  |
|------|------|----------------------------------|---------|---------|-------------|-------------|--|
| FIED | Туре | Code                             | Α       | В       | Part Number | Part Number |  |
| Z    | MS04 | 080                              | .112114 | .097099 | 8015796     | 975200997   |  |
| In   | MS04 | 256                              | .142144 | .127129 | 8015797     | 975200997   |  |

|     | _    | Thread | Anvil Dimens | ions (mm)   | Anvil       | Punch       |
|-----|------|--------|--------------|-------------|-------------|-------------|
|     | Туре | Code   | Α            | В           | Part Number | Part Number |
| 0 = | MS04 | M1     | 2.84 - 2.89  | 2.46 - 2.51 | 8015796     | 975200997   |
| TR  | MS04 | M1.2   | 2.84 - 2.89  | 2.46 - 2.51 | 8015796     | 975200997   |
| Z   | MS04 | M1.4   | 2.84 - 2.89  | 2.46 - 2.51 | 8015796     | 975200997   |
|     | MS04 | M1.6   | 2.84 - 2.89  | 2.46 - 2.51 | 8015796     | 975200997   |
|     | MS04 | M2     | 3.6 - 3.65   | 3.22 - 3.27 | 8015797     | 975200997   |






### **INSTALLATION**


### **TA/T4 FASTENERS**

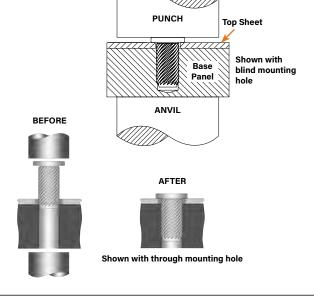
- Prepare properly sized mounting hole in top sheet and base panel.
   Base panel mounting hole can be through or blind.
- 2. Place top sheet and base panel in proper position.
- Place fastener through hole in top sheet and into mounting hole (preferably the punch side) of base panel.
- 4. With installation punch and anvil surfaces parallel, apply squeezing force until the head of the fastener contacts the top sheet.

### **PEMSERTER® Installation Tooling**

| Size         | Manual Punch<br>Part Number | Manual Anvil<br>Part Number |
|--------------|-----------------------------|-----------------------------|
| TA/T4-10-025 |                             |                             |
| TA/T4-10-050 | 8014167                     | 975200046                   |
| TA/T4-10-075 |                             |                             |





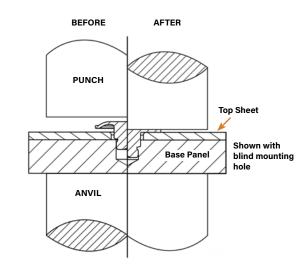

BEFORE

### **TKA/TK4 PINS**

- Prepare properly sized mounting hole in top sheet and base panel.
   Base panel mounting hole can be through or blind.
- 2. Place top sheet and base panel in proper position.
- Place pin through hole in top sheet and into mounting hole of base panel.
- With installation punch and anvil surfaces parallel, apply squeezing force until the head of the pin contacts the top sheet.

### **PEMSERTER® Installation Tooling**

| Size           | Punch<br>Part Number | Anvil<br>Part Number |
|----------------|----------------------|----------------------|
| TKA/TK4-10-100 |                      |                      |
| TKA/TK4-10-150 |                      |                      |
| TKA/TK4-10-200 | 8014167              | 975200046            |
| TKA/TK4-10-250 |                      |                      |
| TKA/TK4-10-300 |                      |                      |



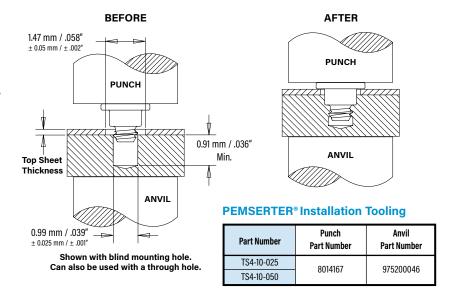

### **TFA FASTENERS**

- Prepare properly sized mounting hole in top sheet and base panel.
   Base panel mounting hole can be through or blind.
- 2. Place top sheet and base panel in proper position.
- Place fastener through hole in top sheet and into mounting hole (preferably the punch side) of base panel.
- With installation punch and anvil surfaces parallel, apply squeezing force until the head of the fastener flattens and contacts the top sheet.

## **PEMSERTER® Installation Tooling**

| Size       | Manual Punch<br>Part Number | Manual Anvil<br>Part Number |  |  |
|------------|-----------------------------|-----------------------------|--|--|
| TFA-10-025 | 8014167                     |                             |  |  |
| TFA-10-035 |                             | 975200046                   |  |  |
| TFA-10-045 |                             |                             |  |  |
| TFA-10-055 |                             |                             |  |  |



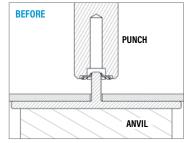

### **INSTALLATION**

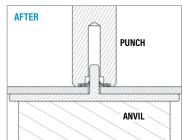
### **TS4 FASTENERS**

- 1. Prepare properly sized mounting hole in top sheet and base panel. Base panel mounting hole can be through or blind.
- 2. Place sheet and base panel in proper position.
- 3. Place fastener through hole in sheet and into mounting hole (preferably the punch side) of base panel.
- 4. With punch and anvil surfaces parallel, apply squeezing force until the head of the fastener contacts the top sheet.

### Re-installation (if necessary)

- 1. Place sheet and base panel in proper position.
- 2. Place adhesive into base panel mounting hole.
- 3. Place fastener through hole in top sheet and into mounting hole of base panel.
- 4. Screw in fastener with 2IP Torx Plus driver.

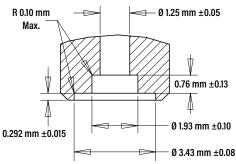




### **CDS FASTENERS**

- 1. Place ClampDisk® fastener over a pin.
- 2. With the installation punch and anvil surfaces parallel, apply squeezing force until the punch contacts the mounting sheet. The drawings at the right indicate suggested tooling for applying these forces.

### Removal

For service or maintenance, the ClampDisk® fastener can be easily removed with a sharp edge tool. For reassembly, simply install a new fastener.

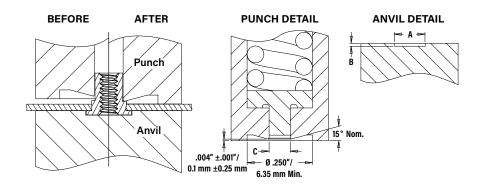





### **Installation Tooling**

| Fastener    | Punch       | Anvil       |
|-------------|-------------|-------------|
| Part Number | Part Number | Part Number |
| CDS-100     | 8025386     | 975200046   |



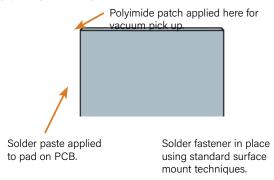





The PEM® ClampDisk® fastener can be installed onto a grooved pin for increase strength and allow installation onto any material. For more information, contact techsupport@pemnet.com.

### **MSOFS STANDOFFS**

- Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place the standoff into anvil recess and place the mounting hole over the standoff as shown in the drawing.
- Using a punch flaring tool and a recessed anvil, apply squeezing force until punch contacts the sheet.




### **PEMSERTER®** Installation Tooling

| О    | Thread | Punch Dimensions (in.) |                      | Anvil Dimensions (in |            |                      |
|------|--------|------------------------|----------------------|----------------------|------------|----------------------|
| FIEG | Code   | C<br>+.001             | Punch Part<br>Number | A<br>±.001           | B<br>±.001 | Anvil Part<br>Number |
| Ξ    | 080    | .095                   | 8020712              | .143                 | .006       | 8019720              |
|      | 256    | .114                   | 8020710              | .163                 | .006       | 8019722              |

|          | Thread<br>Code | Punch Dimensions (mm) |                      | Anvil Dimer | sions (mm) |                      |
|----------|----------------|-----------------------|----------------------|-------------|------------|----------------------|
| ပ        |                | C<br>+0.025           | Punch Part<br>Number | A<br>±.025  | B<br>±.025 | Anvil Part<br>Number |
| <u>.</u> | M1             | 2.41                  | 8020712              | 3.64        | 0.15       | 8019720              |
| ΕT       | M1.2           | 2.41                  | 8020712              | 3.64        | 0.15       | 8019720              |
| Σ        | M1.4           | 2.41                  | 8020712              | 3.64        | 0.15       | 8019720              |
|          | M1.6           | 2.9                   | 8020710              | 4.14        | 0.15       | 8019722              |
|          | M2             | 2.9                   | 8020710              | 4.14        | 0.15       | 8019722              |

### **SMTSO FASTENERS**



### Number of parts per reel/pitch (mm) for each size

| Thread               | Length Code |          |          |          |  |  |
|----------------------|-------------|----------|----------|----------|--|--|
| Code                 | 1           | 2        | 3        | 4        |  |  |
| 080                  | -           | 3500 / 8 | -        | 2000 / 8 |  |  |
| M1, M1.2, M1.4, M1.6 | 3500 / 8    | 2500 / 8 | 2000 / 8 | _        |  |  |

Packaged on 330mm recyclable reels. Tape width is 16mm. Supplied with polyimide patch for vacuum pick up. Reels conform to EIA-481.

### **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® machine for installation of PEM self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.

### PERFORMANCE DATA(1)

### **MSO4 STANDOFFS**

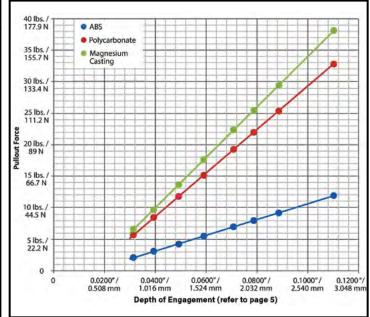
|         | _       |                | Max. Rec.<br>Tightening                  |                                  | Test Sheet Material 300 Series Stainless Steel |                   |                             |                         |
|---------|---------|----------------|------------------------------------------|----------------------------------|------------------------------------------------|-------------------|-----------------------------|-------------------------|
| UNIFIED | Туре    | Thread<br>Code | Torque For<br>Mating Screw<br>(in. lbs.) | Sheet<br>Thick-<br>ness<br>(in.) | Installation<br>(lbs.)                         | Pushout<br>(lbs.) | Torque-out<br>(in.lbs.) (2) | Pull-thru<br>(lbs.) (2) |
| Z       | MS04 08 | 080            | .65                                      | .013                             | 2500                                           | 33                | 1.3                         | 78                      |
|         |         | 000            | .00                                      | .017                             | 2500                                           | 45                | 2.2                         | 70                      |
|         | MS04    | 256            | 1.3                                      | .013                             | 2500                                           | 33                | 2.2                         | 110                     |
|         |         |                |                                          | .017                             | 2500                                           | 45                | 2.6                         | 1 110                   |

|    |           |             | Max. Rec.                |                 | Te                         | est Sheet M    | laterial                |                      |
|----|-----------|-------------|--------------------------|-----------------|----------------------------|----------------|-------------------------|----------------------|
|    | Туре      | Thread      | Tightening<br>Torque For | Sheet<br>Thick- | 300 Series Stainless Steel |                |                         |                      |
|    |           | Code        | Mating Screw<br>(N-m)    | ness<br>(mm)    | Installation<br>(kN)       | Pushout<br>(N) | Torque-out<br>(N•m) (2) | Pull-thru<br>(N) (2) |
|    | MS04      | M1          | 0.019                    | 0.3             | 11.1                       | 150            | 0.15                    | 350                  |
| ၁  | 101304    | IVISO4 IVII | 0.013                    | 0.43            | 11.1                       | 200            | 0.25                    | 330                  |
| TR | MS04      | M1.2        | 0.036                    | 0.3             | 11.1                       | 150            | 0.15                    | 350                  |
| ш  | 101304    | IVII.Z      | 0.030                    | 0.43            | 11.1                       | 200            | 0.25                    | 330                  |
| Σ  | MS04 M1.4 | M1.4        | 0.057                    | 0.3             | 11.1                       | 150            | 0.15                    | 350                  |
|    | 101304    | IVI 14      |                          | 0.43            | 11.1                       | 200            | 0.25                    | 330                  |
|    | MS04      | M1.6        | 0.084                    | 0.3             | 11.1                       | 150            | 0.15                    | 350                  |
|    | W1304     | IVITIO      | 0.064                    | 0.43            | 11.1                       | 200            | 0.25                    | 330                  |
|    | MS04      | M2          | 0.175                    | 0.3             | 11.1                       | 150            | 0.25                    | 500                  |
|    | W304      | IVIZ        | 0.175                    | 0.43            | 11.1                       | 200            | 0.3                     | 500                  |

### **MPP PINS**

| Туре | Pin Diameter<br>Code | Test Sheet Thickness         | Installation<br>(kN) | Pushout<br>(N) |
|------|----------------------|------------------------------|----------------------|----------------|
| MPP  | 1MM                  | 0.5mm stainless steel HRB 88 | 10                   | 320            |
| MPP  | 1.5MM                | 0.5mm stainless steel HRB 88 | 12                   | 760            |
| MPP  | 2MM                  | 0.5mm stainless steel HRB 88 | 18                   | 860            |

### **TA FASTENERS**


|           |              | Aluminum |         |      |  |
|-----------|--------------|----------|---------|------|--|
| Туре      | Installation |          | Pullout |      |  |
|           | N            | lbs.     | N       | lbs. |  |
| TA-10-025 |              |          |         |      |  |
| TA-10-050 | 820          | 185      | 80      | 18   |  |
| TA-10-075 |              |          |         |      |  |

### **T4 FASTENERS**

|           | 300 Series Stainless Steel |        |         |      |  |  |  |
|-----------|----------------------------|--------|---------|------|--|--|--|
| Туре      | Instal                     | lation | Pullout |      |  |  |  |
|           | N                          | lbs.   | N       | lbs. |  |  |  |
| T4-10-025 | 2020                       | AFF    | 200     | A.E. |  |  |  |
| T4-10-050 | 2020                       | 455    | 200     | 45   |  |  |  |

### **TKA/TK4 PINS**

| Туре   | Test Base      | Depth Of E | ngagement | Instal | lation | Pullo | out    |
|--------|----------------|------------|-----------|--------|--------|-------|--------|
| турс   | Panel Material | (mm)       | (in.)     | (N)    | (lbs.) | (N)   | (lbs.) |
|        |                | 0.8        | 0.0315    | 133    | 30     | 9     | 2      |
|        |                | 1          | 0.0394    | 133    | 30     | 14    | 3      |
|        |                | 1.3        | 0.0492    | 133    | 30     | 19    | 4      |
| TKA-10 | ABS            | 1.5        | 0.0590    | 178    | 40     | 24    | 6      |
|        |                | 1.8        | 0.0708    | 178    | 40     | 31    | 7      |
|        |                | 2          | 0.0787    | 222    | 50     | 35    | 8      |
|        |                | 2.3        | 0.0886    | 222    | 50     | 41    | 9      |
|        |                | 2.8        | 0.1102    | 245    | 55     | 53    | 12     |
|        |                | 0.8        | 0.0315    | 222    | 50     | 25    | 6      |
|        |                | 1          | 0.0394    | 267    | 60     | 37    | 8      |
|        | Polycarbonate  | 1.3        | 0.0492    | 267    | 60     | 53    | 12     |
| TKA-10 |                | 1.5        | 0.0590    | 311    | 70     | 68    | 15     |
|        | -              | 1.8        | 0.0708    | 334    | 75     | 86    | 19     |
|        |                | 2          | 0.0787    | 378    | 85     | 98    | 22     |
|        |                | 2.3        | 0.0886    | 400    | 90     | 113   | 25     |
|        |                | 2.8        | 0.1102    | 423    | 95     | 146   | 33     |
|        |                | 0.8        | 0.0315    | 445    | 100    | 29    | 7      |
|        |                | 1          | 0.0394    | 489    | 110    | 43    | 10     |
|        |                | 1.3        | 0.0492    | 534    | 120    | 61    | 14     |
| TK4-10 | Magnesium      | 1.5        | 0.0590    | 578    | 130    | 78    | 18     |
|        | Casting        | 1.8        | 0.0708    | 623    | 140    | 99    | 22     |
|        | (AZ91D)        | 2          | 0.0787    | 667    | 150    | 113   | 25     |
|        |                | 2.3        | 0.0886    | 712    | 160    | 131   | 29     |
|        |                | 2.8        | 0.1102    | 801    | 180    | 169   | 38     |



### **TS4 FASTENERS**

|            | Total               | 5052-H3 | H34 Aluminum HRB 63 / HB 114 |       |                    |           | 304 Stainless Steel HRB 89 / HB 187 |        |        |       |                   |             |           |
|------------|---------------------|---------|------------------------------|-------|--------------------|-----------|-------------------------------------|--------|--------|-------|-------------------|-------------|-----------|
| Part       | Tested<br>Top Sheet | Instal  | llation                      | Pullo | out <sup>(3)</sup> | Torque to | Remove                              | Instal | lation | Pullo | ut <sup>(3)</sup> | Torque to I | Remove    |
| Number     | Number Thickness    | (N)     | (lbs.)                       | (N)   | (lbs.)             | (N-cm)    | (in. oz.)                           | (N)    | (lbs.) | (N)   | (lbs.)            | (N-cm)      | (in. oz.) |
| TS4-10-025 | 0.254 mm / .01"     | 556     | 125                          | 80    | 18                 | 3.3       | 4.7                                 | 1423   | 320    | 125   | 28                | 4.6         | 6,5       |
| TS4-10-050 | 0.533 mm / .021"    | 330     | 120                          | 80    | 10                 | 3.3       | 4.7                                 | 1423   | 320    | 120   | 20                | 4.0         | 0.0       |

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/ or samples for this purpose.
- (2) Performance in torque-out and pull-thru will depend on the strength and type of screw being used. In most cases the failure will be in the screw and not in the self clinching standoff. Please contact our Applications Engineering group with any questions.
- (3) Pullout after initial installation.

### **PERFORMANCE DATA**

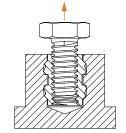
### **TFA FASTENERS**

|            | 5052-H34 Aluminum |      |         |      |  |  |  |
|------------|-------------------|------|---------|------|--|--|--|
| Туре       | Installation      |      | Pullout |      |  |  |  |
|            | N                 | lbs. | N       | lbs. |  |  |  |
| TFA-10-025 |                   |      |         |      |  |  |  |
| TFA-10-035 | 450               | 101  | 40      | 9    |  |  |  |
| TFA-10-045 | 450               |      |         | J    |  |  |  |
| TFA-10-055 |                   |      |         |      |  |  |  |

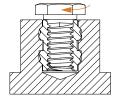
### CDS FASTENERS(1)

| Part Number | Test Pin         | Installation        | Pull-off | Clamp Load |
|-------------|------------------|---------------------|----------|------------|
|             | Material         | (kN) <sup>(1)</sup> | (N)      | (N)        |
| CDS-100     | 6061-T6 Aluminum | 0.33                | 18.1     | 7          |

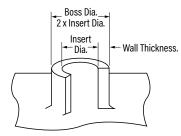
### **MSOFS STANDOFFS**


|       |        |                   | Max. Rec.                                | Test Sheet Material              |                   |                                        |  |  |
|-------|--------|-------------------|------------------------------------------|----------------------------------|-------------------|----------------------------------------|--|--|
| Ω     | Tuno   | Thread Tightening |                                          | .008" 300 Series Stainless Steel |                   |                                        |  |  |
| NIFIE | Type C | Code              | Torque For<br>Mating Screw<br>(in. lbs.) | Installation<br>(lbs.)           | Pushout<br>(lbs.) | Torque-out<br>(in.lbs.) <sup>(2)</sup> |  |  |
|       | MSOFS  | 080               | .65                                      | 1500                             | 69.8              | 1.29                                   |  |  |
|       | MSOFS  | 256               | 1.3                                      | 1800                             | 91.2              | 1.29                                   |  |  |

|     |       |        | Max. Rec.                | Test Sheet Material               |                |                                    |  |  |  |
|-----|-------|--------|--------------------------|-----------------------------------|----------------|------------------------------------|--|--|--|
|     | Time  | Thread | Tightening<br>Torque For | 0.2 mm 300 Series Stainless Steel |                |                                    |  |  |  |
| RIC | Туре  | Code   | Mating Screw<br>(N-m)    | Installation<br>(kN)              | Pushout<br>(N) | Torque-out<br>(N-m) <sup>(2)</sup> |  |  |  |
| -   | MSOFS | M1     | 0.019                    | 6.67                              | 311            | 0.146                              |  |  |  |
| ME  | MSOFS | M1.2   | 0.036                    | 6.67                              | 311            | 0.146                              |  |  |  |
|     | MSOFS | M1.4   | 0.057                    | 6.67                              | 311            | 0.146                              |  |  |  |
|     | MSOFS | M1.6   | 0.084                    | 8                                 | 406            | 0.146                              |  |  |  |
|     | MSOFS | M2     | 0.175                    | 8                                 | 406            | 0.146                              |  |  |  |


### **MSIA/MSIB INSERTS**

|     |                   |                |        |                | t Material                          |                |                                     |
|-----|-------------------|----------------|--------|----------------|-------------------------------------|----------------|-------------------------------------|
|     | Time              | Thursd         | Lamath | Al             | BS                                  | Polyca         | rbonate                             |
|     | Туре              | Thread<br>Code |        | Pullout<br>(N) | Torque-out<br>(N-cm) <sup>(2)</sup> | Pullout<br>(N) | Torque-out<br>(N-cm) <sup>(2)</sup> |
| ပ   | MSIA/MSIB         | M1             | 100    | 50             | 3.5                                 | 50             | 4.5                                 |
| - B | INISIA/ INISID    |                | 250    | 150            | 10                                  | 200            | 12                                  |
| Ë   | MSIA/MSIB         | M1.2           | 100    | 50             | 3.5                                 | 50             | 4.5                                 |
| ш   | IVISIA/ IVISID    |                | 250    | 150            | 10                                  | 200            | 12                                  |
| Σ   | MOLA (MOLD        | 141.4          | 150    | 100            | 15                                  | 140            | 15                                  |
|     | MSIA/MSIB         | M1.4           | 300    | 330            | 30                                  | 400            | 30                                  |
|     | MSIA/MSIB         | M1.6           | 150    | 100            | 15                                  | 140            | 15                                  |
|     | INIOIN/MISIN MI.D | 300            | 330    | 30             | 400                                 | 30             |                                     |
|     | MSIA/MSIB         | M2             | 300    | 335            | 35                                  | 410            | 33                                  |
|     | MSIA/MSIB         | IVIZ           | 400    | 470            | 40                                  | 595            | 35                                  |


For testing purposes, inserts were installed using heat stake equipment into a flat sheet.



**Pullout** is the force required to pull the insert from the sheet.



# HOLE PREPARATION GUIDELINES



Thinner walls and bosses may be used but will affect performance.

**Torque-out** is the torque required to turn the insert in the parent material after installation without inducing clamp load on the fastener.

## SMTSO(3)(4) FASTENERS

|            | Test Sheet Material     |                |                          |                     |  |  |  |
|------------|-------------------------|----------------|--------------------------|---------------------|--|--|--|
| Туре       | .062" Single Layer RF-4 |                |                          |                     |  |  |  |
| and Size   | Pushout<br>(lbs.)       | Pushout<br>(N) | Torque-out<br>(in. lbs.) | Torque-out<br>(N-m) |  |  |  |
| SMTS0-080  |                         |                |                          |                     |  |  |  |
| SMTSO-M1   |                         |                |                          |                     |  |  |  |
| SMTSO-M1.2 | 85.1                    | 378.7          | 4.94                     | 0.56                |  |  |  |
| SMTSO-M1.4 |                         |                |                          |                     |  |  |  |
| SMTSO-M1.6 |                         |                |                          |                     |  |  |  |

### **SMTSO TESTING CONDITIONS**

**Oven** Quad ZCR convection oven with 4 zones

High Temp518 ° F / 270 ° CBoard Finish62% Sn, 38% PbScreen PrinterRagin Manual Printer

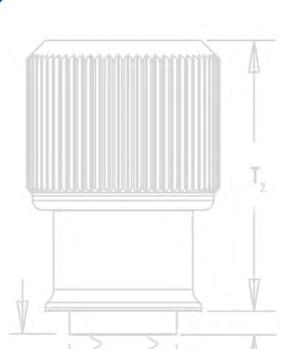
Vias None

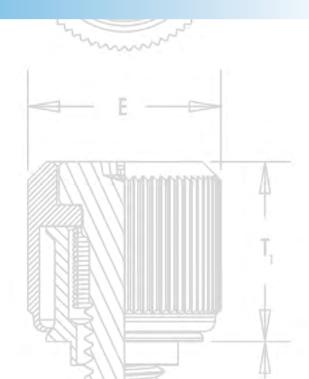
Spokes 2 Spoke Pattern

Paste (lead-free) Amtech NC559LF Sn96.5/3.0Ag/0.5Cu (SAC305)

**Stencil** .0067" / 0.17mm thick

- (1) Specially designed installation punch prevents over-installation and damage to the fastener.
- (2) Torque-out performance will depend on the strength and type of screw being used. In most cases, the screw threads will fail before the insert threads.
- (3) With lead-free paste. Average values of 30 test points. The data presented here is for general comparison purposes only. Actual performance is dependent upon application variables. We will be happy to provide samples for you to install. If required, we can also test your installed hardware and provide you with the performance data specific to your application.
- (4) Further testing details can be found in our web site's literature section.

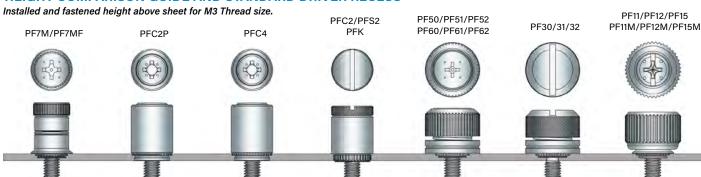




PEM® captive hardware for easy service access without loose components.



## PF

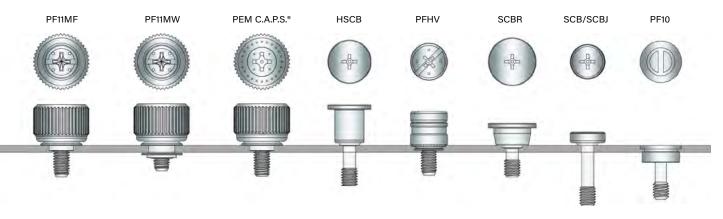
## PEM® CAPTIVE PANEL SCREWS






PEM® brand captive panel screws are designed to help keep parts to a minimum and eliminate risks associated with loose hardware that could fall out and damage internal components. These panel fastener assemblies are ideal to attach metal panels or other thin material components in applications where subsequent access will be necessary.

| PF11 <sup>™</sup> /PF12 <sup>™</sup> /PF11M <sup>™</sup> /PF12M <sup>™</sup> /PF15 <sup>™</sup> /PF15M <sup>™</sup> large knob, spring-loaded self-clinching panel screws - PAGE 149 |   | PFC2 <sup>™</sup> /PFS2 <sup>™</sup> screw head, spring-loaded captive panel screws - <b>PAGE 160</b>    | *            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------|--------------|
| PF11MF <sup>™</sup> large knob, spring-loaded flare-<br>mounted captive panel screws <b>- PAGE 150</b>                                                                               |   | PTL2 <sup>™</sup> /PSL2 <sup>™</sup> locating pin, spring-loaded<br>plunger assemblies - <b>PAGE 161</b> | T            |
| PF11MW™ large knob, spring-loaded flare-<br>mounted, floating captive panel screws -<br>PAGE 151                                                                                     | 0 | SCBR™ tool only, spinning clinch bolt with spring - <b>PAGE 162</b>                                      |              |
| PF11PM™ large knob, spring-loaded plastic<br>PEM® C.A.P.S.® captive panel screws -<br>PAGE 152                                                                                       |   | SCB <sup>™</sup> /SCBJ <sup>™</sup> tool only, spinning clinch bolts,<br>no spring - <b>PAGE 163</b>     | 20           |
| PFHV™ screw, non-spring captive panel screw - <b>PAGE 153</b>                                                                                                                        |   | HSCB™, HSR™, and HSL™ heat sink mounting fastener system - <b>PAGES 164 - 165</b>                        | ° 000 %      |
| PF7M™ captive panel screw, spring-loaded self-clinching captive panel screws - <b>PAGE 154</b>                                                                                       |   | PF10™ tool only, flush-mounted captive panel screws, no spring - <b>PAGES 166 - 167</b>                  | TO BES       |
| PF7MF™ spring-loaded, flare-mounted captive panel screw - <b>PAGE 155</b>                                                                                                            |   | REELFAST® SMTPFLSM™ surface mount spring-loaded captive panel screws - PAGE 168                          | 9            |
| PF30™ low-profile knob, spring-loaded captive panel screws - <b>PAGE 156</b>                                                                                                         |   | REELFAST® SMTPF™ surface mount, panel screw components - <b>PAGE 169</b>                                 |              |
| PF50™ and PF60™ low-profile knob, spring-<br>loaded captive panel screws - <b>PAGE 157</b>                                                                                           |   | PFK™ screw head, spring-loaded broaching captive panel screws - PAGE 170                                 | -            |
| PFC4™ recessed-head captive panel screws                                                                                                                                             | 9 | Value-added capabilities - PAGE 171                                                                      |              |
| for installing into stainless steel - PAGE 158                                                                                                                                       |   | Captive panel screw installation - PAGES 172                                                             | - 180        |
| PFC2P™ tool only, non-flush, spring-loaded                                                                                                                                           |   | Captive panel screw performance data - PAG                                                               | ES 181 - 185 |
| captive panel screws - PAGE 159                                                                                                                                                      |   | Captive panel screw capabilities - PAGE 186                                                              |              |
|                                                                                                                                                                                      |   |                                                                                                          |              |


#### **HEIGHT COMPARISON GUIDE AND STANDARD DRIVER RECESS**



#### **CAPTIVE PANEL SCREW SELECTOR GUIDE**

|                           |             |                |                                 |                  |      |       |                | Арр                          | licatio                     | n Requi                                     | res:                         |                              |                          |                                     |                                        |                                     |
|---------------------------|-------------|----------------|---------------------------------|------------------|------|-------|----------------|------------------------------|-----------------------------|---------------------------------------------|------------------------------|------------------------------|--------------------------|-------------------------------------|----------------------------------------|-------------------------------------|
| PEM®                      |             |                |                                 |                  | Actu | ation |                | Install                      |                             |                                             |                              |                              |                          |                                     | Includes                               |                                     |
| Panel<br>Fastener<br>Type | Page<br>No. | UL<br>Approved | High<br>corrosion<br>resistance | Spring<br>loaded | Tool | Hand  | Thinner sheets | Printed<br>circuit<br>boards | Stainless<br>steel<br>sheet | Painted<br>panels<br>and/or any<br>hardness | Multiple<br>screw<br>lengths | Flush<br>mounted<br>top side | Available<br>in<br>black | Available<br>in<br>custom<br>colors | anti<br>cross-<br>threading<br>feature | Mating<br>hole<br>misa-<br>lignment |
| PF11/PF15                 | 149         |                |                                 |                  | •    |       |                |                              |                             |                                             |                              |                              |                          |                                     |                                        |                                     |
| PF11M/PF15M               | 149         |                |                                 | •                | •    | •     |                |                              |                             |                                             | •                            |                              | •                        |                                     | •                                      |                                     |
| PF12                      | 149         |                |                                 | •                | •    |       |                |                              |                             |                                             | •                            |                              | •                        |                                     |                                        |                                     |
| PF12M                     | 149         |                |                                 | •                | •    |       |                |                              |                             |                                             | •                            |                              | •                        |                                     | •                                      |                                     |
| PF11MF                    | 150         |                |                                 | •                |      | •     | •              |                              | •                           | •                                           |                              |                              | •                        |                                     | •                                      |                                     |
| PF12MF                    | 150         |                |                                 | •                | •    |       | •              |                              | •                           | •                                           | •                            |                              | •                        |                                     | •                                      |                                     |
| PF11MW                    | 151         |                |                                 | •                | •    | •     | •              | •                            |                             | •                                           | •                            |                              | •                        |                                     | •                                      | •                                   |
| PF12MW                    | 151         |                |                                 | •                | •    |       | •              | •                            | •                           | •                                           | •                            |                              | •                        |                                     | •                                      | •                                   |
| PEM C.A.P.S.              | 152         |                |                                 | •                | •    | •     |                |                              |                             |                                             | •                            |                              | <b>.</b> (1)             | •                                   | •                                      |                                     |
| PFHV                      | 153         |                |                                 |                  | •    |       |                |                              |                             |                                             | •                            |                              | •                        |                                     |                                        |                                     |
| PF7M                      | 154         |                |                                 | •                |      | •     |                |                              |                             |                                             |                              |                              |                          |                                     | •                                      |                                     |
| PF7MF                     | 155         |                |                                 | •                | •    | •     | •              |                              | •                           | •                                           | •                            |                              |                          |                                     | •                                      |                                     |
| PF30                      |             |                |                                 |                  |      |       |                |                              |                             |                                             |                              |                              |                          |                                     |                                        |                                     |
| PF31                      | 156         |                |                                 | •                | •    | •     |                |                              |                             |                                             |                              |                              | •                        |                                     |                                        |                                     |
| PF32                      |             |                |                                 |                  |      |       |                |                              |                             |                                             |                              |                              |                          |                                     |                                        |                                     |
| PF50                      |             |                |                                 |                  |      |       |                |                              |                             |                                             |                              |                              |                          |                                     |                                        |                                     |
| PF51                      | 157         |                |                                 | •                | •    | •     |                |                              |                             |                                             | •                            |                              | •                        |                                     |                                        |                                     |
| PF52                      |             |                |                                 |                  |      |       |                |                              |                             |                                             |                              |                              |                          |                                     |                                        |                                     |
| PF60                      |             |                |                                 |                  |      |       |                |                              |                             |                                             |                              |                              |                          |                                     |                                        |                                     |
| PF61                      | 157         |                |                                 | •                | •    |       |                |                              |                             |                                             | •                            |                              | •                        |                                     |                                        |                                     |
| PF62                      |             |                |                                 |                  |      |       |                |                              |                             |                                             |                              |                              |                          |                                     |                                        |                                     |
| PFC4                      | 158         | •              |                                 | ٠                | •    |       |                |                              | •                           |                                             | •                            |                              |                          |                                     |                                        |                                     |
| PFC2P                     | 159         | •              |                                 | ٠                | •    |       |                |                              |                             |                                             | •                            |                              | ٠                        |                                     |                                        |                                     |
| PFC2                      | 160         |                | •                               | •                | •    | •     |                |                              |                             |                                             | •                            |                              | •                        |                                     |                                        |                                     |
| PFS2                      | 160         |                |                                 | ٠                | ٠    | •     |                |                              |                             |                                             | •                            |                              | •                        |                                     |                                        |                                     |
| SCBR                      | 162         |                |                                 | •                | ٠    |       |                |                              |                             |                                             |                              |                              |                          |                                     |                                        |                                     |
| SCB/SCBJ                  | 163         |                |                                 |                  | ٠    |       |                |                              |                             |                                             | •                            |                              |                          |                                     |                                        |                                     |
| HSCB                      | 164-165     |                |                                 | •                | ٠    |       |                |                              |                             |                                             |                              |                              |                          |                                     |                                        |                                     |
| PF10                      | 166-167     | ٠              | •                               |                  | ٠    |       |                |                              |                             |                                             |                              | ٠                            |                          |                                     |                                        |                                     |
| SMTPFLSM                  | 168         |                |                                 | •                | •    | ٠     |                | •                            |                             |                                             | •                            |                              | (2)                      |                                     | •                                      |                                     |
| SMTPF                     | 169         |                |                                 |                  | ٠    | •     |                | •                            |                             |                                             | •                            |                              | <b>_</b> (1)             | •                                   |                                        |                                     |
| PFK                       | 170         |                | •                               | •                | •    | •     |                | •                            |                             |                                             | •                            |                              | •                        |                                     |                                        |                                     |

(1) Standard color is black.



### PEM® PF11™, PF12™, PF15™, PF11MF™, PF11MW™, AND PEM® C.A.P.S.® CAPTIVE PANEL SCREWS

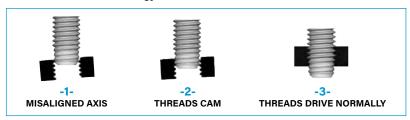
- Available in three installation types; self-clinching, flare-mounted and floating
- All have the same profile or look above the sheet or panel
- Standard selection of knobs include knurled, semi-smooth or smooth metal caps and plastic PEM C.A.P.S.® (Colored Access Panel Screws)



Self-clinching

Flare-mounted

**Floating** 


#### **Key Features Include:**

- Shoulder on retainer to provide positive stop during installation.
- Anti cross-threading feature (designated with an "M" in the part number). Eases assembly, aligns components, improves
  assembly line productivity, prevents jamming, and slides through clogged internal threads.

#### **Shoulder on Retainer**



#### Anti Cross-thread Technology - How it works



PennEngineering is a licensee for MAThread® technology, a registered trademark of MAThread Inc.

#### **Standard Mounting Styles:**

#### Self-clinching

- Installs flush on back side of panel.
- Available in three screw lengths.



#### Flare-mounted

- Appropriate for close centerline-to-edge applications.
- Doesn't require high installation force.
- Installs into any panel hardness.
- Installs flush on back side of panel.
- Can be installed into most any thin material.
- Appropriate for painted panels.

#### Flare-mounted, Floating

- Compensates for mating hole misalignment.
- Installs into any panel hardness.



#### **Standard Cap Selection:**



Knurled Metal Cap
All metal cap available with
knurls.



Smooth Metal Cap All metal cap available without knurls.



**Semi-smooth Metal Cap** All metal cap available with partial knurls.



Black Metal Cap

DuraBlack™ finish is scratch resistant.

Finish is on both metal cap and screw.

(finish code "BL")



Plastic Cap
Available with custom
color plastic cap.
(See page 8 for colors)

#### **Available Drive Configurations:**



Phillips/slot (Standard except for plastic cap)



Phillips (Optional)



Torx®/Slot Combination (Optional)



Slotted (Optional)



Torx® (Optional)

PennEngineering is a licensee for Acument Global Technologies (Torx®).

#### PF11™/PF12™/PF15™ CAPTIVE PANEL SCREWS



Float .010"/0.25mm minimum, in all directions from center, .020"/0.5mm total.

#### Installation Data page 172. Performance Data page 181.

Clinching profile may vary.

#### All dimensions are in inches.

|                                         |                    | NEW                     |                                                                            |
|-----------------------------------------|--------------------|-------------------------|----------------------------------------------------------------------------|
| PF11<br>Knurled Cap                     | PF12<br>Smooth Cap | PF15<br>Semi-smooth Cap | Dimples on head designate metric thread.  Phillips driver size (See chart) |
| Shoulder  <br>positive st<br>during ins | top                | T <sub>2</sub>          | E T,                                                                       |

Threads: External, ASME B1.1, 2A / ASME B1.13M, 6g Material: Knob: Aluminum Retainer: Hardened Carbon Steel Screw (PF11/PF12/PF15): 400 Series Stainless Steel Screw (PF11M/PF12M/PF15M): Hardened Carbon Steel (1) Spring: 300 Series Stainless Steel Finish: ze. Knob: Natural Finish Retainer: Bright nickel over copper flash, per ASTM B689, Type II Screw (PF11/PF12/PF15): Passivated and/or tested per ASTM A380 Screw: (PF11M/PF12M/PF15M): Zinc plated per ASTM B633, SC1 (5µm), Type III, colorless (3) Spring: Natural Finish Optional Finish (BL): Knob: Black anodize (2)

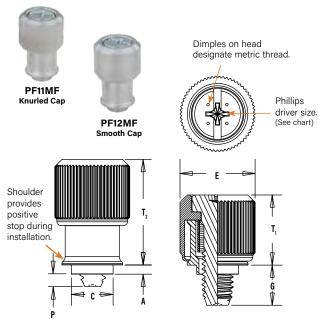
> **PART NUMBER DESIGNATION PF11** 632 BL

HRB 80 or less (Hardness Rockwell "B" Scale) / HB 150 or less (Hardness Brinell)

**Optional** Thread Type Anti-cross thread Code

Screw: Black nitride, AMS2753, Section 3 (2)

For use in sheet hardness:

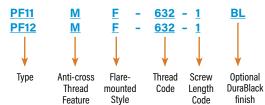

Screw **Optional** Length DuraBlack finish

| Th       |                                                                                                    | Type                                                                                                                                                                                                                                         |                                    | Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Screw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hole Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Min. Dist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Size     | Knurled<br>Cap                                                                                     | Smooth<br>Cap                                                                                                                                                                                                                                | Semi-smooth<br>Cap                 | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Length<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max.        | Sheet<br>Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + .003<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ± .010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ± .025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ± .025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I <sub>1</sub><br>Nom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hole<br><b>©</b> To<br>Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 112-40   | PF11                                                                                               | PF12                                                                                                                                                                                                                                         | PF15                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                                                                    |                                                                                                                                                                                                                                              | -                                  | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .036        | .036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (114 40) | 1111111                                                                                            | 111211                                                                                                                                                                                                                                       | 111011                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 138-32   | DF11                                                                                               | DF12                                                                                                                                                                                                                                         | DE15                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                                                                    |                                                                                                                                                                                                                                              | -                                  | 632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .036        | .036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (#U-3Z)  | 11111111                                                                                           | I I IZIVI                                                                                                                                                                                                                                    | TTIJWI                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16/1-32  | PF11                                                                                               | PF12                                                                                                                                                                                                                                         | PF15                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | DE11M                                                                                              | DE12M                                                                                                                                                                                                                                        | DE1EM                              | 832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .036        | .036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (#0-3Z)  | FIIIIVI                                                                                            | F I IZIVI                                                                                                                                                                                                                                    | FIIOW                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100 32   | PF11                                                                                               | PF12                                                                                                                                                                                                                                         | PF15                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                                                                    |                                                                                                                                                                                                                                              |                                    | 032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .036        | .036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (#10-32) | FIIIIVI                                                                                            | F I IZIVI                                                                                                                                                                                                                                    | FIIOW                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 250.20   | DE11                                                                                               | DE12                                                                                                                                                                                                                                         | DE15                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                                                                                    |                                                                                                                                                                                                                                              | -                                  | 0420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .036        | .036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (1/4-20) | FITIN                                                                                              | FIIZW                                                                                                                                                                                                                                        | FFFFFFF                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | Thread Size  .112-40 (#4-40)  .138-32 (#6-32)  .164-32 (#8-32)  .190-32 (#10-32)  .250-20 (1/4-20) | Size         Knurled Cap           .112-40 (#4-40)         PF11 PF11M           .138-32 (#6-32)         PF11 PF11M           .164-32 (#8-32)         PF11 PF11M           .190-32 (#10-32)         PF11 PF11M           .250-20         PF11 | Thread Size Knurled Cap Smooth Cap | Thread Size   Knurled Cap   Semi-smooth Cap | Thread Size   Knurled Cap   Semi-smooth Cap   Cap | Thread Size | Thread Size   Knurled Cap   Semi-smooth Cap   Cap | Thread Size   Knurled   Smooth   Cap   Semi-smooth   Cap   Cap   Code   Code | Thread Size   Knurled   Smooth   Cap   Semi-smooth   Code   Cod | Thread   Size   Knurled   Smooth   Cap   Cap   Code   Co | Thread Size   Knurled Smooth Cap   Semi-smooth Cap   Code   Cod | Thread Size   Knurled Cap   Smooth Cap   Semi-smooth Code   Cod | Thread Size   Knurled Cap   Smooth Cap   Semi-smooth Cap   Cap   Code   Code | Thread   Size   Knurled   Cap   Cap   Code   Code | Thread Size   Nom.   Code   Code | Thread   Size   Knurled   Cap   Cap   Code   Code |

|     |                           |                | Туре          |                    |                | Screw          |           | Min.               | Hole Size          |           | _           |              |             | _     | _     |                | Min. Dist.                  |
|-----|---------------------------|----------------|---------------|--------------------|----------------|----------------|-----------|--------------------|--------------------|-----------|-------------|--------------|-------------|-------|-------|----------------|-----------------------------|
|     | Thread<br>Size x<br>Pitch | Knurled<br>Cap | Smooth<br>Cap | Semi-smooth<br>Cap | Thread<br>Code | Length<br>Code | A<br>Max. | Sheet<br>Thickness | In Sheet<br>+ 0.08 | C<br>Max. | E<br>± 0.25 | G<br>± 0.64  | P<br>± 0.64 | Nom.  | Nom.  | Driver<br>Size | Hole<br><b>⊈</b> To<br>Edge |
|     |                           | PF11           | PF12          | PF15               |                | 0              |           |                    |                    |           |             | 4.32         | 0           |       |       |                |                             |
|     | M3 x 0.5                  | PF11M          | PF12M         | PF15M              | M3             | 1              | 0.92      | 0.92               | 5.56               | 5.54      | 10.59       | 5.84         | 1.52        | 7.87  | 11.43 | #1             | 7.11                        |
|     |                           |                |               |                    |                | 0              |           |                    |                    |           |             | 7.37<br>5.84 | 3.05<br>0   |       |       |                |                             |
| )   | M3.5 x 0.6                | PF11           | PF12          | PF15               | M3.5           | 1              | 0.92      | 0.92               | 6.35               | 6.33      | 11.43       | 7.37         | 1,52        | 11.43 | 16,26 | #2             | 7.37                        |
| T B |                           | PF11M          | PF12M         | PF15M              |                | 2              | 0.02      | 0.02               | 0.00               | 0.00      |             | 8.89         | 3.05        |       | 10.20 |                |                             |
| ш   |                           | PF11           | PF12          | PF15               |                | 0              |           |                    |                    |           |             | 5.84         | 0           |       |       |                |                             |
| Σ   | M4 x 0.7                  | PF11M          | PF12M         | PF15M              | M4             | 1              | 0.92      | 0.92               | 7.92               | 7.9       | 13.06       | 7.37         | 1.52        | 11.43 | 16.26 | #2             | 8.38                        |
|     |                           |                | 1112111       | 1110111            |                | 2              |           |                    |                    |           |             | 8.89         | 3.05        |       |       |                |                             |
|     |                           | PF11           | PF12          | PF15               |                | 0              |           |                    |                    |           |             | 5.84         | 0           |       |       |                |                             |
|     | M5 x 0.8                  | PF11M          | PF12M         | PF15M              | M5             | 1              | 0.92      | 0.92               | 7.92               | 7.9       | 13.06       | 7.37         | 1.52        | 11.43 | 16.26 | #2             | 8.38                        |
|     |                           | 11111111       | 1112111       | 1110111            |                | 2              |           |                    |                    |           |             | 8.89         | 3.05        |       |       |                |                             |
|     |                           | PF11           | PF12          | PF15               |                | 0              |           |                    |                    |           |             | 7.37         | 0           |       |       |                |                             |
|     | M6 x 1                    | PF11M          | PF12M         | PF15M              | M6             | 1              | 0.92      | 0.92               | 9.53               | 9.5       | 14.61       | 8.89         | 1.52        | 13.46 | 20.07 | #3             | 11.68                       |
|     |                           | r i ilivi      | FIZIVI        | FITOW              |                | 2              |           |                    |                    |           |             | 10.41        | 3.05        |       |       |                |                             |

- (1) As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.
- "BL" suffix will be added to part number to designate DuraBlack™ finish.
- (3) See PEM Technical Support section of our website (www.pemnet.com) for related plating standards and specifications.

#### PFMF™ FLARE-MOUNTED CAPTIVE PANEL SCREWS



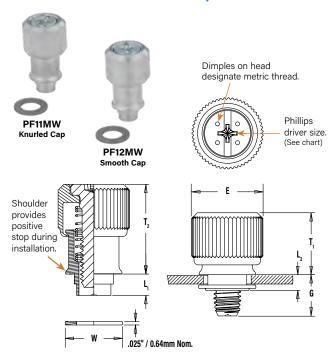

Float .010"/0.25mm minimum, in all directions from center, .020"/0.5mm total.

Installation Data page 172. Performance Data page 181.

#### Threads: External, ASME B1.1, 2A / ASME B1.13M, 6g $^{\scriptscriptstyle{(1)}}$ **Material:** Knob: Aluminum Retainer: Aluminum Screw: Hardened Carbon Steel Spring: 300 Series Stainless Steel Finish: Optional Finish (BL): **Knob: Natural Finish** Knob: Black anodize (2) Retainer: Natural Finish Screw: Black nitride AMS2753, Screw: Zinc plated per ASTM B633, SC1 (5µm), Type III, colorless (3) Section 3 (2) Spring: Natural Finish

#### **PART NUMBER DESIGNATION**




#### All dimensions are in inches.

|        | Th             | Тур            | oe .          | Th             | Screw          |           | Min.               | Countersunk                                      | •         | -          |             |             | _    | _    | Datas          |
|--------|----------------|----------------|---------------|----------------|----------------|-----------|--------------------|--------------------------------------------------|-----------|------------|-------------|-------------|------|------|----------------|
|        | Thread<br>Size | Knurled<br>Cap | Smooth<br>Cap | Thread<br>Code | Length<br>Code | A<br>Max. | Sheet<br>Thickness | Hole Size<br>In Sheet <sup>(4)</sup><br>+.005000 | C<br>Max. | E<br>±.010 | G<br>± .025 | P<br>± .025 | Nom. | Nom. | Driver<br>Size |
|        | .112-40        |                |               |                | 0              |           |                    |                                                  |           |            | .170        | .000        |      |      |                |
|        | (#4-40)        | PF11MF         | PF12MF        | 440            | 1              | .041      | .031               | .187                                             | .186      | .417       | .230        | .055        | .310 | .450 | #1             |
|        | (#4-40)        |                |               |                | 2              |           |                    |                                                  |           |            | .290        | .115        |      |      |                |
| E D    | .138-32        |                |               |                | 0              |           |                    |                                                  |           |            | .230        | .000        |      |      |                |
| Ξ      | (#6-32)        | PF11MF         | PF12MF        | 632            | 1              | .072      | .060               | .213                                             | .212      | .450       | .290        | .024        | .450 | .640 | #2             |
| 쁘      | (#0-32)        |                |               |                | 2              |           |                    |                                                  |           |            | .350        | .084        |      |      |                |
| N<br>O | .164-32        |                |               |                | 0              |           |                    |                                                  |           |            | .230        | .000        |      |      |                |
|        | (#8-32)        | PF11MF         | PF12MF        | 832            | 1              | .072      | .060               | .266                                             | .265      | .514       | .290        | .024        | .450 | .640 | #2             |
|        | (#0 3Z)        |                |               |                | 2              |           |                    |                                                  |           |            | .350        | .084        |      |      |                |
|        | .190-32        |                |               |                | 0              |           |                    |                                                  |           |            | .230        | .000        |      |      |                |
|        | (#10-32)       | PF11MF         | PF12MF        | 032            | 1              | .072      | .060               | .266                                             | .265      | .514       | .290        | .024        | .450 | .640 | #2             |
|        | (#10 32)       |                |               |                | 2              |           |                    |                                                  |           |            | .350        | .084        |      |      |                |
|        | .250-20        |                |               |                | 0              |           |                    |                                                  |           |            | .290        | .000        |      |      |                |
|        | (1/4-20)       | PF11MF         | PF12MF        | 0420           | 1              | .072      | .060               | .323                                             | .322      | .575       | .350        | .024        | .530 | .790 | #3             |
|        | (1/4.20)       |                |               |                | 2              |           |                    |                                                  |           |            | .410        | .084        |      |      |                |

|    | Th                        | Туј            | ре            | Thomas         | Screw          |           | Min.               | Countersunk                                  |      | _      |             | D      | _     | ,     | D. d           |
|----|---------------------------|----------------|---------------|----------------|----------------|-----------|--------------------|----------------------------------------------|------|--------|-------------|--------|-------|-------|----------------|
|    | Thread<br>Size x<br>Pitch | Knurled<br>Cap | Smooth<br>Cap | Thread<br>Code | Length<br>Code | A<br>Max. | Sheet<br>Thickness | Hole Size<br>In Sheet <sup>(4)</sup><br>+0.1 | Max. | ± 0.25 | G<br>± 0.64 | ± 0.64 | Nom.  | Nom.  | Driver<br>Size |
|    |                           |                |               |                | 0              |           |                    |                                              |      |        | 4.32        | 0      |       |       |                |
| 4. | M3 x 0.5                  | PF11MF         | PF12MF        | М3             | 1              | 1.05      | 0.79               | 4.75                                         | 4.73 | 10.59  | 5.84        | 1.4    | 7.87  | 11.43 | #1             |
| 0  |                           |                |               |                | 2              |           |                    |                                              |      |        | 7.37        | 2.92   |       |       |                |
| ~  |                           |                |               |                | 0              |           |                    |                                              |      |        | 5.84        | 0      |       |       |                |
| ET | M4 x 0.7                  | PF11MF         | PF12MF        | M4             | 1              | 1.83      | 1.52               | 6.76                                         | 6.74 | 13.06  | 7.37        | 0.61   | 11.43 | 16.26 | #2             |
| Ξ  |                           |                |               |                | 2              |           |                    |                                              |      |        | 8.89        | 2.13   |       |       |                |
|    |                           |                |               |                | 0              |           |                    |                                              |      |        | 5.84        | 0      |       |       |                |
|    | M5 x 0.8                  | PF11MF         | PF12MF        | M5             | 1              | 1.83      | 1.52               | 6.76                                         | 6.74 | 13.06  | 7.37        | 0.61   | 11.43 | 16.26 | #2             |
|    |                           |                |               |                | 2              |           |                    |                                              |      |        | 8.89        | 2.13   |       |       |                |
|    |                           |                |               |                | 0              |           |                    |                                              |      |        | 7.37        | 0      |       |       |                |
|    | M6 x 1                    | PF11MF         | PF12MF        | M6             | 1              | 1.83      | 1.52               | 8.2                                          | 8.18 | 14.61  | 8.89        | 0.61   | 13.46 | 20.07 | #3             |
|    |                           |                |               |                | 2              |           |                    |                                              |      |        | 10.41       | 2.13   |       |       |                |

- (1) As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.
- (2) "BL" suffix will be added to part number to designate DuraBlack™ finish.
- (3) See PEM Technical Support section of our website (<u>www.pemnet.com</u>) for related plating standards and specifications.
- (4) See page 172 for countersunk hole size detail.

#### PFMW™ FLARE-MOUNTED, FLOATING CAPTIVE PANEL SCREWS



Installation Data page 173. Performance Data page 181.

#### Threads:

External, ASME B1.1, 2A / ASME B1.13M, 6g (1)

#### Material:

Knob: Aluminum Retainer: Aluminum

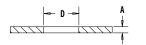
Screw: Hardened Carbon Steel Spring: 300 Series Stainless Steel Washer: 300 Series Stainless Steel

#### Finish:

**Knob: Natural Finish** 

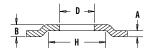
Retainer: Natural Finish

Spring: Natural Finish Washer: Natural Finish


Screw: Zinc plated per ASTM B633, SC1 (5µm), Type III, colorless (3)

Optional Finish (BL): Knob: Black anodize (2) Screw: Black nitride,

AMS2753, Section 3 (2)


#### **PANEL CONFIGURATION 1**

For applications where a space between mating panels is acceptable.



#### **PANEL CONFIGURATION 2**

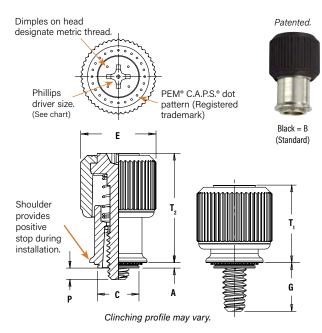
For applications where a space between mating panels is not acceptable.



#### **PART NUMBER DESIGNATION**



PF11MW panel fasteners are shipped with mating washers.


#### All dimensions are in inches.

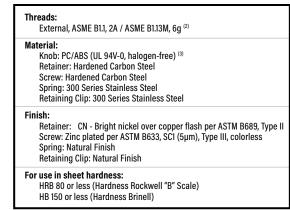
|        | Thursd         | Тур            | е              | Thursd         | 01 1.                | Screw                 | A                          | _         | D Hole Size              | -          | _    |           |      |        | -    | -     | D.i.           |                        |           |
|--------|----------------|----------------|----------------|----------------|----------------------|-----------------------|----------------------------|-----------|--------------------------|------------|------|-----------|------|--------|------|-------|----------------|------------------------|-----------|
|        | Thread<br>Size | Knurled<br>Cap | Smooth<br>Cap  | Thread<br>Code | Shank<br>Code<br>(4) | Length<br>Code<br>(4) | Max.<br>Sheet<br>Thickness | B<br>Min. | In Sheet<br>+.003<br>001 | E<br>±.010 | Nom. | H<br>Min. | Nom. | Max.   | Nom. | Nom.  | Driver<br>Size | Min.<br>Total<br>Float | W<br>Nom. |
|        | .112-40        | PF11MW         | PF12MW         | 440            | 1                    | 1                     | .063                       | .111      | .250                     | .417       | .230 | .375      | .137 | .127   | .310 | .450  | #1             | .073                   | .312      |
|        | (#4-40)        | 111111111      | 11121111       | 110            | '                    | 2                     | .003                       |           | .230                     | 1711       | .290 | .070      | .107 | .112.1 | .010 | 1-100 | ""             | .075                   | 1012      |
| ED     | .138-32        | PF11MW         | PF12MW         | 632            | 1                    | 1                     | .063                       | .115      | .283                     | .450       | .290 | .413      | .149 | .127   | .450 | .640  | #2             | .076                   | .344      |
| E      | (#6-32)        | 1 1 1110100    | I I IZIVIVV    | 032            | ļ                    | 2                     | .003                       | .110      | .203                     | .430       | .350 | JIIJ      | נדו  | 1121   | 00   | .040  | πΔ             | .070                   | דדני      |
| N<br>O | .164-32        | PF11MW         | PF12MW         | 832            | 1                    | 1                     | .063                       | .121      | .346                     | .514       | .290 | .469      | .157 | .140   | .450 | .640  | #2             | .076                   | .407      |
|        | (#8-32)        | 111111111      | I I IZIVIVV    | 032            | ļ                    | 2                     | .003                       | .121      | .540                     | .514       | .350 | .403      | .107 | .140   |      | .040  | πΔ             | .070                   | .107      |
|        | .190-32        | PF11MW         | PF12MW         | 032            | 1                    | 1                     | .063                       | .121      | .346                     | .514       | .290 | .469      | .157 | .140   | .450 | .640  | #2             | .076                   | .407      |
|        | (#10-32)       | r i ilivivv    | I I IZIVIVV    | 032            | '                    | 2                     | .003                       | .121      | .540                     | .314       | .350 | .403      | .107 | .140   | .430 | .040  | #2             | .070                   | .407      |
|        | .250-20        | PF11MW         | PF12MW         | 0420           | 1                    | 1                     | .063                       | .128      | .413                     | .575       | .350 | .531      | .157 | .140   | .530 | .790  | #3             | .081                   | .468      |
|        | (1/4-20)       | I I IIIVIVV    | 1 1 12 191 9 9 | 0420           |                      | 2                     | .003                       | .120      | טוד.                     | .010       | .410 | 1001      | .107 | .140   | .000 | .130  | πυ             | 1001                   | 00        |

|     | Thusad                    | Тур            | e             | Thusad         | Chaul                | Screw                 | A                          | _         | D Hole Size                | -     |               |           |      |      | -     |       | Duines         | M:-                    | w         |
|-----|---------------------------|----------------|---------------|----------------|----------------------|-----------------------|----------------------------|-----------|----------------------------|-------|---------------|-----------|------|------|-------|-------|----------------|------------------------|-----------|
|     | Thread<br>Size x<br>Pitch | Knurled<br>Cap | Smooth<br>Cap | Thread<br>Code | Shank<br>Code<br>(4) | Length<br>Code<br>(4) | Max.<br>Sheet<br>Thickness | B<br>Min. | In Sheet<br>+0.08<br>-0.03 | ±0.25 | G<br>Nom.     | H<br>Min. | Nom. | Max. | Nom.  | Nom.  | Driver<br>Size | Min.<br>Total<br>Float | W<br>Nom. |
| 2   | M3 x 0.5                  | PF11MW         | PF12MW        | M3             | 1                    | 1 2                   | 1.6                        | 2.82      | 6.35                       | 10.59 | 5.84<br>7.37  | 9.52      | 3.48 | 3.23 | 7.87  | 11.43 | #1             | 1.85                   | 7.92      |
| ETB | M3.5 x 0.6                | PF11MW         | PF12MW        | M3.5           | 1                    | 1 2                   | 1.6                        | 2.92      | 7.19                       | 11.43 | 7.37<br>8.89  | 10.49     | 3.78 | 3.23 | 11.43 | 16.26 | #2             | 1.93                   | 8.74      |
| Σ   | M4 x 0.7                  | PF11MW         | PF12MW        | M4             | 1                    | 1 2                   | 1.6                        | 3.07      | 8.79                       | 13.06 | 7.37<br>8.89  | 11.91     | 3.99 | 3.56 | 11.43 | 16.26 | #2             | 1.93                   | 10.34     |
|     | M5 x 0.8                  | PF11MW         | PF12MW        | M5             | 1                    | 1 2                   | 1.6                        | 3.07      | 8.79                       | 13.06 | 7.37<br>8.89  | 11.91     | 3.99 | 3.56 | 11.43 | 16.26 | #2             | 1.93                   | 10.34     |
|     | M6 x 1                    | PF11MW         | PF12MW        | M6             | 1                    | 1 2                   | 1.6                        | 3.25      | 10.49                      | 14.61 | 8.89<br>10.41 | 13.48     | 3.99 | 3.56 | 13.46 | 20.07 | #3             | 2.06                   | 11.89     |

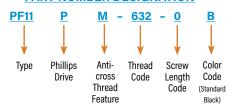
- (1) As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.
- (2) "BL" suffix will be added to part number to designate DuraBlack™ finish.
- (3) See PEM Technical Support section of our website (www.pemnet.com) for related plating standards and specifications.
- (4) Other shank and screw lengths available.

#### PEM® C.A.P.S.® CAPTIVE PANEL SCREWS




Float .010"/0.25mm minimum, in all directions from center, .020"/0.5mm total.

Installation Data page 172. Performance Data page 181.


#### Color Capabilities (1)

Choose a knob color code and add it to the end of the base part number.





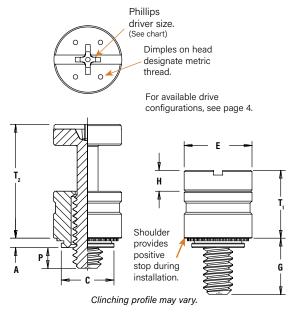
#### PART NUMBER DESIGNATION



Also available with flare-mounted retainer as PF11PMF or with floating style retainer as PF11PMW.

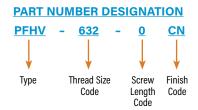
#### All dimensions are in inches.

|       | Thread              | Туре           | Thursd         | Screw          | A               | Min.               | Hole Size                 | •         | -           |                      | D                    | Ţ    |      | Duineau        | Min. Dist.<br>Hole |
|-------|---------------------|----------------|----------------|----------------|-----------------|--------------------|---------------------------|-----------|-------------|----------------------|----------------------|------|------|----------------|--------------------|
|       | Thread<br>Size      | Knurled<br>Cap | Thread<br>Code | Length<br>Code | (Shank)<br>Max. | Sheet<br>Thickness | In Sheet<br>+ .003<br>000 | C<br>Max. | E<br>± .010 | G<br>± .025          | ± .025               | Nom. | Nom. | Driver<br>Size | Ф To<br>Edge       |
| ED    | .112-40<br>(#4-40)  | PF11PM         | 440            | 0<br>1<br>2    | .036            | .036               | .219                      | .218      | .417        | .170<br>.230<br>.290 | .000<br>.060<br>.120 | .310 | .450 | #2             | .28                |
| UNIFI | .138-32             | PF11PM         | 632            | 0<br>1<br>2    | .036            | .036               | .250                      | .249      | .450        | .230<br>.290<br>.350 | .000<br>.060<br>.120 | .450 | .640 | #2             | .29                |
|       | .164-32<br>(#8-32)  | PF11PM         | 832            | 0<br>1<br>2    | .036            | .036               | .312                      | .311      | .514        | .230<br>.290<br>.350 | .000<br>.060<br>.120 | .450 | .640 | #2             | .33                |
|       | .190-32<br>(#10-32) | PF11PM         | 032            | 0<br>1<br>2    | .036            | .036               | .312                      | .311      | .514        | .230<br>.290<br>.350 | .000<br>.060<br>.120 | .450 | .640 | #2             | .33                |


|          | Thread          | Туре           |                | Screw          | A               | Min.               | Hole Size          | •    | _      | •           |             | -                      | _     |                | Min. Dist.                  |
|----------|-----------------|----------------|----------------|----------------|-----------------|--------------------|--------------------|------|--------|-------------|-------------|------------------------|-------|----------------|-----------------------------|
|          | Size x<br>Pitch | Knurled<br>Cap | Thread<br>Code | Length<br>Code | (Shank)<br>Max. | Sheet<br>Thickness | In Sheet<br>+ 0.08 | Max. | ± 0.25 | G<br>± 0.64 | P<br>± 0.64 | I <sub>1</sub><br>Nom. | Nom.  | Driver<br>Size | Hole<br><b>©</b> To<br>Edge |
| ပ        |                 |                |                | 0              |                 |                    |                    |      |        | 4.32        | 0           |                        |       |                |                             |
| ~        | M3 x 0.5        | PF11PM         | M3             | 1              | 0.92            | 0.92               | 5.56               | 5.54 | 10.59  | 5.84        | 1.52        | 7.87                   | 11.43 | #2             | 7.11                        |
| H        |                 |                |                | 2              |                 |                    |                    |      |        | 7.37        | 3.05        |                        |       |                |                             |
| <u> </u> |                 |                |                | 0              |                 |                    |                    |      |        | 5.84        | 0           |                        |       |                |                             |
| Σ        | M4 x 0.7        | PF11PM         | M4             | 1              | 0.92            | 0.92               | 7.92               | 7.9  | 13.06  | 7.37        | 1.52        | 11.43                  | 16.26 | #2             | 8.38                        |
|          |                 |                |                | 2              |                 |                    |                    |      |        | 8.89        | 3.05        |                        |       |                |                             |
|          |                 |                |                | 0              |                 |                    |                    |      |        | 5.84        | 0           |                        |       |                |                             |
|          | M5 x 0.8        | PF11PM         | M5             | 1              | 0.92            | 0.92               | 7.92               | 7.9  | 13.06  | 7.37        | 1.52        | 11.43                  | 16.26 | #2             | 8.38                        |
|          |                 |                |                | 2              |                 |                    |                    |      |        | 8.89        | 3.05        |                        |       |                |                             |

- (1) The colors shown (except for black) are non-stocked standards and available on special order. Since actual color knob may vary slightly from those represented, we recommend that you request samples for color verification. If you require a custom color or you need a "color matched" knob, please contact us.
- (2) As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.
- (3) Temperature limit is 210° F / 99° C.

#### PEM® PFHV™ CAPTIVE PANEL SCREWS


- Compact, low profile design for limited access applications
- Low cost captive screw design to replace loose hardware
- Two screw lengths
- Universal slot/Phillips recess standard with available Torx® recess
- Available with MAThread® anti cross-thread technology. (See page 150 for more information)





Installation Data page 173. Performance Data page 181.

#### Threads: External, ASME B1.1, 2A / ASME B1.13M, 6g (1) Material: Retainer: Carbon Steel Screw: Hardened Carbon Steel Retainer: CN - Bright nickel over copper flash per ASTM B689, Type II Screw: CN - Bright nickel over copper flash (1) For use in sheet hardness: HRB 60 or less (Hardness Rockwell "B" Scale) HB 107 or less (Hardness Brinell)



#### All dimensions are in inches.

|   |        | Thread<br>Size     | Туре  | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ .003<br>000 | C<br>Max. | E<br>± .010 | G<br>± .025 | H<br>±.005 | P<br>±.025 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min. Dist.<br>Hole <b>⊈</b><br>To Edge |
|---|--------|--------------------|-------|----------------|-------------------------|----------------------|----------------------------|----------------------------------------|-----------|-------------|-------------|------------|------------|------------------------|------------------------|----------------|----------------------------------------|
|   | IED    | .112-40<br>(#4-40) | PFHV  | 440            | 0                       | .036                 | .036                       | .203                                   | .202      | .260        | .216        | .080       | .000       | .260                   | .436                   | #1             | .21                                    |
|   | Ξ.     | (#4-40)            |       |                | 1                       |                      |                            |                                        |           |             | .316        |            | .095       |                        |                        |                |                                        |
|   | z<br>o | .138-32            | PFHV  | 632            | 0                       | .036                 | .036                       | .219                                   | .218      | .276        | .234        | .092       | .000       | .290                   | .484                   | #2             | .23                                    |
|   | _      | (#6-32)            |       | 002            | 1                       | 1000                 | 1000                       | 1210                                   | 1210      | 1270        | .359        | 1002       | .120       | 1200                   | 1101                   | ""             | 120                                    |
|   |        | .164-32            | PFHV  | 832            | 0                       | .036                 | .036                       | .252                                   | .251      | .309        | .259        | .111       | .000       | .335                   | .555                   | #2             | .26                                    |
| ı |        | (#8-32)            | 11111 | 032            | 1                       | .030                 | .030                       | ,LJL                                   | .231      | .505        | .371        | .111       | .106       | .000                   | .000                   | πΔ             | .20                                    |

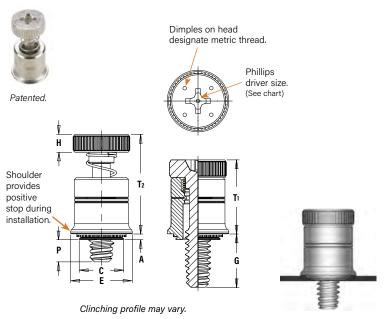
#### All dimensions are in millimeters

|     | illelisions are ill ill   |       |                |                         |                      |                            |                                 |           |             |             |             |            |                        |                        |                |                                        |
|-----|---------------------------|-------|----------------|-------------------------|----------------------|----------------------------|---------------------------------|-----------|-------------|-------------|-------------|------------|------------------------|------------------------|----------------|----------------------------------------|
|     | Thread<br>Size x<br>Pitch | Туре  | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ 0.08 | C<br>Max. | E<br>± 0.25 | G<br>± 0.64 | H<br>± 0.13 | P<br>±0.64 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min. Dist.<br>Hole <b>©</b><br>To Edge |
| 2   | M3 x 0.5                  | PFHV  | M3             | 0                       | 0,92                 | 0.92                       | 5.5                             | 5,49      | 6.95        | 5.55        | 2.03        | 0          | 6.69                   | 11.25                  | #1             | 5.8                                    |
| T B | INIO Y O'O                | riiiv | IVIS           | 1                       | 0.32                 | 0.32                       | 3.3                             | 3,43      | 0.33        | 7.56        | 2.03        | 1.9        | 0.03                   | 11.23                  | #1             | 3.0                                    |
| N   | M3.5 x 0.6                | PFHV  | M3.5           | 0                       | 0.92                 | 0.92                       | 6                               | 5,98      | 7.45        | 6.01        | 2.34        | 0          | 7.45                   | 12,47                  | #2             | 6.3                                    |
|     | O'O X C'CINI              | FFNV  | UIJ.           | 1                       | 0.92                 | 0.52                       | U                               | 5.36      | 7.40        | 8.42        | 2.34        | 2.3        | 1.40                   | 12.47                  | #2             | 0.3                                    |
|     | M4 x 0.7                  | PFHV  | M4             | 0                       | 0.92                 | 0.92                       | 6.4                             | 6,38      | 7.85        | 6.59        | 2,79        | 0          | 0.5                    | 14.1                   | #2             | 6.7                                    |
|     | IVI4 X U.7                | FrAV  | IV14           | 1                       | 0.92                 | 0.92                       | 0.4                             | 0.30      | 7.00        | 9.39        | 2.79        | 2.7        | 8.5                    | 14.1                   | #2             | 0.7                                    |

(1) As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.

#### PEM® PF7M™ AND PF7MF™ CAPTIVE PANEL SCREWS

- Smallest footprint, spring-loaded panel fastener for limited access applications
- MAThread® anti cross-thread technology (See page 4 for more information)
- Installs flush on back side of panel
- Available with Torx® recess
- PF7M Self-clinching style provides high pushout resistance
- PF7M does not require special hole preparation
- PF7MF is appropriate for close centerline-to-edge applications
- PF7MF does not require high installation force
- PF7MF installs into any panel hardness






PF7M

PF7MF

#### PF7M™ SELF-CLINCHING CAPTIVE PANEL SCREWS

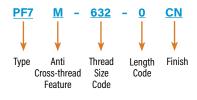


#### hreads:

External, ASME B1.1, 2A / ASME B1.13M, 6g (1)

#### Material:

Retainer: Carbon Steel Screw: Hardened Carbon Steel Spring: 300 Series Stainless Steel


#### Finish:

Retainer: CN - Bright nickel over copper flash per ASTM B689, Type II Screw: CN - Bright nickel over copper flash Spring: Natural Finish

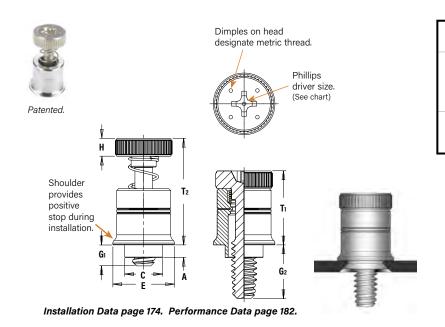
#### For use in sheet hardness:

HRB 60 or less (Hardness Rockwell "B" Scale) HB 107 or less (Hardness Brinell)

#### PART NUMBER DESIGNATION



#### Installation Data page 174. Performance Data page 182.


#### All dimensions are in inches.

|   | 2 | Thread<br>Size     | Type<br>Fastener<br>Material<br>Steel | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003<br>000 | C<br>Max. | E<br>±.010 | H<br>±.010 | G<br>±.025   | P<br>±.025   | Tı<br>Nom. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min.<br>Dist.<br>Hole <b>⊈</b><br>To Edge |
|---|---|--------------------|---------------------------------------|----------------|-------------------------|----------------------|----------------------------|---------------------------------------|-----------|------------|------------|--------------|--------------|------------|------------------------|----------------|-------------------------------------------|
|   |   | .112-40<br>(#4-40) | PF7M                                  | 440            | 0                       | .036                 | .036                       | .219                                  | .218      | .310       | .100       | .210<br>.270 | .000<br>.065 | .380       | .550                   | #2             | .28                                       |
| = |   | .138-32<br>(#6-32) | PF7M                                  | 632            | 0                       | .036                 | .036                       | .250                                  | .249      | .342       | .100       | .240<br>.300 | .000<br>.065 | .410       | .610                   | #2             | .29                                       |
|   |   | .164-32<br>(#8-32) | PF7M                                  | 832            | 0                       | .036                 | .036                       | .312                                  | .311      | .405       | .120       | .240<br>.300 | .000<br>.065 | .430       | .630                   | #2             | .33                                       |

|   | RIC | Thread<br>Size x<br>Pitch | Type<br>Fastener<br>Material<br>Steel | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>Max. | E<br>±0.25 | H<br>±0.25 | G<br>±0.64 | P<br>±0.64 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min.<br>Dist.<br>Hole <b>©</b><br>To Edge |
|---|-----|---------------------------|---------------------------------------|----------------|-------------------------|----------------------|----------------------------|--------------------------------|-----------|------------|------------|------------|------------|------------------------|------------------------|----------------|-------------------------------------------|
|   | _   | M3 x 0.5                  | PF7M                                  | M3             | 0                       | 0.92                 | 0,92                       | 5,56                           | 5,54      | 7.87       | 2.5        | 5.33       | 0          | 9.65                   | 13.97                  | #2             | 7.11                                      |
|   | ≥   | INIO X OIO                | 117101                                | IVIO           | 1                       | 0.52                 | 0.52                       | 0.00                           | 0.01      | 1.01       | 2.0        | 6.86       | 1.65       | 3.00                   | 10.07                  | ""             | 7.11                                      |
|   |     | M4 x 0.7                  | PF7M                                  | M4             | 0                       | 0.92                 | 0.92                       | 7.92                           | 7.9       | 10.29      | 2          | 6.1        | 0          | 10.92                  | 16                     | #2             | 8.38                                      |
| П |     | W4 X U.7                  | FF/IVI                                | IVI4           | 1                       | 0.52                 | 0.92                       | 1.32                           | 1.5       | 10.29      | 3          | 7.62       | 1.65       | 10.52                  | 10                     | #2             | 0.30                                      |

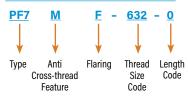
<sup>(1)</sup> As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.

#### PF7MF™ FLARE-MOUNTED CAPTIVE PANEL SCREWS



Threads: External, ASME B1.1, 2A / ASME B1.13M, 6g (1)

Material:


Retainer: Aluminum Screw: Hardened Carbon Steel

Spring: 300 Series Stainless Steel Spring: Natural Finish

Finish: Retainer: Natural finish

Screw: CN - Bright nickel over copper flash

#### **PART NUMBER DESIGNATION**



All dimensions are in inches.

| D   | Thread<br>Size     | Type<br>Fastener<br>Material<br>Steel | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.005<br>000 | C<br>Max. | E<br>±.010 | H<br>±.010 | G <sub>1</sub><br>±.025 | G <sub>2</sub><br>±.025 | Tı<br>Nom. | T <sub>2</sub><br>Nom. | Driver<br>Size |
|-----|--------------------|---------------------------------------|----------------|-------------------------|----------------------|----------------------------|---------------------------------------|-----------|------------|------------|-------------------------|-------------------------|------------|------------------------|----------------|
| Ξ   | .112-40<br>(#4-40) | PF7MF                                 | 440            | 0                       | .041                 | .031                       | .187                                  | .186      | .310       | .100       | .040                    | .210<br>.270            | .380       | .550                   | #2             |
| N O | .138-32            | PF7MF                                 | 632            | 0                       | .072                 | .060                       | .213                                  | .212      | .342       | .100       | .040                    | .240                    | .410       | .610                   | #2             |
|     | (#6-32)            |                                       | 002            | 1                       | 1072                 | 1000                       | 1210                                  | 1212      | 1012       | 1100       | .100                    | .300                    | 1110       | 1010                   | "-             |
|     | .164-32            | PF7MF                                 | 832            | 0                       | .072                 | .060                       | .266                                  | .265      | .405       | .120       | .040                    | .240                    | .430       | .630                   | #2             |
|     | (#8-32)            | T I / IVIF                            | 032            | 1                       | .072                 | ,000                       | ،۷۵۵                                  | .200      | .400       | .120       | .100                    | .300                    | .430       | .030                   | #2             |

| 0.18 | Ditch    | Type Fastener Material Steel | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.13 | C<br>Max. | E<br>±0.25 | H<br>±0.25 | G <sub>1</sub><br>±0.64 | G <sub>2</sub><br>±0.64 | Tı<br>Nom. | T <sub>2</sub><br>Nom. | Driver<br>Size |
|------|----------|------------------------------|----------------|-------------------------|----------------------|----------------------------|--------------------------------|-----------|------------|------------|-------------------------|-------------------------|------------|------------------------|----------------|
| L    |          | PF7MF                        | M3             | 0                       | 1.05                 | 0.79                       | 4.75                           | 4.73      | 7.87       | 2.5        | 1.02                    | 5.33                    | 9.65       | 13.97                  | #2             |
| 3    |          | 1171011                      | IVIO           | 1                       | 1.00                 | 0.75                       | 4.70                           | 4.70      | 201        | 2.0        | 2.54                    | 6.86                    | 3.00       | 10.07                  | 11 2           |
|      | M4 x 0.7 | PF7MF                        | M4             | 0                       | 1.83                 | 1.52                       | 6.76                           | 6.74      | 10.29      | 2          | 1.02                    | 6.1                     | 10.92      | 16                     | #2             |
|      | W4 X U.7 | FF/IVIF                      | IVI4           | 1                       | 1.00                 | 1.32                       | 0.70                           | 0.74      | 10.29      | J          | 2.54                    | 7.62                    | 10.32      | 10                     | #2             |

<sup>(1)</sup> As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.

#### PEM® PF30™, PF50™ AND PF60™ CAPTIVE PANEL SCREWS

- Low-profile design satisfies many functional and cosmetic requirements
- Convenient large head for tool or hand operation
- PF50/PF60 are available with Torx® recess
- PF50/PF60 are available with MAThread® anti cross-thread technology. (See page 4 for more information)








PF30 Knurled Cap

PF50 Knurled Cap

O PF60 Cap Smooth Cap

#### PF30™ LOW-PROFILE CAPTIVE PANEL SCREWS



Installation Data page 175. Performance Data page 182.

#### Threads:

External, ASME B1.1, 2A / ASME B1.13M, 6g (1)

#### Material:

Retainer: Carbon Steel

Screw: Hardened Carbon Steel (#4-40 and M3 sizes only) Carbon Steel (all other sizes)

#### Spring: 300 Series Stainless Steel

Finish:

Retainer: CN - Bright nickel over copper flash per ASTM B689, Type II Screw: CN - Bright nickel over copper flash per ASTM B689, Type II Spring: Natural Finish

#### Optional Finish:

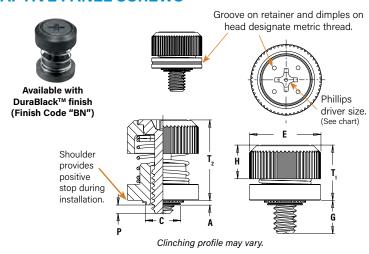
Retainer: BN - Black nitride, AMS2753, Section 3 Screw: BN - Black nitride, AMS2753, Section 3

#### For use in sheet hardness:

HRB 60 or less (Hardness Rockwell "B" Scale) HB 107 or less (Hardness Brinell)

#### **PART NUMBER DESIGNATION**




#### All dimensions are in inches.

|        | Thread<br>Size      | Туре | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ .003<br>000 | C<br>Max. | E<br>±.010 | G<br>± .015 | H<br>± .005 | T,<br>Max. | T <sub>2</sub><br>Nom. | Min. Dist.<br>Hole <b>©</b><br>To Edge |
|--------|---------------------|------|----------------|-------------------------|----------------------|----------------------------|----------------------------------------|-----------|------------|-------------|-------------|------------|------------------------|----------------------------------------|
|        | 110.40              | PF30 |                |                         | .030                 | .030                       |                                        |           |            |             |             |            |                        |                                        |
|        | .112-40<br>(#4-40)  | PF31 | 440            | 30                      | .038                 | .040                       | .203                                   | .202      | .406       | .300        | .202        | .325       | .595                   | .26                                    |
|        | (#4-40)             | PF32 |                |                         | .058                 | .060                       |                                        |           |            |             |             |            |                        |                                        |
| Q      | 100.00              | PF30 |                |                         | .030                 | .030                       |                                        |           |            |             |             |            |                        |                                        |
| ш      | .138-32<br>(#6-32)  | PF31 | 632            | 30                      | .038                 | .040                       | .219                                   | .218      | .438       | .300        | .202        | .325       | .595                   | .28                                    |
| E      | (#0-32)             | PF32 |                |                         | .058                 | .060                       |                                        |           |            |             |             |            |                        |                                        |
| Z<br>O | 104.00              | PF30 |                |                         | .030                 | .030                       |                                        |           |            |             |             |            |                        |                                        |
|        | .164-32<br>(#8-32)  | PF31 | 832            | 30                      | .038                 | .040                       | .250                                   | .249      | .468       | .300        | .207        | .330       | .600                   | .29                                    |
|        | (#0=32)             | PF32 |                |                         | .058                 | .060                       |                                        |           |            |             |             |            |                        |                                        |
|        | 100.00              | PF30 |                |                         | .030                 | .030                       |                                        |           |            |             |             |            |                        |                                        |
|        | .190-32<br>(#10-32) | PF31 | 032            | 30                      | .038                 | .040                       | .312                                   | .311      | .530       | .300        | .220        | .335       | .605                   | .33                                    |
|        | (#10-32)            | PF32 |                |                         | .058                 | .060                       |                                        |           |            |             |             |            |                        |                                        |
|        | .250-20<br>(1/4-20) | PF32 | 0420           | 35                      | .058                 | .060                       | .375                                   | .374      | .625       | .350        | .242        | .385       | .675                   | .38                                    |

|   | illionolollo al o i       |      |                |                         |                      |                            |                                 |           |            |            |             |                        |                        |                                        |
|---|---------------------------|------|----------------|-------------------------|----------------------|----------------------------|---------------------------------|-----------|------------|------------|-------------|------------------------|------------------------|----------------------------------------|
|   | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ 0.08 | C<br>Max. | E<br>±0.25 | G<br>± 0.4 | H<br>± 0.13 | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Nom. | Min. Dist.<br>Hole <b>¢</b><br>To Edge |
| ပ | Mayor                     | PF31 | M3             | 30                      | 0.97                 | 1                          | 5.5                             | 5.48      | 10.31      | 7.62       | 5.13        | 8,26                   | 15.11                  | 6,6                                    |
| = | M3 x 0.5                  | PF32 | IVIO           | 30                      | 1.48                 | 1.5                        | 5.5                             | 3.46      | 10.31      | 7.02       | 5.13        | 0.20                   | 19.11                  | 0.0                                    |
| Е | M4 x 0.7                  | PF31 | M4             | 30                      | 0.97                 | 1                          | 6.4                             | 6.38      | 11.89      | 7.62       | 5,26        | 8,38                   | 15.24                  | 7.37                                   |
| Z | W4 X U.7                  | PF32 | IVI4           | 30                      | 1.48                 | 1.5                        | 0.4                             | 6.38      | 11.89      | 7.02       | 5.20        | 8.38                   | 15.24                  | 1.31                                   |
|   | MEOO                      | PF31 | МЕ             | 00                      | 0.97                 | 1                          |                                 | 700       | 10.40      | 700        | F F0        | 0.51                   | 15.07                  | 0.00                                   |
|   | M5 x 0.8                  | PF32 | M5             | 30                      | 1.48                 | 1.5                        | 8                               | 7.98      | 13.46      | 7.62       | 5.59        | 8.51                   | 15.37                  | 8.38                                   |
|   | M6 x 1                    | PF32 | M6             | 35                      | 1.48                 | 1.5                        | 9.5                             | 9.48      | 15.88      | 8.89       | 6.12        | 9.78                   | 17.15                  | 9.65                                   |

<sup>(1)</sup> As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.

#### PF50™/PF60™ LOW-PROFILE **CAPTIVE PANEL SCREWS**



Installation Data page 175. Performance Data page 183.

Threads:

External, ASME B1.1, 2A / ASME B1.13M, 6g (1)

Knob: Carbon Steel Screw: Hardened Carbon Steel Retainer: Carbon Steel

Spring: 300 Series Stainless Steel

Knob: CN - Bright nickel over copper flash per ASTM B689, Type II Retainer: CN - Bright nickel over copper flash per ASTM B689, Type II

Screw: CN - Bright nickel over copper flash Spring: Natural Finish

Optional Finish:

Knob: BN - Black Nitride, AMS2753, Section 3 Retainer: BN - Black Nitride, AMS2753, Section 3 Screw: BN - Black Nitride, AMS2753, Section 3

For use in sheet hardness:

HRB 60 or less (Hardness Rockwell "B" Scale)

HB 107 or less (Hardness Brinell)

#### **PART NUMBER DESIGNATION**



All dimensions are in inches.

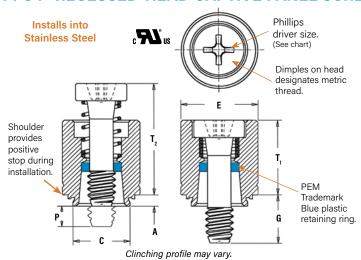
|     | iliciisiviis a      |                       |               | 1              |                         |                      |                            |                                    |           |            | i            |            |              |                        |                        |                |                                       |
|-----|---------------------|-----------------------|---------------|----------------|-------------------------|----------------------|----------------------------|------------------------------------|-----------|------------|--------------|------------|--------------|------------------------|------------------------|----------------|---------------------------------------|
|     | Thread<br>Size      | Tyl<br>Knurled<br>Cap | smooth<br>Cap | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ .003000 | C<br>Max. | E<br>±.010 | G<br>±.025   | H<br>±.008 | P<br>±.025   | T <sub>ı</sub><br>Max. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min. Dist<br>Hole <b>©</b><br>To Edge |
|     |                     | PF50                  | PF60          | 440            | 0                       | .030                 | .030                       | .203                               | .202      | .406       | .230         | .207       | .000         | .340                   | .520                   | #1             | .26                                   |
|     | .112-40<br>(#4-40)  | PF51                  | PF61          | 440            | 0                       | .038                 | .040                       | .203                               | .202      | .406       | .230         | .207       | .000         | .340                   | .520                   | #1             | .26                                   |
|     | , ,                 | PF52                  | PF62          | 440            | 0                       | .058                 | .060                       | .203                               | .202      | .406       | .230<br>.290 | .207       | .000<br>.032 | .340                   | .520                   | #1             | .26                                   |
|     |                     | PF50                  | PF60          | 632            | 0                       | .030                 | .030                       | .219                               | .218      | .438       | .230<br>.290 | .207       | .000<br>.060 | .340                   | .520                   | #2             | .28                                   |
| E D | .138-32<br>(#6-32)  | PF51                  | PF61          | 632            | 0                       | .038                 | .040                       | .219                               | .218      | .438       | .230         | .207       | .000         | .340                   | .520                   | #2             | .28                                   |
| FIE | , , ,               | PF52                  | PF62          | 632            | 0                       | .058                 | .060                       | .219                               | .218      | .438       | .230<br>.290 | .207       | .000<br>.032 | .340                   | .520                   | #2             | .28                                   |
| N   |                     | PF50                  | PF60          | 832            | 0                       | .030                 | .030                       | .250                               | .249      | .468       | .230<br>.290 | .217       | .000         | .340                   | .520                   | #2             | .29                                   |
| n   | .164-32<br>(#8-32)  | PF51                  | PF61          | 832            | 0                       | .038                 | .040                       | .250                               | .249      | .468       | .230         | .217       | .000         | .340                   | .520                   | #2             | .29                                   |
|     | , , , ,             | PF52                  | PF62          | 832            | 0                       | .058                 | .060                       | .250                               | .249      | .468       | .230<br>.290 | .217       | .000         | .340                   | .520                   | #2             | .29                                   |
|     |                     | PF50                  | PF60          | 032            | 0                       | .030                 | .030                       | .312                               | .311      | .530       | .230<br>.290 | .225       | .000<br>.060 | .340                   | .530                   | #2             | .33                                   |
|     | .190-32<br>(#10-32) | PF51                  | PF61          | 032            | 0                       | .038                 | .040                       | .312                               | .311      | .530       | .230<br>.290 | .225       | .000<br>.052 | .340                   | .530                   | #2             | .33                                   |
|     |                     | PF52                  | PF62          | 032            | 0                       | .058                 | .060                       | .312                               | .311      | .530       | .230<br>.290 | .225       | .000<br>.032 | .340                   | .530                   | #2             | .33                                   |
|     | .250-20<br>(1/4-20) | PF52                  | PF62          | 0420           | 0                       | .058                 | .060                       | .375                               | .374      | .625       | .280<br>.340 | .246       | .000         | .395                   | .600                   | #2             | .38                                   |

|     | Thread<br>Size x | Ty <sub>l</sub><br>Knurled | Smooth | Thread | Screw<br>Length | A<br>(Shank) | Min.<br>Sheet | Hole Size<br>In Sheet | С    | E     | G            | Н    | P         | T,    | T <sub>2</sub> | Driver | Min. Dist<br>Hole <b>©</b> |
|-----|------------------|----------------------------|--------|--------|-----------------|--------------|---------------|-----------------------|------|-------|--------------|------|-----------|-------|----------------|--------|----------------------------|
|     | Pitch            | Cap                        | Cap    | Code   | Code            | Max.         | Thickness     | + 0.08                | Max. | ±0.25 | ±0.64        | ±0.2 | ±0.64     | Max.  | Nom.           | Size   | To Edge                    |
|     |                  | PF50                       | PF60   | М3     | 0               | 0.77         | 0.8           | 5.5                   | 5.48 | 10.3  | 5.84<br>7.37 | 5.26 | 1.52      | 8.64  | 13.21          | #1     | 6.6                        |
|     | M3 x 0.5         | PF51                       | PF61   | М3     | 0               | 0.97         | 1             | 5.5                   | 5.48 | 10.3  | 5.84<br>7.37 | 5.26 | 0<br>1,32 | 8.64  | 13.21          | #1     | 6.6                        |
|     |                  | PF52                       | PF62   | M3     | 0               | 1.48         | 1.5           | 5.5                   | 5.48 | 10.3  | 5.84<br>7.37 | 5.26 | 0         | 8.64  | 13.21          | #1     | 6.6                        |
|     |                  | PF50                       | PF60   | M3.5   | 0               | 0.77         | 0.8           | 5.56                  | 5.54 | 11.1  | 5.84<br>7.37 | 5.26 | 0         | 8.64  | 13.21          | #2     | 7.1                        |
| ပ   | M3.5 x 0.6       | PF51                       | PF61   | M3.5   | 0               | 0.97         | 1             | 5.56                  | 5.54 | 11.1  | 5.84<br>7.37 | 5.26 | 0<br>1,32 | 8.64  | 13.21          | #2     | 7.1                        |
| TRI |                  | PF52                       | PF62   | M3.5   | 0               | 1.48         | 1.5           | 5.56                  | 5.54 | 11.1  | 5.84<br>7.37 | 5.26 | 0         | 8.64  | 13.21          | #2     | 7.1                        |
| ME. |                  | PF50                       | PF60   | M4     | 0               | 0.77         | 0.8           | 6.4                   | 6.38 | 11.9  | 5.84<br>7.37 | 5.51 | 0<br>1.52 | 8.64  | 13.46          | #2     | 7.4                        |
|     | M4 x 0.7         | PF51                       | PF61   | M4     | 0               | 0.97         | 1             | 6.4                   | 6.38 | 11.9  | 5.84<br>7.37 | 5.51 | 0<br>1.32 | 8.64  | 13.46          | #2     | 7.4                        |
|     |                  | PF52                       | PF62   | M4     | 0               | 1.48         | 1.5           | 6.4                   | 6.38 | 11.9  | 5.84<br>7.37 | 5.51 | 0         | 8.64  | 13.46          | #2     | 7.4                        |
|     |                  | PF50                       | PF60   | M5     | 0               | 0.77         | 0.8           | 8                     | 7.98 | 13.5  | 5.84<br>7.37 | 5.72 | 0<br>1.52 | 8.64  | 13.46          | #2     | 8.4                        |
|     | M5 x 0.8         | PF51                       | PF61   | M5     | 0               | 0.97         | 1             | 8                     | 7.98 | 13.5  | 5.84<br>7.37 | 5.72 | 0<br>1.32 | 8.64  | 13.46          | #2     | 8.4                        |
|     |                  | PF52                       | PF62   | M5     | 0               | 1.48         | 1.5           | 8                     | 7.98 | 13.5  | 5.84<br>7.37 | 5.72 | 0<br>0.81 | 8.64  | 13.46          | #2     | 8.4                        |
|     | M6 x 1           | PF52                       | PF62   | M6     | 0               | 1.48         | 1.5           | 9.5                   | 9.48 | 15.9  | 7.11<br>8.64 | 6.25 | 0<br>1.52 | 10.04 | 15.24          | #2     | 9.7                        |

<sup>(1)</sup> As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.

#### PFC4™ AND PFC2P™ CAPTIVE PANEL SCREWS

- Fully concealed-head for tool only access
- Comply with UL 60950 standards
- Available with MAThread® anti cross-thread technology (See page 4 for more information)
- Available with Torx® recess
- PFC4 installs into stainless steel sheets HRB 88 or less






PFC4

PFC2P

#### PFC4™ RECESSED-HEAD CAPTIVE PANEL SCREWS



Installation Data page 176. Performance Data page 183.

#### Threads:

External, ASME B1.1, 2A / ASME B1.13M, 6g

#### Material:

Retainer: 400 Series Stainless Steel Screw: 400 Series Stainless Steel Spring: 300 Series Stainless Steel

Retaining Ring: Nylon, temperature limit 200  $^{\circ}$  F / 93  $^{\circ}$  C

#### Finich:

Retainer: Passivated and/or tested per ASTM A380 Screw: Passivated and/or tested per ASTM A380 Spring: Natural Finish

#### For use in sheet hardness:

HRB 88 or less (Hardness Rockwell "B" Scale) HB 183 or less (Hardness Brinell)

#### PART NUMBER DESIGNATION



#### All dimensions are in inches.

|   | Thread<br>Size      | Туре | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ .003<br>000 | C<br>Max. | E<br>± .010 | G<br>± .016 | P<br>±.025 | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min. Dist.<br>Hole <b>©</b><br>To Edge |
|---|---------------------|------|----------------|-------------------------|----------------------|----------------------------|----------------------------------------|-----------|-------------|-------------|------------|------------------------|------------------------|----------------|----------------------------------------|
|   | .112-40             | PFC4 | 440            | 40                      | .060                 | .060                       | .265                                   | .264      | .344        | .250        | .000       | .370                   | .540                   | #1             | .25                                    |
| Q | (#4-40)             | PFU4 | 440            | 62                      | .000                 | .000                       | ,200                                   | .204      | .344        | .375        | .125       | .370                   | .340                   | #1             | .25                                    |
| ш | .138-32             |      |                | 40                      |                      |                            |                                        |           |             | .250        | .000       |                        |                        |                |                                        |
| 臣 | (#6-32)             | PFC4 | 632            | 62                      | .060                 | .060                       | .281                                   | .280      | .375        | .375        | .125       | .380                   | .540                   | #2             | .28                                    |
| Z | (#0 32)             |      |                | 84                      |                      |                            |                                        |           |             | .500        | .250       |                        |                        |                |                                        |
|   | .164-32             |      |                | 50                      |                      |                            |                                        |           |             | .312        | .000       |                        |                        |                |                                        |
|   | (#8-32)             | PFC4 | 832            | 72                      | .060                 | .060                       | .312                                   | .311      | .406        | .437        | .125       | .480                   | .705                   | #2             | .31                                    |
|   | (#0 32)             |      |                | 94                      |                      |                            |                                        |           |             | .562        | .250       |                        |                        |                |                                        |
|   | 100.22              |      |                | 50                      |                      |                            |                                        |           |             | .312        | .000       |                        |                        |                |                                        |
|   | .190-32<br>(#10-32) | PFC4 | 032            | 72                      | .060                 | .060                       | .344                                   | .343      | .437        | .437        | .125       | .490                   | .705                   | #2             | .34                                    |
|   | (#10-3Z)            |      |                | 94                      |                      |                            |                                        |           |             | .562        | .250       |                        |                        |                |                                        |

#### All dimensions are in millimeters.

|    | Thread<br>Size<br>x Pitch | Туре | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ 0.08 | C<br>Max. | E<br>± 0.25 | G<br>± 0.4 | P<br>±0.64 | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min. Dist<br>Hole <b>&amp;</b><br>To Edge |
|----|---------------------------|------|----------------|-------------------------|----------------------|----------------------------|---------------------------------|-----------|-------------|------------|------------|------------------------|------------------------|----------------|-------------------------------------------|
| ပ  | M3 x 0.5                  | PFC4 | M3             | 40                      | 1,53                 | 1.53                       | 6,73                            | 6.71      | 8.74        | 6.4        | 0          | 0.4                    | 13.72                  | ш1             | 6.35                                      |
| -  | INIO X 010                | PFU4 | IVIO           | 62                      | 1.00                 | 1.55                       | 0./3                            | 0.71      | 0.74        | 9.5        | 3.2        | 9.4                    | 13.72                  | #1             | 0.33                                      |
| ΕŢ |                           |      |                | 50                      |                      |                            |                                 |           |             | 7.9        | 0          |                        |                        |                |                                           |
| Ξ  |                           | PFC4 | M4             | 72                      | 1.53                 | 1.53                       | 7.92                            | 7.9       | 10.31       | 11.1       | 3.2        | 12.19                  | 17.91                  | #2             | 7.87                                      |
|    |                           |      |                | 94                      |                      |                            |                                 |           |             | 14.3       | 6.4        |                        |                        |                |                                           |
|    |                           |      |                | 50                      |                      |                            |                                 |           |             | 7.9        | 0          |                        |                        |                |                                           |
|    | M5 x 0.8                  | PFC4 | M5             | 72                      | 1.53                 | 1.53                       | 8.74                            | 8.72      | 11.1        | 11.1       | 3.2        | 12.45                  | 17.91                  | #2             | 8.63                                      |
|    |                           |      |                | 94                      |                      |                            |                                 |           |             | 14.3       | 6.4        |                        |                        |                |                                           |

#### A NOTE ABOUT FASTENERS FOR STAINLESS STEEL PANELS

In order for self-clinching fasteners to work properly, the fastener must be harder than the sheet into which it is being installed. In the case of stainless steel panels, fasteners made from 300 Series Stainless Steel do not meet this hardness criteria. It is for this reason that 400 series fasteners are offered (PFC4). However, while these 400 Series fasteners install and perform well in 300 Series stainless sheets they should not be used if the end product:

- Will be exposed to any appreciable corrosive presence.
- Requires non-magnetic fasteners.
- Will be exposed to any temperatures above 300°F (149°C)

If any of the these are issues, please contact techsupport@pemnet.com for other options.

#### PFC2P™ RECESSED-HEAD CAPTIVE PANEL SCREWS



Installation Data page 176. Performance Data page 183.

#### Threads:

External, ASME B1.1, 2A / ASME B1.13M, 6g

#### Matorial

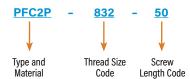
Retainer: 300 Series Stainless Steel Screw: 400 Series Stainless Steel Spring: 300 Series Stainless Steel Patriaire Bigg Nices temperature limit 30

Retaining Ring: Nylon, temperature limit 200° F / 93° C

#### Finish:

Retainer: Passivated and/or tested per ASTM A380 Screw: Passivated and/or tested per ASTM A380

Spring: Natural Finish


#### **Optional Finish:**

Retainer: BN - Black nitride, AMS2753, Section 3 Screw: BN - Black nitride, AMS2753, Section 3

#### For use in sheet hardness:

HRB 70 or less (Hardness Rockwell "B" Scale) HB 125 or less (Hardness Brinell)

#### **PART NUMBER DESIGNATION**



#### All dimensions are in inches.

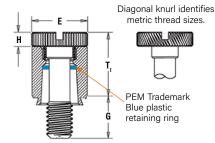
|     | Thread<br>Size      | Туре  | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ .003<br>000 | C<br>Max. | E<br>± .010 | G<br>± .016 | P<br>±.025 | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|-----|---------------------|-------|----------------|-------------------------|----------------------|----------------------------|----------------------------------------|-----------|-------------|-------------|------------|------------------------|------------------------|----------------|----------------------------------------|
|     | .112-40             | PFC2P | 440            | 40                      | .060                 | .060                       | .265                                   | .264      | .312        | .250        | .000       | .370                   | .540                   | #1             | .25                                    |
|     | (#4-40)             | 11021 | 770            | 62                      | .000                 | .000                       | .203                                   | 1204      | 1312        | .375        | .125       | 1070                   | .540                   | π1             | .23                                    |
|     | 400.00              |       |                | 40                      |                      |                            |                                        |           |             | .250        | .000       |                        |                        |                |                                        |
| E D | .138-32<br>(#6-32)  | PFC2P | 632            | 62                      | .060                 | .060                       | .281                                   | .280      | .344        | .375        | .125       | .380                   | .540                   | #2             | .28                                    |
| =   | (#0-32)             |       |                | 84                      |                      |                            |                                        |           |             | .500        | .250       |                        |                        |                |                                        |
| 4   | 40.4.00             |       |                | 50                      |                      |                            |                                        |           |             | .312        | .000       |                        |                        |                |                                        |
| Z   | .164-32<br>(#8-32)  | PFC2P | 832            | 72                      | .060                 | .060                       | .312                                   | .311      | .375        | .437        | .125       | .480                   | .705                   | #2             | .31                                    |
|     | (#0-32)             |       |                | 94                      |                      |                            |                                        |           |             | .562        | .250       |                        |                        |                |                                        |
|     | 400.00              |       |                | 50                      |                      |                            |                                        |           |             | .312        | .000       |                        |                        |                |                                        |
|     | .190-32<br>(#10-32) | PFC2P | 032            | 72                      | .060                 | .060                       | .344                                   | .343      | .406        | .437        | .125       | .490                   | .705                   | #2             | .34                                    |
|     | (#10-32)            |       |                | 94                      |                      |                            |                                        |           |             | .562        | .250       |                        |                        |                |                                        |
|     | 252.00              |       |                | 60                      |                      |                            |                                        |           |             | .375        | .000       |                        |                        |                |                                        |
|     | .250-20<br>(1/4-20) | PFC2P | 0420           | 82                      | .060                 | .060                       | .413                                   | .412      | .468        | .500        | .125       | .620                   | .905                   | #3             | .38                                    |
|     | (1/4-20)            |       |                | 04                      |                      |                            |                                        |           |             | .625        | .250       |                        |                        |                |                                        |

|     | Thread<br>Size x<br>Pitch | Туре  | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ 0.08 | C<br>Max. | E<br>± 0.25 | G<br>± 0.4 | P<br>±0.64 | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min. Dist<br>Hole <b>©</b><br>To Edge |
|-----|---------------------------|-------|----------------|-------------------------|----------------------|----------------------------|---------------------------------|-----------|-------------|------------|------------|------------------------|------------------------|----------------|---------------------------------------|
|     | M3 x 0.5                  | PFC2P | M3             | 40                      | 1,53                 | 1,53                       | 6.73                            | 6.71      | 7,92        | 6.4        | 0          | 9.4                    | 13.72                  | #1             | 6.35                                  |
|     | IVIO X U.O                | FFUZF | IVIO           | 62                      | 1,00                 | 1,00                       | 0.73                            | 0.71      | 1.32        | 9.5        | 3.2        | 3,4                    | 13.72                  | #1             | 0.33                                  |
| ၁   |                           |       |                | 50                      |                      |                            |                                 |           |             | 7.9        | 0          |                        |                        |                |                                       |
| TRI | M4 x 0.7                  | PFC2P | M4             | 72                      | 1.53                 | 1.53                       | 7.92                            | 7.9       | 9.53        | 11.1       | 3.2        | 12.19                  | 17.91                  | #2             | 7.87                                  |
| ш   |                           |       |                | 94                      |                      |                            |                                 |           |             | 14.3       | 6.4        |                        |                        |                |                                       |
| Σ   |                           |       |                | 50                      |                      |                            |                                 |           |             | 7.9        | 0          |                        |                        |                |                                       |
|     | M5 x 0.8                  | PFC2P | M5             | 72                      | 1.53                 | 1.53                       | 8.74                            | 8.72      | 10.31       | 11.1       | 3.2        | 12.45                  | 17.91                  | #2             | 8.63                                  |
|     |                           |       |                | 94                      |                      |                            |                                 |           |             | 14.3       | 6.4        |                        |                        |                |                                       |
|     |                           |       |                | 60                      |                      |                            |                                 |           |             | 9.5        | 0          |                        |                        |                |                                       |
|     | M6 x 1                    | PFC2P | M6             | 82                      | 1.53                 | 1.53                       | 10.49                           | 10.47     | 11.89       | 12.7       | 3.2        | 15.75                  | 22.99                  | #3             | 9.65                                  |
|     |                           |       |                | 04                      |                      |                            |                                 |           |             | 15.9       | 6.4        |                        |                        |                |                                       |

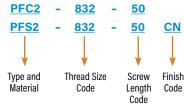
#### PFC2™ AND PFS2™ CAPTIVE PANEL SCREWS

- Spring-loaded panel fastener for tool or hand operation
- Screw assemblies remain captive for easy mounting and removal.





PFC2/PFS2




DuraBlack™ finish (Finish Code "BN")

PFC2 PFS2 Threads: Threads: External, ASME B1.1, 2A / ASME B1.13M, 6g External, ASME B1.1, 2A / ASME B1.13M, 6g (1) Retainer: 300 Series Stainless Steel (2) Retainer: Hardened Carbon Steel (2) Screw: 300 Series Stainless Steel Screw: Carbon Steel Spring: 300 Series Stainless Steel Spring: 300 Series Stainless Steel Retaining Ring: Nylon, temperature limit 200° F / 93° C Retaining Ring: Nylon, temperature limit 200° F / 93° C Retainer: Passivated and/or tested per ASTM A380 Retainer: CN - Bright nickel over copper flash per ASTM B689, Type II Screw: Passivated and/or tested per ASTM A380 Screw: CN - Bright nickel over copper flash per ASTM B689, Type II Spring: Natural Finish Spring: Natural Finish Optional Finish: Optional Finish: Retainer: BN - Black nitride, AMS2753, Section 3 Retainer: BN - Black nitride, AMS2753, Section 3 Screw: BN - Black nitride, AMS2753, Section 3 Screw: BN - Black nitride, AMS2753, Section 3 For use in sheet hardness: For use in sheet hardness: HRB 70 or less (Hardness Rockwell "B" Scale) HRB 80 or less (Hardness Rockwell "B" Scale) HB 125 or less (Hardness Brinell) HB 150 or less (Hardness Brinell)





#### PART NUMBER DESIGNATION



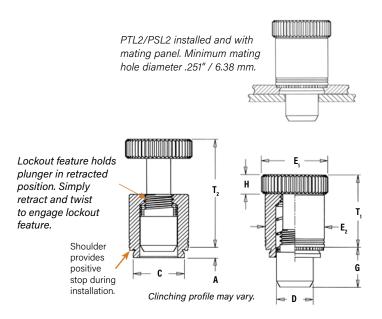
All dimensions are in inches.

Clinching profile may vary.

Installation Data page 175. Performance Data page 181.

|       | Thread              | Туј                | oe    | Thread | Screw          | A               | Min.               | Hole Size<br>In Sheet | С    | F      | G                    | н     | Р                    | т    | т    | Min. Dist.               |
|-------|---------------------|--------------------|-------|--------|----------------|-----------------|--------------------|-----------------------|------|--------|----------------------|-------|----------------------|------|------|--------------------------|
|       | Size                | Stainless<br>Steel | Steel | Code   | Length<br>Code | (Shank)<br>Max. | Sheet<br>Thickness | + .003<br>000         | Max. | ± .010 | ±.016                | ±.005 | ±.025                | Max. | Nom. | Hole <b>©</b><br>To Edge |
|       | .112-40<br>(#4-40)  | PFC2               | PFS2  | 440    | 40<br>62       | .060            | .060               | .265                  | .264 | .312   | .250<br>.375         | .072  | .000<br>.125         | .360 | .540 | .25                      |
| I E D | .138-32<br>(#6-32)  | PFC2               | PFS2  | 632    | 40<br>62<br>84 | .060            | .060               | .281                  | .280 | .344   | .250<br>.375<br>.500 | .072  | .000<br>.125<br>.250 | .360 | .540 | .28                      |
| UNIF  | .164-32<br>(#8-32)  | PFC2               | PFS2  | 832    | 50<br>72<br>94 | .060            | .060               | .312                  | .311 | .375   | .312<br>.437<br>.562 | .082  | .000<br>.125<br>.250 | .450 | .690 | .31                      |
|       | .190-32<br>(#10-32) | PFC2               | PFS2  | 032    | 50<br>72<br>94 | .060            | .060               | .344                  | .343 | .406   | .312<br>.437<br>.562 | .082  | .000<br>.125<br>.250 | .450 | .690 | .34                      |
|       | .250-20<br>(1/4-20) | PFC2               | PFS2  | 0420   | 60<br>82<br>04 | .060            | .060               | .413                  | .412 | .468   | .375<br>.500<br>.625 | .097  | .000<br>.125<br>.250 | .580 | .880 | .38                      |

|      | Thread          | Туј                | ре    | Thread | Screw          | Α               | Min.               | Hole Size          | C     | F     | G                   | Н      | В               | _     | _     | Min. Dist.                   |
|------|-----------------|--------------------|-------|--------|----------------|-----------------|--------------------|--------------------|-------|-------|---------------------|--------|-----------------|-------|-------|------------------------------|
|      | Size x<br>Pitch | Stainless<br>Steel | Steel | Code   | Length<br>Code | (Shank)<br>Max. | Sheet<br>Thickness | In Sheet<br>+ 0.08 | Max.  | ±.25  | ± 0.4               | ± 0.13 | ±0.64           | Max.  | Nom.  | Hole <b>&amp;</b><br>To Edge |
| ပ    | M3 x 0.5        | PFC2               | PFS2  | M3     | 40<br>62       | 1.53            | 1.53               | 6.73               | 6.71  | 7.92  | 6.4<br>9.5          | 1.83   | 0<br>3.2        | 9.14  | 13.72 | 6.35                         |
| ETRI | M4 x 0.7        | PFC2               | PFS2  | M4     | 50<br>72<br>94 | 1.53            | 1.53               | 7.92               | 7.9   | 9.53  | 7.9<br>11.1<br>14.3 | 2.08   | 0<br>3.2<br>6.4 | 11.43 | 17.53 | 7.87                         |
| Σ    | M5 x 0.8        | PFC2               | PFS2  | M5     | 50<br>72<br>94 | 1.53            | 1.53               | 8.74               | 8.72  | 10.31 | 7.9<br>11.1<br>14.3 | 2.08   | 0<br>3.2<br>6.4 | 11.47 | 17.53 | 8.63                         |
|      | M6 x 1          | PFC2               | PFS2  | M6     | 60<br>82<br>04 | 1.53            | 1.53               | 10.49              | 10.47 | 11.89 | 9.5<br>12.7<br>15.9 | 2.46   | 0<br>3.2<br>6.4 | 14.73 | 22.35 | 9.65                         |


<sup>(1)</sup> As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.

<sup>(2)</sup> The blue plastic retaining rings are a PEM trademark. The temperature limit is 200° F / 93° C.

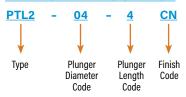
#### PTL2™ AND PSL2™ SPRING-LOADED PLUNGER ASSEMBLIES

- Positioning pins for sliding components such as drawer slides and equipment consoles
- Fast installation and removal of components
- Reverse side of sheet is flush when plunger is retracted
- PTL2 has guick lockout feature to hold plunger in fully retracted position (Available as PSL2 without lockout feature on special order)
- For use in sheets of HRB 80 or less





#### Material:


Plunger: Hardened Carbon Steel Retainer: Hardened Carbon Steel Spring: 300 Series Stainless Steel

Plunger: CN - Bright nickel over copper flash per ASTM B689, Type II Retainer: CN - Bright nickel over copper flash per ASTM B689, Type II Spring: Natural Finish

#### For use in sheet hardness:

HRB 80 or less (Hardness Rockwell "B" Scale) HB 150 or less (Hardness Brinell)

#### PART NUMBER DESIGNATION



Installation Data page 175. Performance Data page 181.

#### All dimensions are in inches.

| ED  | Туре     | Plunger<br>Diameter<br>Code | Plunger<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | C<br>Max. | D<br>+ .000<br>005 | E,<br>± .010 | E <sub>2</sub><br>± .010 | G<br>± .010 | H<br>± .010 | T <sub>1</sub><br>± .010 | T <sub>2</sub><br>Nom. | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|-----|----------|-----------------------------|---------------------------|----------------------|----------------------------|-----------------------------------|-----------|--------------------|--------------|--------------------------|-------------|-------------|--------------------------|------------------------|----------------------------------------|
| I I | PTL2     | 04                          | 4                         | .058                 | .060                       | .328                              | .327      | .250               | .50          | .406                     | .310        | .17         | .595                     | .895                   | .34                                    |
| n   | PSL2 (1) | 04                          | 4                         | .058                 | .060                       | .328                              | .327      | .250               | .50          | .406                     | .310        | .17         | .510                     | .780                   | .34                                    |

#### All dimensions are in millimeters.

| 21.0    | Туре     | Plunger<br>Diameter<br>Code | Plunger<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ 0.08 | C<br>Max. | D<br>- 0.13 | E,<br>± 0.25 | E <sub>2</sub><br>± 0.25 | G<br>± 0.25 | H<br>± 0.25 | T <sub>1</sub><br>± 0.25 | T <sub>2</sub><br>Nom. | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|---------|----------|-----------------------------|---------------------------|----------------------|----------------------------|---------------------------------|-----------|-------------|--------------|--------------------------|-------------|-------------|--------------------------|------------------------|----------------------------------------|
| I E T B | PTL2     | 04                          | 4                         | 1.47                 | 1.53                       | 8.33                            | 8.31      | 6.35        | 12.7         | 10.3                     | 7.87        | 4.32        | 15.11                    | 22.73                  | 8.64                                   |
| Σ       | PSL2 (1) | 04                          | 4                         | 1.47                 | 1.53                       | 8.33                            | 8.31      | 6.35        | 12.7         | 10.3                     | 7.87        | 4.32        | 12.95                    | 19.81                  | 8.64                                   |

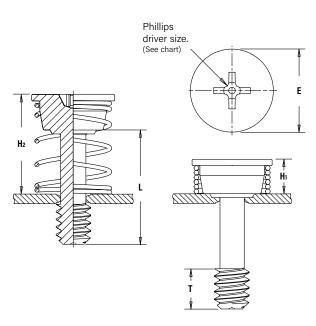
(1) Without lockout feature. Available on special order.

#### PEM® SCBR™/SCB™/SCBJ™ CAPTIVE PANEL SCREWS

- Permanently captivates into sheets as thin as .040" / 1.02 mm
- Lowest cost captive screw design to replace loose hardware
- Available with self-retracting (SCBR), axial float (SCB), or jacking feature (SCBJ)
- Appropriate for close centerline-to-edge applications








**SCBR** 

SCB

SCBJ

#### SCBR™ SPINNING CLINCH BOLT WITH SELF-RETRACTING FEATURE



Installation Data page 176. Performance Data page 182.

# SCBR retracted SCBR engaged

Threads: External, ASME B1.1, 2A / ASME B1.13M, 6g (1) Material:

Screw - Hardened Carbon Steel Spring - 300 series stainless steel

inish:
Screw - Zinc plated per ASTM B633, SC1 (5μm), Type III, colorless
Spring: Natural Finish

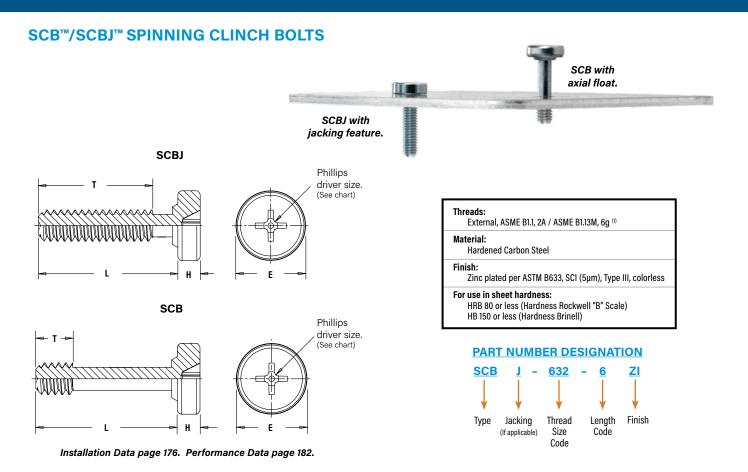
For use in sheet hardness: HRB 80 or less (Hardness Rockwell "B" Scale) HB 150 or less (Hardness Brinell)

#### PART NUMBER DESIGNATION



#### All dimensions are in inches.

| D  | Thread<br>Size     | Туре | Thread<br>Code | Length Code "L" ±.015<br>(Length Code in 16ths of an inch)<br>.500 | Min.<br>Sheet<br>Thickness | Hole Size<br>in Sheet<br>+.003000 | E<br>+.005<br>010 | H <sub>1</sub><br>±.005 | H <sub>2</sub><br>Ref. | T<br>Nom. | Driver<br>Size | Min. Dist<br>Hole <b>©</b><br>To Edge |
|----|--------------------|------|----------------|--------------------------------------------------------------------|----------------------------|-----------------------------------|-------------------|-------------------------|------------------------|-----------|----------------|---------------------------------------|
| FE | .112-40<br>(#4-40) | SCBR | 440            | 8                                                                  | .040                       | .112                              | .348              | .165                    | .495                   | .130      | #1             | .175                                  |
|    | .138-32<br>(#6-32) | SCBR | 632            | 8                                                                  | .040                       | .138                              | .381              | .170                    | .500                   | .130      | #2             | .190                                  |
|    | .164-32<br>(#8-32) | SCBR | 832            | 8                                                                  | .040                       | .164                              | .410              | .175                    | .505                   | .130      | #2             | .205                                  |


#### All dimensions are in millimeters.

| - | 2 | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Length Code "L" ±0.4<br>(Length Code in millimeters) | Min.<br>Sheet<br>Thickness | Hole Size<br>in Sheet<br>+0.08 | E<br>+0.13<br>-0.25 | H <sub>1</sub><br>±0.13 | H <sub>2</sub><br>Ref. | T<br>Nom. | Driver<br>Size | Min. Dist<br>Hole <b>⊉</b><br>To Edge |
|---|---|---------------------------|------|----------------|------------------------------------------------------|----------------------------|--------------------------------|---------------------|-------------------------|------------------------|-----------|----------------|---------------------------------------|
| F | = | M3 x 0.5                  | SCBR | М3             | 12                                                   | 1.02                       | 3                              | 9.1                 | 4.2                     | 11.8                   | 3.3       | #1             | 4.5                                   |
|   | ≥ | M4 x 0.7                  | SCBR | M4             | 12                                                   | 1.02                       | 4                              | 10.7                | 4.5                     | 12.1                   | 3.3       | #2             | 5.4                                   |

<sup>(1)</sup> As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.

**NOTE:** SCBR screws are shipped with mating springs.

For designs requiring a specific spring rate, contact our PEM Technical Support group at <a href="mailto:technical-support@pemnet.com">techsupport@pemnet.com</a>.



#### All dimensions are in inches.

|   |                    |                | Ту      | pe          |                |         | ngth Code "L" ± |             | Min.      | Hole Size |       |      |      | T    |      | Nom.  |        | Min. Dist.    |
|---|--------------------|----------------|---------|-------------|----------------|---------|-----------------|-------------|-----------|-----------|-------|------|------|------|------|-------|--------|---------------|
|   |                    | Thread<br>Size | Jacking | Non-jacking | Thread<br>Code | (Length | Code in 16ths o | of an inch) | Sheet     | in Sheet  | E     | Н    |      | Nom. |      | Axial | Driver | Hole <b>⊄</b> |
| 4 | 2                  | Size           | Jacking | Non-jacking | coue           | .250    | .375            | .500        | Thickness | +.003000  | ±.010 | Nom. | -4   | -6   | -8   | Float | Size   | To Edge       |
| - |                    | .112-40        | SCBJ    | -           | 440            | 4       | 6               | 8           | .040      | .112      | .250  | .080 | .160 | .285 | .410 | -     | . #1   | .13           |
| 2 |                    | (#4-40)        | -       | SCB         | 440            | -       | 1               | 8           | .040      | .112      | .230  | .000 | -    | -    | .130 | .330  | #1     | ilo           |
|   |                    | .138-32        | SCBJ    | -           | 632            | 4       | 6               | 8           | .040      | .138      | .291  | .080 | .160 | .285 | .410 | _     | #2     | .15           |
|   | .138-32<br>(#6-32) | _              | SCB     | 032         | _              | _       | 8               | .040        | .130      | ,231      | .000  | _    | 1    | .130 | .330 | #2    | .13    |               |

|     | Thread          | Туј     | ре          |                |     | 1                        | d - ### . O 4 |    | Min.               | Hole Size         |            |           |     | T   |           |      | Nom.           |                | Min. Dist.               |
|-----|-----------------|---------|-------------|----------------|-----|--------------------------|---------------|----|--------------------|-------------------|------------|-----------|-----|-----|-----------|------|----------------|----------------|--------------------------|
|     | Size x<br>Pitch | Jacking | Non-jacking | Thread<br>Code | (Le | Length Co<br>ngth Code i |               |    | Sheet<br>Thickness | in Sheet<br>+0.08 | E<br>±0.25 | H<br>Nom. | -6  | Non | n.<br>-12 | -14  | Axial<br>Float | Driver<br>Size | Hole <b>©</b><br>To Edge |
| 2   |                 |         |             |                |     |                          |               |    |                    |                   |            |           | -0  | -10 | -12       | -17  |                |                |                          |
| H H |                 | SCBJ    | -           | M3             | 6   | 10                       | 12            | 14 | 1.02               | 3                 | 6.6        | 2.03      | 3.7 | 7.7 | 9.7       | 11.7 | -              | #1             | 3.3                      |
| Ξ   |                 | _       | SCB         | IVIO           | _   | _                        | 12            | 14 | 1.02               | 3                 | 0.0        | 2.03      | _   | -   | 3.3       | 5.3  | 7.67           | π1             | 0.0                      |
|     | M4 x 0.7        | SCBJ    | -           | M4             | 6   | 10                       | 12            | 14 | 1.02               | 4                 | 8,28       | 2.03      | 3.7 | 7.7 | 9.7       | 11.7 | -              | #2             | 5                        |
|     | W4 X U.7        | _       | SCB         | IVI            | _   | -                        | 12            | 14 | 1.02               | 4                 | 0.20       | 2.03      | _   | _   | 3.3       | 5.3  | 7.67           | #2             | J                        |

<sup>(1)</sup> As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.

#### PEM® HSCB™ HEAT SINK MOUNTING SYSTEM

The HSCB™ engineered mounting system provides secure attachment of a heat sink to the circuit board while providing firm contact to the chip component allowing optimum heat dissipation. The three-piece fastening system, sold individually, includes

the screw, spring and receptacle nut. The clamp load created is determined by the spring rate and the amount of deflection that is designed into the joint of the hardware. The system also allows for slight expansion and contraction of the joint components without stress to the delicate circuitry. The unique "click" feature lets the user know when the fastener is completely installed.



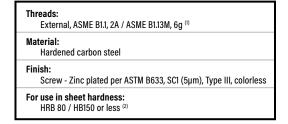


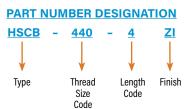




Patented

- Screw can not be overtightened. Audible "click" when fully engaged.
- Screw and spring mount together permanently into the heat sink.
- Spring determines clamp force.
- Receptacle nut mounts permanently to the P.C. board.
- Provides even, constant contact of heat sink to chip component.
- Allows removal of heat sink if desired.


#### To select proper length code of nut/standoff:


- Determine "G", the distance from the top surface of the heat sink to the top of the P.C. Board.
- Find the combination of Screw (HSCB) and Nut (HSR) whose sum of Screw Factor (SF) plus Nut Factor (NF) are closest to G.
- 3) Find D = G SF NF. The D value must be a negative number between zero and 1mm or 1/32" (1 dash length of HSR nut).
- 4) The actual working load is equal to the Spring (HSL) Working Load + (D x spring rate k). Lower D value results in lower force.

If this or any standard product does not meet your application needs, contact our PEM Technical Support group at <a href="mailto:techsupport@pemnet.com">techsupport@pemnet.com</a> to develop a special product that matches your specific application.

#### **HSCB™ SELF-CAPTIVATING SCREW**

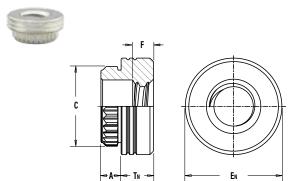






#### All dimensions are in inches

| IED    | Thread<br>Size     | Туре | Thread<br>Code | Length Code "L" ±.015 | Min.<br>Sheet<br>Thickness | Hole Size<br>in Sheet<br>+.003000 | Es<br>±.010 | Hı<br>Ref. | H <sub>2</sub><br>Ref. | Ts<br>Min. | Screw<br>Factor<br>(SF) | Driver<br>Size | Min. Dist<br>Hole <b>©</b><br>To Edge |
|--------|--------------------|------|----------------|-----------------------|----------------------------|-----------------------------------|-------------|------------|------------------------|------------|-------------------------|----------------|---------------------------------------|
| N<br>H | .112-40<br>(#4-40) | HSCB | 440            | 4                     | .040                       | .112                              | .312        | .300       | .470                   | .130       | .170                    | #1             | .156                                  |
|        | .138-32<br>(#6-32) | HSCB | 632            | 4                     | .040                       | .138                              | .352        | .300       | .470                   | .130       | .170                    | #2             | .178                                  |


#### All dimensions are in millimeters.

|   | TRIC | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Length Code "L" ±0.4<br>8.13 | Min.<br>Sheet<br>Thickness | Hole Size<br>in Sheet<br>+0.08 | Es<br>±0.25 | Hı<br>Ref. | H <sub>2</sub><br>Ref. | Ts<br>Min. | Screw<br>Factor<br>(SF) | Driver<br>Size | Min. Dist<br>Hole <b>©</b><br>To Edge |
|---|------|---------------------------|------|----------------|------------------------------|----------------------------|--------------------------------|-------------|------------|------------------------|------------|-------------------------|----------------|---------------------------------------|
| ı | ME   | M3 x 0.5                  | HSCB | М3             | 3                            | 1                          | 3                              | 8.18        | 7.67       | 12                     | 3.3        | 4.32                    | #1             | 4.13                                  |

NOTE: HSCB screws, HSR nuts and HSL springs are sold separately.

- (1) As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.
- (2) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.

#### HSR™ BROACHING NUT/STANDOFF



HSR nuts are available for techsupport@pemnet.com.

surface mounting. Contact our PEM technical support group at

Threads: Internal, ASME B1.1, 2B / ASME B1.13M, 6H Material: Carbon steel Finish: ET - Electro-plated tin ASTM B 545, class B with clear preservative coating, annealed (1) For use in sheet hardness: HRB 60 / HB 107 or less (2)

PART NUMBER DESIGNATION

**HSR** 440 EΤ Thread Length Finish Type Size Code Code

#### Installation Data page 177. Performance Data page 182.

#### All dimensions are in inches.

| E D | Thread<br>Size | Туре  | Thread<br>Code | Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | C<br>±.003 | En<br>±.005 | F<br>±.010 | Tn<br>±.005 | Nut<br>Factor<br>(NF) | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|-----|----------------|-------|----------------|----------------|----------------------|----------------------------|-----------------------------------|------------|-------------|------------|-------------|-----------------------|----------------------------------------|
| 正   | .112-40        | HSR   | 440            | 2              | .060                 | .060                       | .166                              | .184       | .219        | .060       | .065        | .000                  | 0.17                                   |
| Ξ   | (#4-40)        | 11511 | 770            | 3              | .000                 | .000                       | .100                              | .104       | .213        | .000       | .093        | .031                  | 0.17                                   |
|     | .138-32        | HSR   | 632            | 2              | .060                 | .060                       | .213                              | .231       | .281        | .060       | .065        | .000                  | 0.22                                   |
|     | (#6-32)        | поп   | 032            | 3              | .000                 | .000                       | .213                              | ،۷۵۱       | .201        | .000       | .093        | .031                  | U.ZZ                                   |

#### All dimensions are in millimeters.

| TRIC | Thread<br>Size x<br>Pitch | Туре  | Thread<br>Code | Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>±0.08 | En<br>±0.13 | F<br>±0.25 | Tn<br>±0.13 | Nut<br>Factor<br>(NF) | Min. Dist.<br>Hole <b>©</b><br>To Edge |
|------|---------------------------|-------|----------------|----------------|----------------------|----------------------------|--------------------------------|------------|-------------|------------|-------------|-----------------------|----------------------------------------|
| ] E  | M3 x 0.5                  | HSR   | M3             | 2              | 1.53                 | 1.53                       | 4.22                           | 4.68       | 5.56        | 13         | 2           | .75                   | 4.4                                    |
| Σ    | INIO Y O'O                | 11311 | CIVI           | 3              | 1,33                 | 1,00                       | 7,22                           | 7,00       | 5,50        | ııo        | 3           | 1.75                  | 7.4                                    |

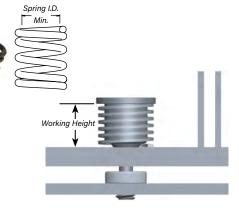
NOTE: HSCB screws, HSR nuts and HSL springs are sold separately.

- (1) See PEM Technical Support section of our website (www.pemnet.com) for related plating standards and specifications.
- (2) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.

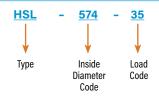
#### **HSL™ SPRINGS**

HSL springs are engineered to provide a reliable and repeatable spring rate when assembled with mating PEM hardware. The spring rate is critical to the successful assembly of your heat sink. Clamp load will be determined by the spring rate and deflection that is designed into the joint.

| Part       |       | mum<br>e Dia. |        | d at<br>eight ±10% |       | king<br>nt Ref. | Spring<br>I | g Rate<br>k | Spring                                  |
|------------|-------|---------------|--------|--------------------|-------|-----------------|-------------|-------------|-----------------------------------------|
| Number     | (in.) | (mm)          | (lbs.) | (N)                | (in.) | (mm)            | (lb/in)     | (N/mm)      | Material                                |
| HSL-574-35 | .226  | 5.74          | 7.87   | 35                 | .270  | 6.86            | 74          | 12.96       | 17-7 Stainless Steel,<br>Natural Finish |
| HSL-701-35 | .276  | 7.01          | 7.87   | 35                 | .270  | 6.86            | 39          | 6.84        | 17-7 Stainless Steel,<br>Natural Finish |


NOTE: HSCB screws, HSR nuts and HSL springs are sold separately. HSL-574-35 spring fits screw thread sizes #4-40 and M3 and HSL-701-35 spring fits screw thread size #6-32.

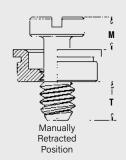
The HSL Inside Diameter Code is expressed in hundredths of millimeters. Example "574" indicates a minimum inside diameter of 5.74mm or .226".


The HSL Load Code is expressed in Newtons developed at the working height of the spring once the joint is assembled.

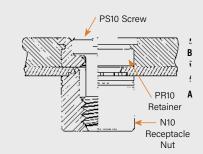
Example "35" indicates working load of 35 Newtons, or approximately 8 lbs.

For designs requiring a specific spring rate, contact our PEM Technical Support group at techsupport@pemnet.com




#### PART NUMBER DESIGNATION





#### PEM® PF10™ FLUSH-MOUNTED CAPTIVE PANEL SCREWS

- PF10 assembly sits flush in sheets as thin as .050" / 1.27 mm or flush on both sides in .125" / 3.2 mm sheets
- PS10 screw remains captive in retainer when disengaged
- PR10 retainer and F10 receptacle nut is for use in sheets of HRB 70 or less
- N10 nut is for use in sheets of HRB 80 or less
- Complies with UL 60950 standards









Installation Data page 178. Performance Data page 183.

#### All dimensions are in inches.

| HED   | A<br>Min. | B<br>Nom. | G<br>± .010 | M   | P   | T<br>Nom. |
|-------|-----------|-----------|-------------|-----|-----|-----------|
| UNIFI | .04       | .125      | .40         | .16 | .28 | .13       |

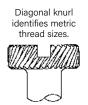
#### All dimensions are in millimeters.

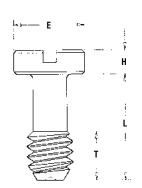
|   | RIC | A<br>Min. | B<br>Nom. | G<br>± 0.25 | M    | P    | T<br>Nom. |
|---|-----|-----------|-----------|-------------|------|------|-----------|
| l | MET | 1         | 3.18      | 10.16       | 4.06 | 7.11 | 3.3       |

#### Flush Fasteners as retainers



For applications where the screw head may project above the sheet surface, PS10 screws may be used with PEMSERT® F fasteners as retainers. For dimensions and engineering data on F fasteners, see PEM Bulletin F.


#### **Floating Receptacle Nuts**

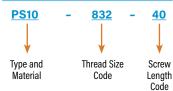



Available on special order F10 self-clinching floating receptacle nuts permit a minimum of .015"/0.38mm adjustment for mating hole misalignment.

#### **PS10™ FLUSH MOUNTED SCREWS**







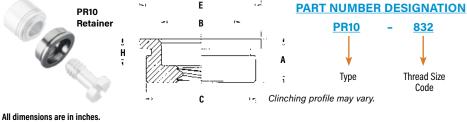

Threads:
External, ASME B1.1, 2A / ASME B1.13M, 6g

Material:
300 Series Stainless Steel

Finish:
Passivated and/or tested per ASTM A380

#### PART NUMBER DESIGNATION




#### All dimensions are in inches.

|       | Thread<br>Size      | Туре | Thread<br>Code | Screw<br>Length<br>Code | E<br>Nom. | H<br>+ .002<br>006 | L<br>± .010 | T<br>Nom. |
|-------|---------------------|------|----------------|-------------------------|-----------|--------------------|-------------|-----------|
| E D   | .112-40<br>(#4-40)  | PS10 | 440            | 40                      | .18       | .075               | .33         | .13       |
| UNIFI | .138-32<br>(#6-32)  | PS10 | 632            | 40                      | .21       | .075               | .33         | .13       |
| n     | .164-32<br>(#8-32)  | PS10 | 832            | 40                      | .25       | .075               | .33         | .13       |
|       | .190-32<br>(#10-32) | PS10 | 032            | 40                      | .28       | .075               | .33         | .13       |

All dimensions are in millimeters.

| ပ   | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Screw<br>Length<br>Code | E<br>Nom. | H<br>+ 0.05<br>- 0.15 | L<br>± 0.25 | T<br>Nom. |
|-----|---------------------------|------|----------------|-------------------------|-----------|-----------------------|-------------|-----------|
| TRI | M3 x 0.5                  | PS10 | М3             | 40                      | 4.7       | 1.91                  | 8.38        | 3.3       |
| ME  | M4 x 0.7                  | PS10 | M4             | 40                      | 6.3       | 1.91                  | 8.38        | 3.3       |
|     | M5 x 0.8                  | PS10 | M5             | 40                      | 7.1       | 1.91                  | 8.38        | 3.3       |

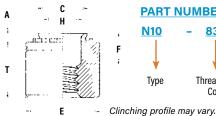
#### PR10™ SELF-CLINCHING FLUSH-MOUNTED RETAINERS



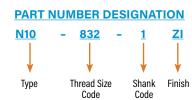
Threads: Internal, ASME B1.1, 2B / ASME B1.13M, 6H (1) 300 Series Stainless Steel Passivated and/or tested per ASTM A380 For use in sheet hardness:

HRB 70 or less (Hardness Rockwell "B" Scale)

HB 125 or less (Hardness Brinell)


|       | Thread<br>Size      | Туре | Thread<br>Code | A<br>(Shank)<br>Max. | Min. Sheet<br>for Self-<br>Clinching | Min. Sheet<br>for Flush<br>Installation | Hole Size<br>in Sheet<br>+ .003<br>000 | B<br>Nom. | C<br>Max. | E<br>Nom. | H<br>Nom. | Min. Dist.<br>Hole <b>&amp;</b><br>to Edge |
|-------|---------------------|------|----------------|----------------------|--------------------------------------|-----------------------------------------|----------------------------------------|-----------|-----------|-----------|-----------|--------------------------------------------|
| I E D | .112-40<br>(#4-40)  | PR10 | 440            | .125                 | .050                                 | .125                                    | .281                                   | .195      | .280      | .31       | .075      | .31                                        |
| I N O | .138-32<br>(#6-32)  | PR10 | 632            | .125                 | .050                                 | .125                                    | .312                                   | .225      | .311      | .34       | .075      | .33                                        |
|       | .164-32<br>(#8-32)  | PR10 | 832            | .125                 | .050                                 | .125                                    | .344                                   | .255      | .343      | .37       | .075      | .34                                        |
|       | .190-32<br>(#10-32) | PR10 | 032            | .125                 | .050                                 | .125                                    | .375                                   | .290      | .374      | .41       | .075      | .36                                        |

#### All dimensions are in millimeters.


| RIC | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | A<br>(Shank)<br>Max. | Min. Sheet<br>for Self-<br>Clinching | Min. Sheet<br>for Flush<br>Installation | Hole Size<br>in Sheet<br>+ 0.08 | B<br>Nom. | C<br>Max. | E<br>Nom. | H<br>Nom. | Min. Dist.<br>Hole <b>⊈</b><br>to Edge |
|-----|---------------------------|------|----------------|----------------------|--------------------------------------|-----------------------------------------|---------------------------------|-----------|-----------|-----------|-----------|----------------------------------------|
|     | M3 x 0.5                  | PR10 | M3             | 3.18                 | 1.27                                 | 3.18                                    | 7.14                            | 4.75      | 7.12      | 7.87      | 1.91      | 7.87                                   |
| Ξ   | M4 x 0.7                  | PR10 | M4             | 3.18                 | 1.27                                 | 3.18                                    | 8.74                            | 6.48      | 8.72      | 9.53      | 1.91      | 8.64                                   |
|     | M5 x 0.8                  | PR10 | M5             | 3.18                 | 1.27                                 | 3.18                                    | 9.53                            | 7.37      | 9.5       | 10.41     | 1.91      | 9.14                                   |

#### N10™ SELF-CLINCHING RECEPTACLE NUTS(3)





F



Threads:

Internal, ASME B1.1, 2B / ASME B1.13M, 6H  $^{(2)}$ 

Material:

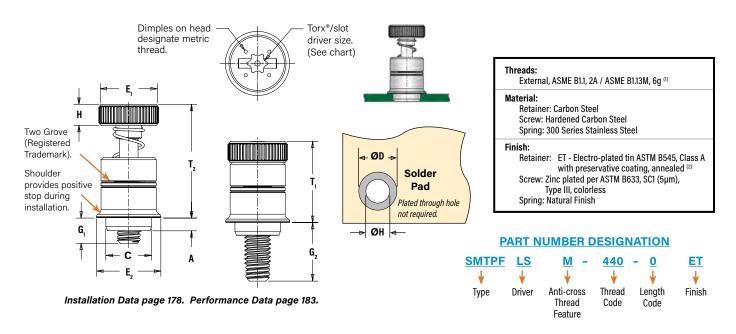
**Hardened Carbon Steel** 

Zinc plated per ASTM B633, SC1 (5µm), Type III, colorless

For use in sheet hardness:

HRB 80 or less (Hardness Rockwell "B" Scale) HB 150 or less (Hardness Brinell)

All dimensions are in inches.


|        | Thread<br>Size      | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ .003<br>000 | C<br>Max. | E<br>Nom. | F<br>± .010 | H<br>Nom. | T<br>± .005 | Min. Dist.<br>Hole <b>©</b><br>To Edge |
|--------|---------------------|------|----------------|---------------|----------------------|----------------------------|----------------------------------------|-----------|-----------|-------------|-----------|-------------|----------------------------------------|
| FD     | .112-40<br>(#4-40)  | N10  | 440            | 1             | .038                 | .040                       | .187                                   | .186      | .28       | .130        | .126      | .24         | .22                                    |
| Ц<br>2 | .138-32<br>(#6-32)  | N10  | 632            | 1             | .038                 | .040                       | .213                                   | .212      | .31       | .130        | .156      | .24         | .27                                    |
|        | .164-32<br>(#8-32)  | N10  | 832            | 1             | .038                 | .040                       | .250                                   | .249      | .34       | .130        | .187      | .24         | .28                                    |
|        | .190-32<br>(#10-32) | N10  | 032            | 1             | .038                 | .040                       | .277                                   | .276      | .37       | .130        | .213      | .24         | .31                                    |

|   | RIC | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ 0.08 | C<br>Max. | E<br>Nom. | F<br>± 0.25 | H<br>Nom. | T<br>± 0.13 | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|---|-----|---------------------------|------|----------------|---------------|----------------------|----------------------------|---------------------------------|-----------|-----------|-------------|-----------|-------------|----------------------------------------|
|   | ⊢   | M3 x 0.5                  | N10  | M3             | 1             | 0.97                 | 1                          | 4.75                            | 4.73      | 7.11      | 3.3         | 3.2       | 6           | 5.59                                   |
|   | M   | M4 x 0.7                  | N10  | M4             | 1             | 0.97                 | 1                          | 6.35                            | 6.33      | 8.64      | 3.3         | 4.75      | 6           | 7.11                                   |
| ı |     | M5 x 0.8                  | N10  | M5             | 1             | 0.97                 | 1                          | 7.04                            | 7.01      | 9.53      | 3.3         | 5.41      | 6           | 7.87                                   |

- (1) The purpose of the thread is for component screw retention only, thread may not accept 2B/6H Go threaded plug gage, but class 3A/4h screw must pass with finger torque, may not reject NoGo threaded plug gage and minor diameter may exceed 2B/6H maximum.
- (2) 2B (unified) and 6H (metric) go gauge may stop at pilot end but class 3A (unified) and 4h (metric) screws will pass through with finger torque.
- (3) Also available on special order F10 self-clinching floating receptacle nuts.

#### REELFAST® SMTPFLSM™ SURFACE MOUNT CAPTIVE PANEL SCREWS

- All metal captive screw assembly installs in one piece utilizing pick and place method
- Combination drive, Torx®/slot
- Solderable finish



#### All dimensions are in inches.

| 4 4 | 4 | Thread<br>Size     | Туре     | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | C<br>Max. | E <sub>1</sub><br>±.010 | E <sub>2</sub><br>Nom | G,<br>±.025  | G <sub>2</sub><br>±.025 | H<br>±.010 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | ØK Hole Size<br>in Sheet<br>+.003000 | ØD Min.<br>Solder<br>Pad | Driver<br>Size |
|-----|---|--------------------|----------|----------------|-------------------------|----------------------|----------------------------|-----------|-------------------------|-----------------------|--------------|-------------------------|------------|------------------------|------------------------|--------------------------------------|--------------------------|----------------|
| -   |   | .112-40<br>(#4-40) | SMTPFLSM | 440            | 0                       | .063                 | .063                       | .215      | .280                    | .300                  | .040<br>.100 | .210<br>.270            | .100       | .38                    | .55                    | .220                                 | .340                     | T15            |
| =   |   | .138-32 (#6-32)    | SMTPFLSM | 632            | 0                       | .063                 | .063                       | .247      | .310                    | .320                  | .040         | .240                    | .100       | .42                    | .62                    | .252                                 | .400                     | T15            |

#### All dimensions are in millimeters.

| RIC | Thread<br>Size | Туре       | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | C<br>Max. | E <sub>1</sub><br>±0.25 | E <sub>2</sub><br>Nom | G <sub>1</sub><br>±0.64 | G <sub>2</sub><br>±0.64 | H<br>±0.25 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | ØK Hole Size<br>in Sheet<br>+0.08 | ØD Min.<br>Solder<br>Pad | Driver<br>Size |
|-----|----------------|------------|----------------|-------------------------|----------------------|----------------------------|-----------|-------------------------|-----------------------|-------------------------|-------------------------|------------|------------------------|------------------------|-----------------------------------|--------------------------|----------------|
| F   | M3 x 0.5       | SMTPFLSM   | M3             | 0                       | 1.6                  | 1.6                        | 5.46      | 7                       | 76                    | 1                       | 5.3                     | 2,5        | 9.6                    | 14                     | 5.6                               | 9.6                      | T15            |
| ш   | INIO Y O'O     | SWITTLESWI | IVIO           | 1                       | 1.0                  | 1.0                        | 3.40      | ,                       | 1.0                   | 2.5                     | 6.8                     | 2.0        | 3.0                    | 14                     | 5.0                               | 0.0                      | 113            |
| Σ   | M3.5 x 0.6     | SMTPFLSM   | M3.5           | 0                       | 1.6                  | 1,6                        | 6.27      | 7.9                     | 8.13                  | 1                       | 6.1                     | 2,5        | 10.7                   | 15.7                   | 6.4                               | 10.2                     | T15            |
|     | INIO'O V O'O   | SWITTLESWI | INIO           | 1                       | 1.0                  | 0                          | 0.2.      |                         | 00                    | 2.5                     | 7.62                    | 2.10       | 1011                   | 10                     | · · ·                             |                          |                |

#### **NUMBER OF PARTS PER REEL**

| Thread Size | Parts Per Reel |
|-------------|----------------|
| 440         | 200            |
| 632         | 150            |
| M3          | 200            |
| M3.5        | 150            |

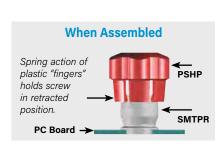


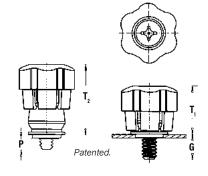
Packaged on 330 mm recyclable reels. Tape width is 24 mm.
Supplied with polyimide patch for vacuum pick up. Reels conform to EIA-481.

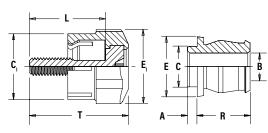
<sup>(1)</sup> As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2

<sup>(2)</sup> Optimal solderability life noted on packaging.

#### REELFAST® SMTPF™ SURFACE MOUNT **CAPTIVE PANEL SCREWS**


- Retainer installed using conventional surface mount techniques
- Simply snap screw into retainer to complete assembly
- Black ABS knob standard
- Optional molded-through colors available
- Available with Torx® recess


Threads: External, ASME B1.1, 2A / ASME B1.13M, 6g (1) Material: Knob: ABS (2) Retainer: Carbon Steel Screw: Carbon Steel


Retainer: ET - Electro-plated tin ASTM B545, Class A

with preservative coating, annealed

Screw: CN - Bright nickel over copper flash per ASTM B689, Type II







Installation Data page 179. Performance Data page 183.

#### All dimensions are in inches.

|       |                    | Scre | w Part Nur     | nber                    |                            |              | Assem       | bly Dimens             | ions                   |                          |                         | Screw Dir   | nensions     |              |                      | R                       | etainer Di | mensions  |           |            |
|-------|--------------------|------|----------------|-------------------------|----------------------------|--------------|-------------|------------------------|------------------------|--------------------------|-------------------------|-------------|--------------|--------------|----------------------|-------------------------|------------|-----------|-----------|------------|
| I E D | Thread<br>Size     | Туре | Thread<br>Code | Screw<br>Length<br>Code | Retainer<br>Part<br>Number | G<br>± .025  | P<br>± .025 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | Total<br>Radial<br>Float | C <sub>1</sub><br>±.010 | E,<br>±.010 | L<br>±.015   | T<br>Nom.    | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thick. | B<br>±.003 | C<br>Max. | E<br>Nom. | R<br>±.005 |
| UNIF  | .112-40<br>(#4-40) | PSHP | 440            | 0                       | SMTPR-6-1                  | .188<br>.248 | .000        | .478                   | .646                   | .015                     | .440                    | .542        | .510<br>.570 | .663<br>.723 | .060                 | .060                    | .167       | .249      | .375      | .325       |
|       | .138-32<br>(#6-32) | PSHP | 632            | 0                       | SMTPR-6-1                  | .188         | .000        | .478                   | .646                   | .020                     | .440                    | .542        | .510<br>.570 | .663<br>.723 | .060                 | .060                    | .167       | .249      | .375      | .325       |

#### All dimensions are in millimeters.

|     |                           | Scre  | w Part Nur     | nber                    |                            |             | Assemb      | ly Dimensi             | ons                    |                          |                         | Screw Dir   | nensions   |           |                      | Re                      | etainer Din | nensions  |           |            |
|-----|---------------------------|-------|----------------|-------------------------|----------------------------|-------------|-------------|------------------------|------------------------|--------------------------|-------------------------|-------------|------------|-----------|----------------------|-------------------------|-------------|-----------|-----------|------------|
| RIC | Thread<br>Size x<br>Pitch | Туре  | Thread<br>Code | Screw<br>Length<br>Code | Retainer<br>Part<br>Number | G<br>± 0.64 | P<br>± 0.64 | T <sub>1</sub><br>Nom. | T <sub>2</sub><br>Nom. | Total<br>Radial<br>Float | C <sub>1</sub><br>±0.25 | E,<br>±0.25 | L<br>±0.38 | T<br>Nom. | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thick. | B<br>±0.08  | C<br>Max. | E<br>Nom. | R<br>±0.13 |
|     | Mayor                     | DCLID | M3             | 0                       | SMTPR-6-1                  | 4.78        | 0           | 12,14                  | 16 41                  | 20                       | 11.10                   | 13.77       | 12.95      | 16.84     | 152                  | 1.53                    | 4.24        | 6 22      | 0.53      | 0.06       |
| Ξ   | M3 x 0.5                  | PSHP  | IVIO           | 1                       | SWITH-0-I                  | 6.3         | .66         | 12.14                  | 16.41                  | .38                      | 11.18                   | 13.77       | 14.48      | 18.36     | 1.53                 | 1.33                    | 4.24        | 6.33      | 9.53      | 8.26       |
|     | M3.5 x 0.6                | PSHP  | M3.5           | 0                       | SMTPR-6-1                  | 4.78        | 0           | 12,14                  | 16,41                  | .51                      | 11,18                   | 13.77       | 12.95      | 16.84     | 1.53                 | 1.53                    | 4.24        | 6.33      | 9.53      | 8.26       |
|     | MO'O X O'O                | гэпг  | IVIO.0         | 1                       | SWIFT-U-I                  | 6.3         | .66         | 12.14                  | 10.41                  | ıG.                      | 11.10                   | 13.77       | 14.48      | 18.36     | 1,33                 | 1.00                    | 4.24        | 0.33      | 3.00      | 0.20       |

RETAINER - Packaged on 330 mm recyclable reels of 400 pieces. Tape width is 24 mm. Supplied with Kapton® patch for vacuum pick up. Reels conform to EIA-481. SCREW - Packaged in bags. Retainers and screws are sold separately.

#### PART NUMBER DESIGNATION FOR SCREW

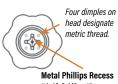


#### **COLOR CAPABILITIES FOR TYPE PSHP SCREW**

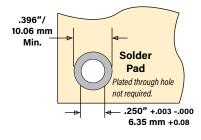
The colors shown here (codes #002 thru #007) are non-stocked standards and available on special order. Since actual cap colors may vary slightly from those shown here, we recommend that you request samples for color verification. If you require a custom color or you need a "color matched" cap, please contact us.



Non-flammable UL 94-V0 plastic caps are available on special order.


- (1) As with all Class 2A/6g external threads with an additive finish, the maximum major and pitch, after plating, may equal basic sizes and be gauged to Class 3A/4h, per ANSI B1.1, Section 8, Table 3A and ANSI B1.13M, Section 8, Paragraph 8.2.
- (2) See PEM Technical Support section of our website (www.pemnet.com) for related plating standards and specifications.

#### PART NUMBER DESIGNATION FOR RETAINER





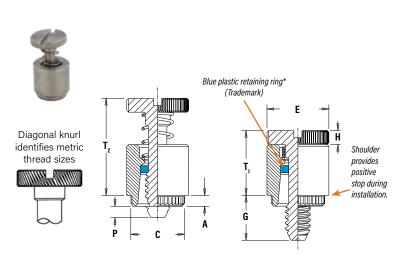

recess on special order.



#4-40 & M3 = #1 #6-32 & M3.5 = #2



#### Stencil Masking Examples








#### PFK™ BROACHING CAPTIVE PANEL SCREWS

- For permanent and reliable installation in PC boards
- Screw assemblies remain captive for easy mounting and removal



#### Installation Data page 177. Performance Data page 185.

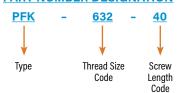
#### Threads:

External, ASME B1.1, 2A / ASME B1.13M, 6g

#### Material:

Retainer: 300 Series Stainless Steel Screw: 300 Series Stainless Steel Spring: 300 Series Stainless Steel

Retaining Ring: Nylon, temperature limit 200° F / 93° C


#### Finish:

Retainer: Passivated and/or tested per ASTM A380 Screw: Passivated and/or tested per ASTM A380

Spring: Natural Finish

For use in: PC Boards

#### **PART NUMBER DESIGNATION**



#### All dimensions are in inches.

| D    | Thread<br>Size     | Туре | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | C<br>±.003 | E<br>±.010 | G<br>± .016          | H<br>± .005 | P<br>± .025          | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Nom. | Min. Dist.<br>Hole <b>⊄</b><br>To Edge |
|------|--------------------|------|----------------|-------------------------|----------------------|----------------------------|-----------------------------------|------------|------------|----------------------|-------------|----------------------|------------------------|------------------------|----------------------------------------|
| IFIE | .112-40<br>(#4-40) | PFK  | 440            | 40<br>62<br>84          | .060                 | .060                       | .265                              | .283       | .312       | .250<br>.375<br>.500 | .072        | .000<br>.125<br>.250 | .36                    | .54                    | .20                                    |
| N D  | .138-32<br>(#6-32) | PFK  | 632            | 40<br>62<br>84          | .060                 | .060                       | .281                              | .299       | .344       | .250<br>.375<br>.500 | .072        | .000<br>.125<br>.250 | .36                    | .54                    | .26                                    |

| RIC | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>± 0.08 | E<br>±.25 | G<br>± 0.4         | H<br>± 0.13 | P<br>± 0.64     | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Nom. | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|-----|---------------------------|------|----------------|-------------------------|----------------------|----------------------------|--------------------------------|-------------|-----------|--------------------|-------------|-----------------|------------------------|------------------------|----------------------------------------|
| MET | M3 x 0.5                  | PFK  | М3             | 40<br>62<br>84          | 1.53                 | 1.53                       | 6.73                           | 7.19        | 7.92      | 6.4<br>9.5<br>12.7 | 1.83        | 0<br>3.2<br>6.4 | 9.14                   | 13.72                  | 5.08                                   |

#### **VALUE-ADDED CAPABILITIES**

#### **ATCA Solutions**



Use PF11PM captive panel screw and TPXS pin in conjunction to satisfy the requirements of the PICMG 3.0 of the Advanced TCA®.

#### **Tight Seal Solutions**



Consider adding an o-ring to our PEM C.A.P.S.® captive panel screw. When fastened, it provides a tight seal above the panel.

#### **Nylon Locking Patch**



Nylon locking patch is available to be added to any of PEM captive panel screws for applications requiring a locking element.

#### **Thread-forming Opportunity**

PennEngineering is official licensee for REMFORM®, TAPTITE®, PT®, and DELTA PT® fastener products.

REMFORM® and TAPTITE® are trademarks of REMINC®. PT® and DELTA PT® are trademarks of EJOT®.

#### MAThread® Anti Cross-thread Technology

PennEngineering is a licensee of MAThread® Anti Cross-Threading Technology. This unique design allows the threads to self-align and drive easily with reduced effort. This helps speed assembly, reduce or eliminate failures, repairs, scrap, downtime, and warranty service associated with thread damage. This option is available on most types of PEM captive panel screws.



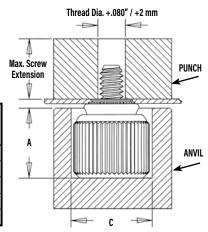
Anti Cross-Thread Feature

MAThread® is a registered trademark of MAThread inc.

#### **CAPTIVE PANEL SCREW INSTALLATION**

#### **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® machine for installation of PEM® self-clinching fasteners.
   Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.


#### PF11™/PF12™/PF15™/PF11M™/PF12M™/PF15M™/PEM C.A.P.S.® FASTENERS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- **2.** Place fastener into recessed anvil, and place workpiece (preferably the punch side) over shank of fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

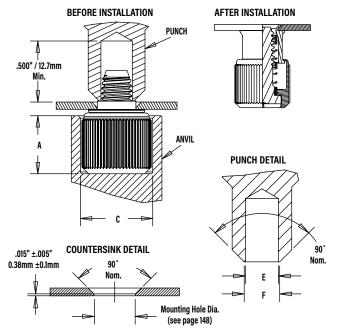
#### PEMSERTER® Installation Tooling(1)

|     |                | Anvil Dime | nsions (in.) |                      |                      |
|-----|----------------|------------|--------------|----------------------|----------------------|
| Q   | Thread<br>Code | A<br>±.002 | C<br>±.002   | Anvil Part<br>Number | Punch Part<br>Number |
| =   | 440            | .260       | .437         | 8003521              | 8003518              |
| NIF | 632            | .390       | .468         | 8003522              | 8003519              |
| 5   | 832            | .390       | .531         | 8003523              | 8003520              |
|     | 032            | .390       | .531         | 8003523              | 8004350              |
|     | 0420           | .480       | .598         | 8004351              | 8004352              |

|      |                | Anvil Dimen | sions (mm) |                      |                      |
|------|----------------|-------------|------------|----------------------|----------------------|
| ပ    | Thread<br>Code | A<br>±0.05  | C<br>±0.05 | Anvil Part<br>Number | Punch Part<br>Number |
| TRIC | М3             | 6.6         | 11.1       | 8003521              | 8003518              |
| ЕТ   | M3.5           | 9.91        | 11.89      | 8003522              | 8003519              |
| Σ    | M4             | 9.91        | 13.49      | 8003523              | 8003520              |
|      | M5             | 9.91        | 13.49      | 8003523              | 8004350              |
|      | M6             | 12.19       | 15.19      | 8004351              | 8004352              |

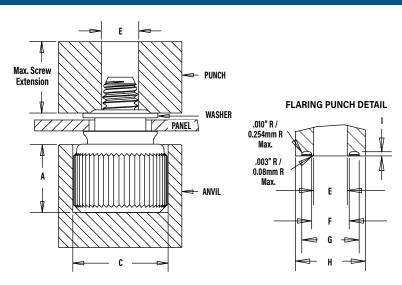


(1) Punches and anvils should be hardened.


#### **PF11MF™/PF12MF™ FASTENERS** (flare-mount installation)

- 1. Prepare properly sized mounting hole in sheet with countersink.
- 2. Place fastener into recessed anvil, and place workpiece over shank of fastener.
- **3.** With installation punch and anvil surfaces parallel, apply squeezing force to flare the retainer of the fastener.

#### PEMSERTER® Installation Tooling(1)


|        |                | Anvil Dime | nsions (in.) | Punch Dime    | ensions (in.) |                   |                   |
|--------|----------------|------------|--------------|---------------|---------------|-------------------|-------------------|
| D      | Thread<br>Code | A<br>±.002 | C<br>±.002   | E<br>+.003000 | F<br>±.002    | Anvil<br>Part No. | Punch<br>Part No. |
| =      | 440            | .260       | .437         | .123          | .133          | 8003521           | 8013670           |
| H      | 632            | .390       | .468         | .143          | .156          | 8003522           | 8013671           |
| N<br>D | 832            | .390       | .531         | .202          | .210          | 8003523           | 8013672           |
|        | 032            | .390       | .531         | .202          | .210          | 8003523           | 8013672           |
|        | 0420           | .480       | .598         | .255          | .264          | 8004351           | 8013674           |

|        |                | Anvil Dimer | nsions (mm) | Punch Dime | nsions (mm) |                   |                   |
|--------|----------------|-------------|-------------|------------|-------------|-------------------|-------------------|
| 2      | Thread<br>Code | A<br>±0.05  | C<br>±0.05  | E<br>+0.08 | F<br>±0.05  | Anvil<br>Part No. | Punch<br>Part No. |
| T B    | M3             | 6.6         | 11.1        | 3.12       | 3.38        | 8003521           | 8013670           |
| Ξ<br>E | M4             | 9.91        | 13.49       | 5.13       | 5.33        | 8003523           | 8013672           |
| _      | M5             | 9.91        | 13.49       | 5.13       | 5.33        | 8003523           | 8013672           |
|        | M6             | 12.19       | 15.19       | 6.48       | 6.71        | 8004351           | 8013674           |



#### PF11MW™/PF12MW™ FASTENERS

- 1. Prepare properly sized mounting hole in sheet.
- 2. Place fastener into recessed anvil, place workpiece over shank of fastener, then place the washer over the shank of the fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force with flaring punch.

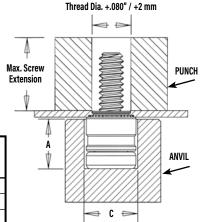


#### PEMSERTER® Installation Tooling(1)

|        |                | Anvil Dime | nsions (in.) |               | P          | unch Dimensions (in. | )         |            |                   |                   |
|--------|----------------|------------|--------------|---------------|------------|----------------------|-----------|------------|-------------------|-------------------|
| ٥      | Thread<br>Code | A<br>±.002 | C<br>±.001   | E<br>+.003000 | F<br>±.001 | G<br>±.003           | H<br>Min. | l<br>±.004 | Anvil<br>Part No. | Punch<br>Part No. |
| ш<br>Ш | 440            | .260       | .437         | .120          | .135       | .204                 | .250      | .015       | 8003521           | 8014304           |
| Ž      | 632            | .390       | .468         | .140          | .159       | .249                 | .300      | .015       | 8003522           | 8014305           |
| 5      | 832            | .390       | .531         | .201          | .217       | .340                 | .400      | .028       | 8003523           | 8014306           |
|        | 032            | .390       | .531         | .201          | .217       | .340                 | .400      | .028       | 8003523           | 8014306           |
|        | 0420           | .480       | .598         | .252          | .271       | .430                 | .500      | .028       | 8004351           | 8014307           |

|    |                | Anvil Dimen | sions (mm) |            | Pt         | ınch Dimensions (mn | 1)        |           |                   |                   |
|----|----------------|-------------|------------|------------|------------|---------------------|-----------|-----------|-------------------|-------------------|
| ပ  | Thread<br>Code | A<br>±0.05  | C<br>±0.03 | E<br>+0.08 | F<br>±0.03 | G<br>±0.08          | H<br>Min. | l<br>±0.1 | Anvil<br>Part No. | Punch<br>Part No. |
| ~  | M3             | 6.6         | 11.1       | 3.05       | 3.43       | 5.18                | 6.35      | .381      | 8003521           | 8014304           |
| ΕT | M3.5           | 9.9         | 11.9       | 3.56       | 4.04       | 6.32                | 7.62      | .381      | 8003522           | 8014305           |
| Σ  | M4             | 9.9         | 13.5       | 5.11       | 5.51       | 8.64                | 10.16     | .711      | 8003523           | 8014306           |
|    | M5             | 9.9         | 13.5       | 5.11       | 5.51       | 8.64                | 10.16     | .711      | 8003523           | 8014306           |
|    | M6             | 12.2        | 15.2       | 6.4        | 6.88       | 10.92               | 12.7      | .711      | 8004351           | 8014307           |

<sup>(1)</sup> Punches and anvils should be hardened.


#### **PFHV™ FASTENERS**

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into recessed anvil, and place workpiece (preferably the punch side) over shank of fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

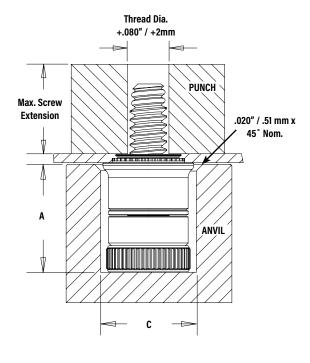
#### PEMSERTER® Installation Tooling(1)

|       |                | Anvil Dime | nsions (in.) |                      |                      |
|-------|----------------|------------|--------------|----------------------|----------------------|
| I E D | Thread<br>Code | A<br>±.002 | C<br>±.002   | Anvil Part<br>Number | Punch Part<br>Number |
| NIFI  | 440            | .220       | .285         | 8004688              | 970200009400         |
| 2     | 632            | .250       | .301         | 8004689              | 8015656              |
|       | 832            | .285       | .332         | 8005439              | 970200230400         |

|     |                | Anvil Dimen | sions (mm) |                      |                      |
|-----|----------------|-------------|------------|----------------------|----------------------|
| RIC | Thread<br>Code | A<br>±0.05  | C<br>±0.05 | Anvil Part<br>Number | Punch Part<br>Number |
| ΕT  | M3             | 5.59        | 7.24       | 8004688              | 970200020400         |
| Σ   | M3.5           | 6.35        | 7.65       | 8004689              | 8015656              |
|     | M4             | 7.24        | 8.43       | 8005439              | 970200230400         |



#### **PF7M™ FASTENERS**


- **1.** Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into recessed anvil, and place workpiece (preferably the punch side) over the shank of fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

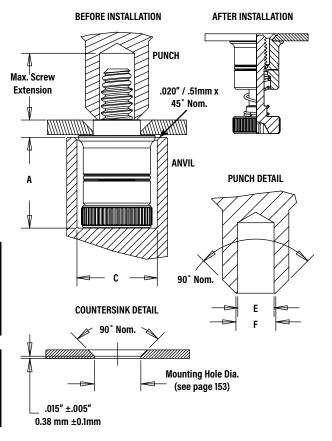
#### PEMSERTER® Installation Tooling(1)

|       | Thread | Anvil Dimer | isions (in.) | Anvil          | Punch          |
|-------|--------|-------------|--------------|----------------|----------------|
| I E D | Code   | A<br>±.002  | C<br>±.002   | Part<br>Number | Part<br>Number |
| =     | 440    | .319        | .290         | 8016175        | 8003518        |
| N     | 632    | .333        | .330         | 8016176        | 8003519        |
|       | 832    | .353        | .385         | 8016177        | 8003520        |

|      | Thread | Anvil Dimensions (mm) |            | Anvil          | Punch          |  |
|------|--------|-----------------------|------------|----------------|----------------|--|
| TRIC | Code   | A<br>±0.05            | C<br>±0.05 | Part<br>Number | Part<br>Number |  |
| . H  | М3     | 8.1                   | 7.34       | 8016175        | 8003518        |  |
| 2    | M4     | 8.9                   | 9.8        | 8016177        | 8003520        |  |

(1) Punches and anvils should be hardened.




#### **PF7MF™ FASTENERS** (flare-mount installation)

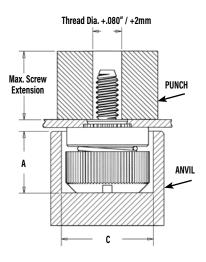
- **1.** Prepare properly sized mounting hole in sheet with countersink. Do not perform any secondary operations such as deburring.
- **2.** Place fastener into recessed anvil, and place workpiece over the shank of fastener.
- **3.** With installation punch and anvil surfaces parallel, apply squeezing force to flare the retainer of the fastener.

#### PEMSERTER® Installation Tooling(1)

|       |                | Anvil Dime | nsions (in.) | Punch Dimensions (in.) |            |                   |                   |
|-------|----------------|------------|--------------|------------------------|------------|-------------------|-------------------|
| 1 E D | Thread<br>Code | A<br>±.002 | C<br>±.002   | E<br>+.003000          | F<br>±.002 | Anvil<br>Part No. | Punch<br>Part No. |
| H N   | 440            | .319       | .290         | .123                   | .133       | 8016175           | 8013670           |
| 5     | 632            | .333       | .330         | .143                   | .156       | 8016176           | 8013671           |
|       | 832            | .353       | .385         | .202                   | .210       | 8016177           | 8013672           |

| 4.   |                | Anvil Dimensions (mm) |            | Punch Dimensions (mm) |            |                   |                   |
|------|----------------|-----------------------|------------|-----------------------|------------|-------------------|-------------------|
| TRIC | Thread<br>Code | A<br>±0.05            | C<br>±0.05 | E<br>+0.08            | F<br>±0.05 | Anvil<br>Part No. | Punch<br>Part No. |
| Ξ    | М3             | 8.1                   | 7.34       | 3.12                  | 3.38       | 8016175           | 8013670           |
| _    | M4             | 8.9                   | 9.8        | 5.13                  | 5.33       | 8016177           | 8013672           |




#### PF30™/PF31™/PF32™ FASTENERS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into recessed anvil, and place workpiece (preferably the punch side) over shank of fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

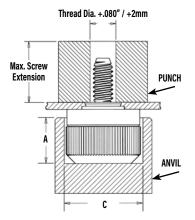
#### PEMSERTER® Installation Tooling(1)

|        |                | Anvil Dime | nsions (in.) |                      |                      |  |
|--------|----------------|------------|--------------|----------------------|----------------------|--|
| Q      | Thread<br>Code | A<br>±.002 | C<br>±.002   | Anvil Part<br>Number | Punch Part<br>Number |  |
| =      | 440            | .295       | .421         | 975201060            | 975200060            |  |
| UNIFIE | 632            | .295       | .453         | 975201061            | 975200061            |  |
| 2      | 832            | .310       | .484         | 975201062            | 975200062            |  |
|        | 032            | .310       | .546         | 975201063            | 975200063            |  |
|        | 0420           | .365       | .640         | 975201064            | 975200064            |  |

|     |                | Anvil Dimen | sions (mm) |                      |                      |
|-----|----------------|-------------|------------|----------------------|----------------------|
| 0   | Thread<br>Code | A<br>±0.05  | C<br>±0.05 | Anvil Part<br>Number | Punch Part<br>Number |
| TRI | M3             | 7.49        | 10.69      | 975201060            | 975200060            |
| N E | M4             | 7.87        | 12.29      | 975201062            | 975200062            |
| =   | M5             | 7.87        | 13.87      | 975201063            | 975200063            |
|     | M6             | 9.27        | 16.26      | 975201064            | 975200064            |
|     | 0              | U.L.I       | .5120      | 3.3201001            | 3.3230001            |



(1) Punches and anvils should be hardened.

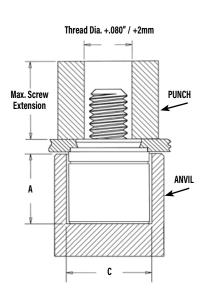

#### PF50™/PF51™/PF52™/PF60™/PF61™/PF62™ FASTENERS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into recessed anvil, and place workpiece (preferably the punch side) over shank of fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

#### PEMSERTER® Installation Tooling(1)

|     |                | Anvil Dime | nsions (in.) |                      |                      |  |
|-----|----------------|------------|--------------|----------------------|----------------------|--|
| Q   | Thread<br>Code | A<br>±.002 | C<br>±.002   | Anvil Part<br>Number | Punch Part<br>Number |  |
| Ξ   | 440            | .295       | .421         | 975201060            | 975200060            |  |
| NIF | 632            | .295       | .453         | 975201061            | 975200061            |  |
|     | 832            | .310       | .484         | 975201062            | 975200062            |  |
|     | 032            | .310       | .546         | 975201063            | 975200063            |  |
|     | 0420           | .365       | .640         | 975201064            | 975200064            |  |

|     |                | Anvil Dimen | sions (mm) |                      |                      |  |
|-----|----------------|-------------|------------|----------------------|----------------------|--|
| ပ   | Thread<br>Code | A<br>±0.05  | C<br>±0.05 | Anvil Part<br>Number | Punch Part<br>Number |  |
| RIC | M3             | 7.49        | 10.69      | 975201060            | 975200060            |  |
| ΕI  | M3.5           | 7.49        | 11.51      | 975201061            | 975200061            |  |
| Σ   | M4             | 7.87        | 12.29      | 975201062            | 975200062            |  |
|     | M5             | 7.87        | 13.87      | 975201063            | 975200063            |  |
|     | M6             | 9.27        | 16.26      | 975201064            | 975200064            |  |




#### **PFC4™ FASTENERS**

- **1.** Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- Place fastener into recessed anvil, and place workpiece (preferably the punch side) over shank of fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

#### **Installation Requirements**

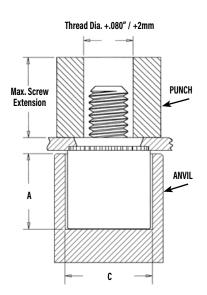
- 1. Sheet hardness must be less than 88 on the Rockwell "B" scale.
- 2. Hole punch should be kept sharp to minimize work hardening around hole.
- 3. Fastener should be installed in punch side of hole.
- **4.** Fastener should not be installed near bends or other highly cold worked areas where sheet hardness may be greater than 88 on the Rockwell "B" scale.



#### PEMSERTER® Installation Tooling(1)

|     |                | Anvil Dimensions (in.) |            |                      |                      |
|-----|----------------|------------------------|------------|----------------------|----------------------|
| E D | Thread<br>Code | A<br>±.002             | C<br>±.002 | Anvil Part<br>Number | Punch Part<br>Number |
| 盂   | 440            | .345                   | .358       | 975200027            | 975200060            |
| Z   | 632            | .345                   | .390       | 975201243            | 975200061            |
| n   | 832            | .435                   | .421       | 975200029            | 975200062            |
|     | 032            | .435                   | .452       | 975201244            | 975200063            |

|     |                | Anvil Dimensions (mm) |            |                      |                      |  |
|-----|----------------|-----------------------|------------|----------------------|----------------------|--|
| RIC | Thread<br>Code | A<br>±0.05            | C<br>±0.05 | Anvil Part<br>Number | Punch Part<br>Number |  |
| Ш   | М3             | 8.76                  | 9.09       | 975200027            | 975200060            |  |
| Σ   | M4             | 11.05                 | 10.69      | 975200029            | 975200062            |  |
|     | M5             | 11.05                 | 11.48      | 975201244            | 975200063            |  |


#### PFC2P™ FASTENERS

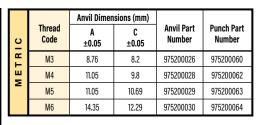
- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into recessed anvil, and place workpiece (preferably the punch side) over shank of fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

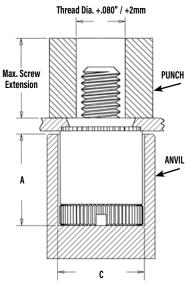
#### PEMSERTER® Installation Tooling(1)

|     |                | Anvil Dimer | nsions (in.) |                      |                      |
|-----|----------------|-------------|--------------|----------------------|----------------------|
| E D | Thread<br>Code | A<br>±.002  | C<br>±.002   | Anvil Part<br>Number | Punch Part<br>Number |
| 표   | 440            | .345        | .323         | 975200026            | 975200060            |
| Z   | 632            | .345        | .358         | 975200027            | 975200061            |
| n   | 832            | .435        | .386         | 975200028            | 975200062            |
|     | 032            | .435        | .421         | 975200029            | 975200063            |

|     |                | Anvil Dimensions (mm) |            | _                    |                      |
|-----|----------------|-----------------------|------------|----------------------|----------------------|
| RIC | Thread<br>Code | A<br>±0.05            | C<br>±0.05 | Anvil Part<br>Number | Punch Part<br>Number |
| ΕI  | M3             | 8.76                  | 8.2        | 975200026            | 975200060            |
| Σ   | M4             | 11.05                 | 9.8        | 975200028            | 975200062            |
|     | M5             | 11.05                 | 10.69      | 975200029            | 975200063            |




<sup>(1)</sup> Punches and anvils should be hardened.


#### PFC2™/PFS2™ FASTENERS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into recessed anvil, and place workpiece (preferably the punch side) over shank of fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

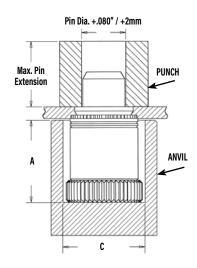
#### PEMSERTER® Installation Tooling(1)

|       |                | Anvil Dime | nsions (in.) |                      |                      |
|-------|----------------|------------|--------------|----------------------|----------------------|
| D     | Thread<br>Code | A<br>±.002 | C<br>±.002   | Anvil Part<br>Number | Punch Part<br>Number |
| =     | 440            | .345       | .323         | 975200026            | 975200060            |
| UNIFI | 632            | .345       | .358         | 975200027            | 975200061            |
|       | 832            | .435       | .386         | 975200028            | 975200062            |
|       | 032            | .435       | .421         | 975200029            | 975200063            |
|       | 0420           | .565       | .484         | 975200030            | 975200064            |





(1) Punches and anvils should be hardened.


#### PTL2™/PSL2™ FASTENERS

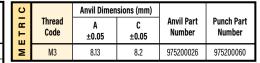
- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into recessed anvil, and place workpiece (preferably the punch side) over shank of fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

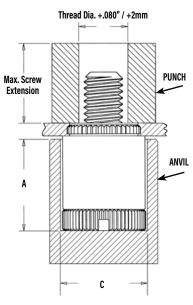
#### PEMSERTER® Installation Tooling(1)

|      |      | Anvil Dime | nsions (in.) |                      |                      |
|------|------|------------|--------------|----------------------|----------------------|
| FIED | Туре | A<br>±.002 | C<br>±.002   | Anvil Part<br>Number | Punch Part<br>Number |
| N    | PTL2 | .580       | .520         | 975201245            | 970200013300         |
| n    | PSL2 | .490       | .520         | 8021146              | 970200013300         |

| ی    |      | Anvil Dimensions (mm) |            |                      |                      |
|------|------|-----------------------|------------|----------------------|----------------------|
| TRIC | Туре | A<br>±0.05            | C<br>±0.05 | Anvil Part<br>Number | Punch Part<br>Number |
| Ξ    | PTL2 | 14.86                 | 13.21      | 975201245            | 970200013300         |
| _    | PSL2 | 12.47                 | 13.21      | 8021146              | 970200013300         |




(1) Punches and anvils should be hardened.


#### PFK™ FASTENERS

- 1. Prepare properly sized mounting hole in board.
- 2. Place fastener into recessed anvil, and place workpiece over shank of fastener.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the board.

#### PEMSERTER® Installation Tooling(1)

| D   |                | Anvil Dime | nsions (in.) |                      |                      |
|-----|----------------|------------|--------------|----------------------|----------------------|
| FIE | Thread<br>Code | A<br>±.002 | C<br>±.002   | Anvil Part<br>Number | Punch Part<br>Number |
| Z   | 440            | .320       | .323         | 975200026            | 975200060            |
|     | 632            | .320       | .358         | 975200027            | 975200061            |





#### **SCBR™ FASTENERS**

- Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring. If the hole is punched, be sure to install fastener into punched side of hole.
- 2. Assemble spring on screw by rotating spring counter clockwise and position assembly into recessed magnetic punch.
- 3. Position hole in workpiece over retractable anvil pin.
- 4. With installation punch and anvil surfaces parallel, apply squeezing force on top of the screw head and the underside of the sheet material. The squeezing action forces the displacer of the screw into the sheet, causing it to reduce the mounting hole diameter and captivate the screw.

# BEFORE Magnetic Punch (1) ANVIL PIN AFTER Magnetic Punch (1) SHEET \*For "L",

Magnetic

Punch (1)

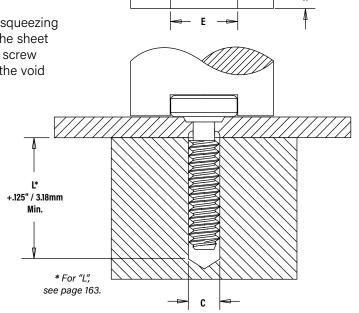
see page 162.

#### PEMSERTER® Installation Tooling(1)

| )    | Thread | Installation | Tooling Dimension | ns (in.)    | Anvil                      | Magnetic Punch |
|------|--------|--------------|-------------------|-------------|----------------------------|----------------|
| E D  | Code   | Code C J K   |                   | Part Number | Part Number <sup>(2)</sup> |                |
| NIFI | 440    | .113116      | .354357           | .035        | 970200048300               | 8016210        |
|      | 632    | .139142      | .387390           | .035        | 970200052300               | 8016211        |
| n    | 832    | .165168      | .416419           | .035        | 970200054300               | 8016212        |

| ၁   | Thread | Thread Installation Tooling Dimensions (mm) |             |      |              | Magnetic Punch             |
|-----|--------|---------------------------------------------|-------------|------|--------------|----------------------------|
| - H | Code   | С                                           | J           | K    | Part Number  | Part Number <sup>(2)</sup> |
| ΕT  | М3     | 3.03 - 3.11                                 | 9.25 - 9.32 | 0.89 | 970200049300 | 8016213                    |
| Σ   | M4     | 4.03 - 4.11                                 | 10.8 - 10.9 | 0.89 | 970200053300 | 8016214                    |

- (1) Punches and anvils should be hardened.
- (2) Pneumatic punch may also be used. Please contact our PEMSERTER tooling division for punch part numbers.


#### SCB™/SCBJ™ FASTENERS

- 1. Prepare properly sized mounting hole in sheet.
- 2. Place the fastener through mounting hole and into anvil. A flat or recessed punch can be used.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force to the top of the screw head and the underside of the sheet material. The squeezing action forces the shoulder of the screw into the sheet, displacing sheet material, causing it to fill the void under the head and shoulder of the screw.

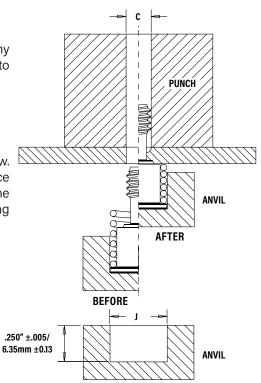


| D       | Thread | Installation Tooling Dimensions (in.) |         |         |  |  |
|---------|--------|---------------------------------------|---------|---------|--|--|
| =       | Code   | С                                     | E       | Н       |  |  |
| UNIFIED | 440    | .113116                               | .270280 | .073074 |  |  |
| D       | 632    | .139142                               | .308318 | .073074 |  |  |

| ပ   | Thread | Installation Tooling Dimensions (mm) |             |             |  |  |
|-----|--------|--------------------------------------|-------------|-------------|--|--|
| RIC | Code   | С                                    | E           | Н           |  |  |
| -   | M3     | 3.03 - 3.11                          | 6.86 - 7.11 | 1.85 - 1.88 |  |  |
| ME  | M4     | 4.03 - 4.11                          | 8.53 - 8.79 | 1.85 - 1.88 |  |  |



#### HSCB™ FASTENER INTO HEAT SINK


- 1. Prepare properly sized mounting hole in heat sink. Do not perform any secondary operations such as deburring. If the hole is punched, be sure to install the fastener into the punch side of the hole.
- 2. Place the head of the screw into the recess of the installation anvil and position assembly into recessed magnetic punch.
- 3. Place the spring over the shoulder of the screw, maintaining concentricity.
- 4. Position the heat sink mounting hole over the screw.
- 5. Bring the heat sink down over the screw and onto the shoulder of the screw.
- 6. With installation punch and anvil surfaces parallel, apply a squeezing force to the heat sink and the head of the screw. The squeezing action forces the displacer of the screw into the heat sink, causing it to reduce the mounting hole diameter and captivate the screw and spring.

#### PEMSERTER® Installation Tooling(1)

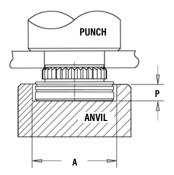
| FIED | Thread Installation Tooling Dime |         | g Dimensions (in.) | Anvil       | Punch        |
|------|----------------------------------|---------|--------------------|-------------|--------------|
| Ξ    | Code                             | С       | J                  | Part Number | Part Number  |
| N    | 440                              | .113116 | .322324            | 8018043     | 970200006300 |
| ٥    | 632                              | .139142 | .362364            | 8018044     | 970200007300 |

| RIC | Thread | Installation Tooling | Dimensions (mm) | Anvil       | Punch        |
|-----|--------|----------------------|-----------------|-------------|--------------|
| Ħ   | Code   | С                    | J               | Part Number | Part Number  |
| MET | M3     | 3.03 - 3.11          | 8.43 - 8.48     | 8018045     | 970200229300 |

(1) Punches and anvils should be hardened.



#### **HSR™ NUT/STANDOFF**

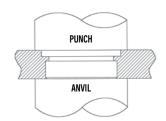

- 1. Prepare properly sized mounting hole in board.
- 2. Place fastener into the anvil hole and place the mounting hole over the shank of the fastener as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until shoulder contacts the board.

#### PEMSERTER® Installation Tooling(1)

| D      |                | Anvil Dimensions (in.) |       |                      |                      |
|--------|----------------|------------------------|-------|----------------------|----------------------|
| NIFIED | Thread<br>Code |                        | P     | Anvil Part<br>Number | Punch Part<br>Number |
| ш      | Code           | А                      | ±.005 | Nulliber             | Nulliber             |
| Z      | HSR-440        | .228231                | .115  | 8023699              | 975200048            |
|        | HSR-632        | .290293                | .115  | 8023701              | 975200048            |

| ၁ -      |                | Anvil Dimensions (mm) |            |                      |                      |
|----------|----------------|-----------------------|------------|----------------------|----------------------|
| <b>₩</b> | Thread<br>Code | A                     | P<br>±0.13 | Anvil Part<br>Number | Punch Part<br>Number |
| Σ        | HSR-M3         | 5.8 - 5.86            | 2.92       | 8023700              | 975200048            |

(1) Punches and anvils should be hardened.



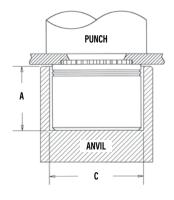

#### **FINAL ASSEMBLY**

Once the screw and spring are captivated, assemble the heat sink to the circuit board by tightening the screw into the receptacle nut or standoff until the audible "click" is heard. The screw will continue to rotate, but will no longer be engaged in the threads or continue to actively tighten.

#### **PR10™ FASTENERS**

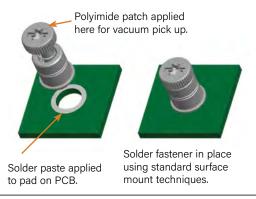
- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into the mounting hole.
- **3.** With installation punch and anvil surfaces parallel, apply squeezing force until the retainer is flush in the sheet.




#### N10™ FASTENERS

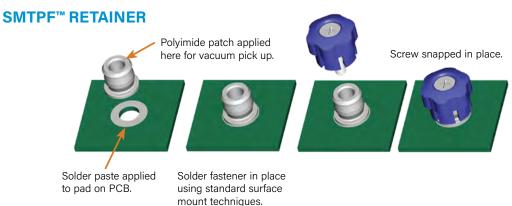
- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into recessed anvil, and place workpiece (preferably the punch side) over shank of fastener.
- **3.** With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the nut comes in contact with the sheet material.

#### PEMSERTER® Installation Tooling(1)


|      |                | Anvil Dimensions (in.) |            |                      |                      |
|------|----------------|------------------------|------------|----------------------|----------------------|
| IED  | Thread<br>Code | A<br>±.002             | C<br>±.002 | Anvil Part<br>Number | Punch Part<br>Number |
| 표    | 440            | .225                   | .298       | 8006124              | 975200048            |
| UNIF | 632            | .225                   | .329       | 8006735              | 975200048            |
| n    | 832            | .225                   | .361       | 8006736              | 975200048            |
|      | 032            | .225                   | .392       | 8006174              | 975200048            |

| TRIC | Thread<br>Code | Anvil Dimensions (mm) |            |                      |                      |
|------|----------------|-----------------------|------------|----------------------|----------------------|
|      |                | A<br>±0.05            | C<br>±0.05 | Anvil Part<br>Number | Punch Part<br>Number |
| ΕŢ   | M3             | 5.72                  | 7.57       | 8006124              | 975200048            |
| Σ    | M4             | 5.72                  | 9.17       | 8006736              | 975200048            |
|      | M5             | 5.72                  | 9.6        | 8006174              | 975200048            |




(1) Punches and anvils should be hardened.

#### SMTPFLSM™ CAPTIVE PANEL SCREWS





Installs in retracted/unfastened position



#### **CAPTIVE PANEL SCREW PERFORMANCE DATA**(1)

#### PF11T/PF12T/PF15T/PF11MT/PF12MT/PF15MT/PEM C.A.P.S.® FASTENERS

|        |      |        | Test Sheet Material    |                            |                        |                            |  |  |
|--------|------|--------|------------------------|----------------------------|------------------------|----------------------------|--|--|
|        | Туре | Thread | Alı                    | Aluminum                   |                        | olled Steel                |  |  |
| IED    |      | Code   | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) | Installation<br>(lbs.) | Retainer Pushout<br>(Ibs.) |  |  |
| Ξ.     |      | 440    | 1500                   | 80                         | 2500                   | 145                        |  |  |
| Z<br>O | PF11 | 632    | 2000                   | 95                         | 3500                   | 150                        |  |  |
|        | PF12 | 832    | 3000                   | 100                        | 4500                   | 160                        |  |  |
|        | PF15 | 032    | 3000                   | 100                        | 4500                   | 160                        |  |  |
|        |      | 0420   | 3500                   | 105                        | 5000                   | 195                        |  |  |

|      |              |        | Test Sheet Material  |                         |                      |                         |  |  |
|------|--------------|--------|----------------------|-------------------------|----------------------|-------------------------|--|--|
|      | Туре         | Thread | Aluminum Cold-R      |                         | olled Steel          |                         |  |  |
| TRIC |              | Code   | Installation<br>(kN) | Retainer Pushout<br>(N) | Installation<br>(kN) | Retainer Pushout<br>(N) |  |  |
| ш    | PF11         | M3     | 6.7                  | 355                     | 11.1                 | 645                     |  |  |
| Σ    | PF12<br>PF15 | M4     | 13.3                 | 445                     | 20                   | 710                     |  |  |
|      |              | M5     | 13.3                 | 445                     | 20                   | 710                     |  |  |
|      |              | M6     | 15.6                 | 465                     | 22.2                 | 865                     |  |  |

#### **PF11MF™ FASTENERS**

| D | Туре   | Thread<br>Code | Installation<br>(lbs.) | Retainer Pullout<br>(lbs.) |
|---|--------|----------------|------------------------|----------------------------|
| Ш |        | 440            | 250                    | 81                         |
| 프 |        | 632            | 300                    | 175                        |
| 2 | PF11MF | 832            | 350                    | 180                        |
|   |        | 032            | 350                    | 180                        |
|   |        | 0420           | 400                    | 200                        |

| ၁        | Туре   | Thread<br>Code | Installation<br>(kN) | Retainer Pullout<br>(N) |
|----------|--------|----------------|----------------------|-------------------------|
| <u>~</u> | PF11MF | М3             | 1.1                  | 360                     |
| ET       |        | M4             | 1.5                  | 800                     |
| Σ        |        | M5             | 1.5                  | 800                     |
|          |        | M6             | 2                    | 890                     |

#### **PF11MW™ FASTENERS**

|        |        |        | Test Shee               | t Material                 |  |  |
|--------|--------|--------|-------------------------|----------------------------|--|--|
|        | Туре   | Thread | .060" Cold-rolled Steel |                            |  |  |
| ED     |        | Code   | Swaging Force<br>(lbs.) | Retainer Pullout<br>(lbs.) |  |  |
| Ξ      |        | 440    | 350                     | 112                        |  |  |
| N<br>O |        | 632    | 400                     | 138                        |  |  |
|        | PF11MW | 832    | 700                     | 202                        |  |  |
|        |        | 032    | 700                     | 202                        |  |  |
|        |        | 0420   | 900                     | 212                        |  |  |

|     |        |        | Test Shee                | t Material              |  |  |
|-----|--------|--------|--------------------------|-------------------------|--|--|
|     | Туре   | Thread | 1.52mm Cold-rolled Steel |                         |  |  |
| ) I | ,      | Code   | Swaging Force<br>(N)     | Retainer Pullout<br>(N) |  |  |
| T B |        | M3     | 1557                     | 499                     |  |  |
| M   |        | M3.5   | 1779                     | 612                     |  |  |
|     | PF11MW | M4     | 3114                     | 897                     |  |  |
|     |        | M5     | 3114                     | 897                     |  |  |
|     |        | M6     | 4003                     | 945                     |  |  |

#### **PFHV™ FASTENERS**

|      |      |        | Test Sheet Material    |                            |                        |                            |  |
|------|------|--------|------------------------|----------------------------|------------------------|----------------------------|--|
| Q    | Type | Thread | Aluminum               |                            | Cold-Ro                | olled Steel                |  |
| IFIE | 7    | Code   | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) |  |
| Z    | PFHV | 440    | 1700                   | 108                        | 2200                   | 118                        |  |
|      |      | 632    | 1850                   | 117                        | 2400                   | 128                        |  |
|      |      | 832    | 2100                   | 134                        | 2700                   | 147                        |  |

|      |      |        |                      | Test Sheet I            | Material             |                         |  |
|------|------|--------|----------------------|-------------------------|----------------------|-------------------------|--|
| TRIC | Туре | Thread | Alu                  | ıminum                  | Cold-Ro              | Cold-Rolled Steel       |  |
|      |      | Code   | Installation<br>(kN) | Retainer Pushout<br>(N) | Installation<br>(kN) | Retainer Pushout<br>(N) |  |
| ME   | PFHV | M3     | 8.1                  | 516                     | 10.5                 | 564                     |  |
|      |      | M3.5   | 8.8                  | 561                     | 11.4                 | 614                     |  |
|      |      | M4     | 9.4                  | 599                     | 12.1                 | 656                     |  |

(1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/ or samples for this purpose.

#### **PF7M™ FASTENERS**

|      |      |        | Rec.       |                   | Test Sheet Material    |                            |                        |                            |  |
|------|------|--------|------------|-------------------|------------------------|----------------------------|------------------------|----------------------------|--|
|      | T    | Thread | Tightening | Min.<br>Screw     | Alumi                  | num                        | Cold-roll              | led Steel                  |  |
| FIED | Туре | Code   | lorque     | Tensile<br>(lbs.) | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) |  |
| Z    | PF7M | 440    | 4.5        | 580               | 1500                   | 80                         | 2500                   | 145                        |  |
|      | PF7M | 632    | 8.6        | 855               | 2000                   | 95                         | 3500                   | 150                        |  |
|      | PF7M | 832    | 15.6       | 1300              | 3000                   | 100                        | 4500                   | 160                        |  |

|      |      |                | Rec.                  | Min.           | Test Sheet Material  |                         |                      |                         |
|------|------|----------------|-----------------------|----------------|----------------------|-------------------------|----------------------|-------------------------|
| ٠    | Toma |                | Tightening Screw      |                | 5052-H34 Aluminum    |                         | Cold-rolled Steel    |                         |
| FTRI | Туре | Thread<br>Code | Torque<br>(N - m) (2) | Tensile<br>(N) | Installation<br>(kN) | Retainer Pushout<br>(N) | Installation<br>(kN) | Retainer Pushout<br>(N) |
| Σ    | PF7M | M3             | 0.66                  | 2900           | 6.7                  | 355                     | 11.1                 | 645                     |
|      | PF7M | M4             | 1.57                  | 5010           | 13.3                 | 445                     | 20                   | 710                     |

#### **PF7MF™ FASTENERS**

| FIED | Туре  | Thread<br>Code | Rec.<br>Tightening<br>Torque<br>(in. lbs.) (2) | Min. Screw<br>Tensile<br>(lbs.) | Installation<br>(lbs.) | Retainer<br>Pullout<br>(lbs.) |
|------|-------|----------------|------------------------------------------------|---------------------------------|------------------------|-------------------------------|
| Z    | PF7MF | 440            | 4.5                                            | 580                             | 250                    | 81                            |
| n    | PF7MF | 632            | 8.6                                            | 855                             | 300                    | 175                           |
|      | PF7MF | 832            | 15.6                                           | 1300                            | 350                    | 180                           |

| ETRIC | Туре  | Thread<br>Code | Rec.<br>Tightening<br>Torque<br>(N-m) (2) | Min. Screw<br>Tensile<br>(N) | Installation<br>(kN) | Retainer<br>Pullout<br>(N) |
|-------|-------|----------------|-------------------------------------------|------------------------------|----------------------|----------------------------|
| Ξ     | DEZME | М3             | 0.66                                      | 2900                         | 1.1                  | 360                        |
|       | PF7MF | M4             | 1.57                                      | 5010                         | 1.5                  | 800                        |

#### PF30™/PF31™/PF32™ FASTENERS

|     |          |                |                        | Test Sheet                 | Material               |                            |  |
|-----|----------|----------------|------------------------|----------------------------|------------------------|----------------------------|--|
|     | Туре     | Thread<br>Code | Al                     | uminum                     | Cold-Rolled Steel      |                            |  |
|     |          |                | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) | Installation<br>(lbs.) | Retainer Pushout<br>(Ibs.) |  |
|     | PF30     | 440            | 2200                   | 64                         | 5000                   | 90                         |  |
|     | PF31     | 440            | 2200                   | 105                        | 5000                   | 110                        |  |
| Ω   | PF32 440 |                | 2200                   | 185                        | 5000                   | 300                        |  |
| Ξ   | PF30     | 632            | 2400                   | 66                         | 5500                   | 90                         |  |
| Ξ.  | PF31 632 |                | 2400                   | 105                        | 5500                   | 130                        |  |
| N O | PF32     | 632            | 2400                   | 190                        | 5500                   | 300                        |  |
|     | PF30     | 832            | 2800                   | 68                         | 6000                   | 90                         |  |
|     | PF31     | 832            | 2800                   | 110                        | 6000                   | 130                        |  |
|     | PF32     | 832            | 2800                   | 200                        | 6000                   | 300                        |  |
|     | PF30     | 032            | 3500                   | 72                         | 8000                   | 95                         |  |
|     | PF31     | 032            | 3500                   | 150                        | 8000                   | 160                        |  |
|     | PF32     | 032            | 3500                   | 260                        | 8000                   | 425                        |  |
|     | PF32     | 0420           | 4300                   | 320                        | 12000                  | 450                        |  |

|     |      |        |                      | Test Sheet              | Material             |                         |  |
|-----|------|--------|----------------------|-------------------------|----------------------|-------------------------|--|
|     | Туре | Thread | Al                   | uminum                  | Cold-Rolled Steel    |                         |  |
|     |      | Code   | Installation<br>(kN) | Retainer Pushout<br>(N) | Installation<br>(kN) | Retainer Pushout<br>(N) |  |
|     | PF30 | M3     | 9.8                  | 285                     | 22.2                 | 400                     |  |
| RIC | PF31 | M3     | 9.8                  | 465                     | 22.2                 | 489                     |  |
| T B | PF32 | M3     | 9.8                  | 823                     | 22.2                 | 1334                    |  |
| ΙEΤ | PF30 | M4     | 12.5                 | 302                     | 26.7                 | 400                     |  |
| M   | PF31 | M4     | 12.5                 | 489                     | 26.7                 | 578                     |  |
|     | PF32 | M4     | 12.5                 | 890                     | 26.7                 | 1334                    |  |
|     | PF30 | M5     | 15.6                 | 320                     | 35.6                 | 423                     |  |
|     | PF31 | M5     | 15.6                 | 667                     | 35.6                 | 712                     |  |
|     | PF32 | M5     | 15.6                 | 1156                    | 35.6                 | 1890                    |  |
|     | PF32 | M6     | 19.1                 | 1423                    | 53.4                 | 2002                    |  |

<sup>(1)</sup> Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.

<sup>(2)</sup> Torque values shown will produce a preload of 70% minimum tensile with nut factor "k" equal to .1

#### PF50™/PF51™/PF52™/PF60™/PF61™/PF62™ FASTENERS

|    |           |        |                        | Test Shee                  | t Material             |                            |  |
|----|-----------|--------|------------------------|----------------------------|------------------------|----------------------------|--|
|    | Туре      | Thread | Alumir                 | num                        | Cold-Rolled Steel      |                            |  |
|    |           | Code   | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) |  |
|    | PF50/PF60 | 440    | 2200                   | 64                         | 5000                   | 90                         |  |
|    | PF51/PF61 | 440    | 2200                   | 105                        | 5000                   | 110                        |  |
| Q  | PF52/PF62 | 440    | 2200                   | 185                        | 5000                   | 300                        |  |
| Ξ  | PF50/PF60 | 632    | 2400                   | 66                         | 5500                   | 90                         |  |
| Ε. | PF51/PF61 | 632    | 2400                   | 105                        | 5500                   | 130                        |  |
| Z  | PF52/PF62 | 632    | 2400                   | 190                        | 5500                   | 300                        |  |
|    | PF50/PF60 | 832    | 2800                   | 68                         | 6000                   | 90                         |  |
|    | PF51/PF61 | 832    | 2800                   | 110                        | 6000                   | 130                        |  |
|    | PF52/PF62 | 832    | 2800                   | 200                        | 6000                   | 300                        |  |
|    | PF50/PF60 | 032    | 3500                   | 72                         | 8000                   | 95                         |  |
|    | PF51/PF61 | 032    | 3500                   | 150                        | 8000                   | 160                        |  |
|    | PF52/PF62 | 032    | 3500                   | 260                        | 8000                   | 425                        |  |
|    | PF52/PF62 | 0420   | 4300                   | 320                        | 12000                  | 450                        |  |

|     |              |        |                      | Test Shee               | t Material           |                         |  |
|-----|--------------|--------|----------------------|-------------------------|----------------------|-------------------------|--|
|     | Туре         | Thread | Alumir               | num                     | Cold-Rolled Steel    |                         |  |
|     |              | Code   | Installation<br>(kN) | Retainer Pushout<br>(N) | Installation<br>(kN) | Retainer Pushout<br>(N) |  |
|     | PF50/PF60 M3 |        | 9.8                  | 285                     | 22.2                 | 400                     |  |
|     | PF51/PF61    | М3     | 9.8                  | 465                     | 22.2                 | 489                     |  |
| ပ   | PF52/PF62    | М3     | 9.8                  | 823                     | 22.2                 | 1334                    |  |
| - H | PF50/PF60    | M3.5   | 10.7                 | 294                     | 24.4                 | 400                     |  |
| ΕI  | PF51/PF61    | M3.5   | 10.7                 | 465                     | 24.4                 | 578                     |  |
| Z   | PF52/PF62    | M3.5   | 10.7                 | 845                     | 24.4                 | 1334                    |  |
|     | PF50/PF60    | M4     | 12.5                 | 302                     | 26.7                 | 400                     |  |
|     | PF51/PF61    | M4     | 12.5                 | 489                     | 26.7                 | 578                     |  |
|     | PF52/PF62    | M4     | 12.5                 | 890                     | 26.7                 | 1334                    |  |
|     | PF50/PF60    | M5     | 15.6                 | 320                     | 35.6                 | 423                     |  |
|     | PF51/PF61    | M5     | 15.6                 | 667                     | 35.6                 | 712                     |  |
|     | PF52/PF62    | M5     | 15.6                 | 1156                    | 35.6                 | 1890                    |  |
|     | PF52/PF62    | M6     | 19.1                 | 1423                    | 53.4                 | 2002                    |  |

#### **PFC4™ FASTENERS**

|        |      |        | Test Sheet Material    |                            |  |  |
|--------|------|--------|------------------------|----------------------------|--|--|
|        | Type | Thread | 304 Stainless Steel    |                            |  |  |
| FIED   | ,,   | Code   | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) |  |  |
| _      |      | 440    | 9100                   | 350                        |  |  |
| N<br>O | PFC4 | 632    | 10300                  | 400                        |  |  |
|        | 1104 | 832    | 10800                  | 450                        |  |  |
|        |      | 032    | 11800                  | 550                        |  |  |

|      |      |        | Test Sheet Material  |                         |  |  |
|------|------|--------|----------------------|-------------------------|--|--|
|      | Type | Thread | 304 Stainless Steel  |                         |  |  |
| TRIC | ,    | Code   | Installation<br>(kN) | Retainer Pushout<br>(N) |  |  |
| N    | PFC4 | M3     | 40.5                 | 1557                    |  |  |
|      |      | M4     | 48                   | 2002                    |  |  |
|      |      | M5     | 52.5                 | 2447                    |  |  |

#### PFC2™/PFS2™/PFC2P™ FASTENERS

|     |       | Thread<br>Code | Test Sheet Material    |                            |                        |                            |  |  |
|-----|-------|----------------|------------------------|----------------------------|------------------------|----------------------------|--|--|
|     | Туре  |                | Alu                    | ıminum                     | Cold-Rolled Steel      |                            |  |  |
| IED |       |                | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) |  |  |
| Ξ.  |       | 440            | 2400                   | 240                        | 3000                   | 300                        |  |  |
| Z   | PFC2  | 632            | 2700                   | 275                        | 3500                   | 350                        |  |  |
|     | PFS2  | 832            | 2900                   | 300                        | 3800                   | 400                        |  |  |
|     | PFC2P | 032            | 3000                   | 400                        | 4000                   | 500                        |  |  |
|     |       | 0420           | 3500                   | 400                        | 5000                   | 600                        |  |  |

|      |              |        | Test Sheet Material  |                         |                      |                         |  |  |
|------|--------------|--------|----------------------|-------------------------|----------------------|-------------------------|--|--|
|      | Туре         | Thread | Alu                  | ıminum                  | Cold-Rolled Steel    |                         |  |  |
| TRIC |              | Code   | Installation<br>(kN) | Retainer Pushout<br>(N) | Installation<br>(kN) | Retainer Pushout<br>(N) |  |  |
| ш    | DECO         | M3     | 10.7                 | 1068                    | 13.3                 | 1334                    |  |  |
| Σ    | PFC2<br>PFS2 | M4     | 12.9                 | 1334                    | 16.9                 | 1779                    |  |  |
|      | PFC2P        | M5     | 13.3                 | 1779                    | 17.8                 | 2224                    |  |  |
|      |              | M6     | 15.6                 | 1779                    | 22.2                 | 2669                    |  |  |

#### PTL2™/PSL2™ FASTENERS

|       |              | Test Sheet Material    |                            |                        |                            |  |
|-------|--------------|------------------------|----------------------------|------------------------|----------------------------|--|
| О     | Туре         | Aluminum               |                            | Cold-Rolled Steel      |                            |  |
| NIFIE | ·            | Installation<br>(lbs.) | Retainer Pushout<br>(lbs.) | Installation<br>(Ibs.) | Retainer Pushout<br>(lbs.) |  |
| n     | PTL2<br>PSL2 | 3000                   | 400                        | 4000                   | 500                        |  |

|       |              | Test Sheet Material  |                         |                      |                         |  |  |
|-------|--------------|----------------------|-------------------------|----------------------|-------------------------|--|--|
| ပ     | Туре         | Alu                  | minum                   | Cold-Rolled Steel    |                         |  |  |
| ETRIC | ,            | Installation<br>(kN) | Retainer Pushout<br>(N) | Installation<br>(kN) | Retainer Pushout<br>(N) |  |  |
| Σ     | PTL2<br>PSL2 | 13.3                 | 1779                    | 17.8                 | 2224                    |  |  |

(1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.

#### **SCBR™ FASTENERS**

|      |      |        | Rec.                     | Min.              | Test Sheet Material    |                   |                        |                   |  |
|------|------|--------|--------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|--|
|      | Time | Thread | Tightening               | Screw             | 5052-H34 <i>l</i>      | 5052-H34 Aluminum |                        | ed Steel          |  |
| FIED | Туре | Code   | Torque<br>(in. lbs.) (2) | Tensile<br>(lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) |  |
| Z    | SCBR | 440    | 5                        | 590               | 1900                   | 130               | 2600                   | 145               |  |
|      | SCBR | 632    | 9                        | 990               | 2000                   | 175               | 3500                   | 200               |  |
|      | SCBR | 832    | 17                       | 1460              | 2250                   | 225               | 3825                   | 260               |  |

| Г     | Т  | Туре |                | Rec.<br>Tightening<br>Torque<br>(N·m) (2) | Min.<br>Screw  | Test Sheet Material  |                |                      |                |  |
|-------|----|------|----------------|-------------------------------------------|----------------|----------------------|----------------|----------------------|----------------|--|
| c     | ١  |      | Thursd         |                                           |                | 5052-H34 Aluminum    |                | Cold-rolled Steel    |                |  |
| - G T | ۱- |      | Thread<br>Code |                                           | Tensile<br>(N) | Installation<br>(kN) | Pushout<br>(N) | Installation<br>(kN) | Pushout<br>(N) |  |
| 2     |    | SCBR | М3             | 0.74                                      | 3400           | 8                    | 580            | 12                   | 650            |  |
|       |    | SCBR | M4             | 1.7                                       | 5700           | 10                   | 1000           | 17                   | 1150           |  |

#### SCB™/SCBJ™ FASTENERS

| Γ |   |            | Rec. Min. |   |                   | Test Sheet Material    |                   |      |     |  |
|---|---|------------|-----------|---|-------------------|------------------------|-------------------|------|-----|--|
| 4 | ۵ | <b>.</b>   |           |   | 5052-H34 Aluminum |                        | Cold-rolled Steel |      |     |  |
|   |   | туре       |           |   | Pushout<br>(lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) |      |     |  |
|   | 5 | SCB / SCBJ | 440       | 5 | 590               | 1900                   | 130               | 2600 | 145 |  |
|   |   | SCB / SCBJ | 632       | 9 | 990               | 2000                   | 175               | 3500 | 200 |  |

|   | Т |            | Rec. Min.      |                  | Min. | Test Sheet Material |                      |                |                      |                |
|---|---|------------|----------------|------------------|------|---------------------|----------------------|----------------|----------------------|----------------|
| ( | ١ | <b></b> .  | Thread<br>Code | Tightening Screw |      | 5052-H34            | 5052-H34 Aluminum    |                | Cold-rolled Steel    |                |
|   | - | Туре       |                | lorque           |      | Tensile<br>(N)      | Installation<br>(kN) | Pushout<br>(N) | Installation<br>(kN) | Pushout<br>(N) |
| 2 | Ĭ | SCB / SCBJ | М3             | 0.74             | 3400 | 8                   | 580                  | 12             | 650                  |                |
|   |   | SCB / SCBJ | M4             | 1.7              | 5700 | 10                  | 1000                 | 17             | 1150                 |                |

#### **HSCB™ FASTENERS**

|         |      |                | Test Sheet Material    |                   |                        |                   |  |  |
|---------|------|----------------|------------------------|-------------------|------------------------|-------------------|--|--|
| Q       | Туре | Thread<br>Code | Alum                   | inum              | Cold-rolled Steel      |                   |  |  |
| UNIFIED |      |                | Installation<br>(lbs.) | Pushout<br>(lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) |  |  |
| ח       | HSCB | 440            | 1900                   | 60                | 2600                   | 80                |  |  |
|         | HSCB | 632            | 2000                   | 90                | 3500                   | 120               |  |  |

|      |      |                | Test Sheet Material  |                |                      |                |  |  |
|------|------|----------------|----------------------|----------------|----------------------|----------------|--|--|
| RIC  | Туре | Thread<br>Code | Aluminum             |                | Cold-rolled Steel    |                |  |  |
| METR |      |                | Installation<br>(kN) | Pushout<br>(N) | Installation<br>(kN) | Pushout<br>(N) |  |  |
| _    | HSCB | М3             | 8                    | 265            | 12                   | 355            |  |  |

#### **HSR™ FASTENERS**

|   |      |        | Test Sheet Material |         |  |  |  |
|---|------|--------|---------------------|---------|--|--|--|
| Ω | Туре | Thread | .060" FR-4 Panel    |         |  |  |  |
| = |      | Code   | Installation        | Pushout |  |  |  |
| 프 |      |        | (lbs.)              | (lbs.)  |  |  |  |
| Z | HSR  | 440    | 400                 | 65      |  |  |  |
|   | HSR  | 632    | 500                 | 80      |  |  |  |

|          |      | Thread<br>Code | Test Sheet Material  |                |  |  |
|----------|------|----------------|----------------------|----------------|--|--|
| <u> </u> | Туре |                | 1.5mm FR-4 Panel     |                |  |  |
| ETR      |      |                | Installation<br>(kN) | Pushout<br>(N) |  |  |
| Σ        | HSR  | М3             | 2.2                  | 290            |  |  |

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/ or samples for this purpose.
- (2) Torque values shown will produce a preload of 70% minimum tensile (125 ksi / 935 MPa) with nut factor "k" equal to .1

#### PR10™ FASTENERS

|         |      |                | Test Sheet Material    |                        |  |  |
|---------|------|----------------|------------------------|------------------------|--|--|
|         | Туре | Thread<br>Code | Aluminum               | Cold-Rolled Steel      |  |  |
| UNIFIED |      |                | Installation<br>(lbs.) | Installation<br>(lbs.) |  |  |
| Z       |      | 440            | 2100                   | 3000                   |  |  |
| Π       | PR10 | 632            | 2100                   | 3000                   |  |  |
|         | PNIU | 832            | 2100                   | 3600                   |  |  |
|         |      | 032            | 2400                   | 4200                   |  |  |

|       |      |        | Test Sheet           | : Material           |  |
|-------|------|--------|----------------------|----------------------|--|
|       | Туре | Thread | Aluminum             | Cold-Rolled Steel    |  |
| ETRIC |      | Code   | Installation<br>(kN) | Installation<br>(kN) |  |
| M     |      | M3     | 9.3                  | 13.3                 |  |
|       | PR10 | M4     | 9.3                  | 16                   |  |
|       |      | M5     | 10.7                 | 18.7                 |  |

#### N10™ FASTENERS

|      |      |        | Test Sheet Material    |                   |                        |                   |  |  |
|------|------|--------|------------------------|-------------------|------------------------|-------------------|--|--|
|      | Туре | Thread | Aluminum               |                   | Cold-Rolled Steel      |                   |  |  |
| FIED |      | Code   | Installation<br>(lbs.) | Pushout<br>(lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) |  |  |
| Z    |      | 440    | 2500                   | 95                | 3600                   | 130               |  |  |
| N O  | N10  | 632    | 2500                   | 105               | 4000                   | 145               |  |  |
|      | NIU  | 832    | 3000                   | 110               | 5000                   | 180               |  |  |
|      |      | 032    | 3500                   | 120               | 6300                   | 200               |  |  |

|       |           |        | Test Sheet Material  |                |                      |                |  |
|-------|-----------|--------|----------------------|----------------|----------------------|----------------|--|
| 4.    | Туре      | Thread | Aluminum             |                | Cold-Rolled Steel    |                |  |
| ETRIC | Code Inst |        | Installation<br>(kN) | Pushout<br>(N) | Installation<br>(kN) | Pushout<br>(N) |  |
| M     |           | M3     | 11.1                 | 423            | 16                   | 578            |  |
|       | N10       | M4     | 13.3                 | 489            | 22.2                 | 800            |  |
|       |           | M5     | 15.6                 | 534            | 28                   | 890            |  |

#### REELFAST® SMTPFLSM™ FASTENERS(2)

|      |              | Min.               | Rec.                                | Test Sheet Material    |  |
|------|--------------|--------------------|-------------------------------------|------------------------|--|
| Ω    | Type and     |                    |                                     | .060" P.C. Board       |  |
| IFIE | Thread Size  | Strength<br>(lbs.) | Torque<br>(in. lbs.) <sup>(3)</sup> | Pull-off<br>(lbs.) (4) |  |
| Z    | SMTPFLSM-440 | 556                | 4.4                                 | 100                    |  |
|      | SMTPFLSM-632 | 724                | 7.0                                 | 105                    |  |

| ١ |     |               | Min.            | Rec.                           | Test Sheet Material            |  |
|---|-----|---------------|-----------------|--------------------------------|--------------------------------|--|
|   | ပ   | Type and      | Tensile         | Tightening                     | 1.5 mm P.C. Board              |  |
|   | TRI | Thread Size   | Strength<br>(N) | Torque<br>(N-m) <sup>(3)</sup> | Pull-off<br>(N) <sup>(4)</sup> |  |
| ı | M   | SMTPFLSM-M3   | 2900            | 0.61                           | 445                            |  |
|   |     | SMTPFLSM-M3.5 | 3269            | 0.8                            | 465                            |  |

#### REELFAST® SMTPR™ RETAINER(2)

|             | Test Shee         | t Material     |
|-------------|-------------------|----------------|
| Part        | .062" Single      | Layer RF-4     |
| Number      | Pushout<br>(lbs.) | Pushout<br>(N) |
| SMTPR-6-1ET | 161.4             | 718            |

#### TESTING CONDITIONS FOR SMTPFLSM FASTENERS AND SMTPR RETAINER

0ven Quad ZCR convection oven

**High Temp** 473°F / 245°C Spokes 2 Spoke Pattern **Board Finish** 62% Sn, 38% Pb Ragin Manual Printer Screen Printer

Vias None

Amtech NC559LF Sn96.5/3.0Ag/0.5Cu (SAC305) (SMTPR) **Paste** 

Alpha CVP-390 Sn96.5/3.0Ag/0.5Cu (SAC305) (SMTPFLSM)

Stencil .0067" / 0.17 mm thick (SMTPR)

.005" / 0.13 mm thick (SMTPFLSM)

#### PFK™ FASTENERS

|          |      |        | Test Shee              | t Material        |
|----------|------|--------|------------------------|-------------------|
| <b>□</b> | Туре | Thread | FR-4 Fib               | erglass           |
| IFIED    |      | Code   | Installation<br>(lbs.) | Pushout<br>(lbs.) |
| N O      | DEI  | 440    | 250                    | 55                |
|          | PFK  | 632    | 400                    | 60                |

|            |      |        | Test Shee            | t Material     |
|------------|------|--------|----------------------|----------------|
| <u>ا</u> د | Туре | Thread | FR-4 Fil             | perglass       |
| ETRI       |      | Code   | Installation<br>(kN) | Pushout<br>(N) |
| M          | PFK  | М3     | 1.1                  | 245            |

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/ or samples for this purpose.
- (2) With lead-free paste, Average values of 30 test points. The data presented here is for general comparison purposes only. Actual performance is dependent upon application variables. We will be happy to provide samples for you to install. If required, we can also test your installed hardware and provide you with the performance data specific to your application.
- (3) Torque values shown will produce a preload of 70% minimum tensile with a nut factor "k" equal to .1.
- (4) Failure occurred at the solder joint.

#### **CAPTIVE PANEL SCREW CAPABILITIES**

# MOST COMMONLY USED AND RECOMMENDED CAPTIVE MATING HARDWARE FOR USE WITH CAPTIVE PANEL SCREWS

# SELF-CLINCHING NUTS MATED WITH CAPTIVE PANEL SCREW (See PEM® Bulletin CL)

- S/CLS/SS/CLSS provide load-bearing threads in thin sheets with high pushout and torque-out resistance.
- SP nuts provide load-bearing threads in stainless steel sheets with a hardness of HRB 90 (Rockwell "B" scale) / HB 192 (Hardness Brinell) or less.
- CLA aluminum nuts are recommended for aluminum sheets with a hardness of HRB 50 (Rockwell "B" scale) / HB 89 (Hardness Brinell) or less.
- SMPS nuts are for installation into ultra-thin sheets and can be mounted closer to the edge of a sheet than other self-clinching nuts.
- SL nuts have a unique TRI-DENT® locking feature which meets demanding locking performance requirements.



## AS/AC/A4 FLOATING NUTS MATED WITH CAPTIVE PANEL SCREW (See PEM® Bulletin ALA)

- AS (carbon steel) and AC (300 series stainless steel) floating nuts install into sheets with hardness up to HRB 70 / HB 125 on the Rockwell "B" scale.
- A4 (400 series stainless steel) floating nuts install into sheets with hardness up to HRB 88 / HB 183 on the Rockwell "B" scale.
- Thread locking versions also available.



## B/BS BLIND NUTS MATED WITH CAPTIVE PANEL SCREW (See PEM® Bulletin B)

- B/BS nuts are used in applications requiring closed thread ends.
- Provides barrier to protect threads against foreign matter.
- Protects internal components from intrusion of screws.



# F FLUSH NUTS MATED WITH CAPTIVE PANEL SCREW (See PEM® Bulletin F)

- Designed to be completely flush in sheets as thin as .060"/1.5mm.
- Ideal for applications where a thin sheet requires load-bearing threads but still must remain smooth, with no
  protrusions on either surface.
- The hexagonal head ensures high axial and torsional strength.
- F nuts can be ordered to conform to US NASM45938/4 specifications.



## PC BOARD NUTS MATED WITH CAPTIVE PANEL SCREW (See PEM® Bulletin K)

- KF2/KFS2 broaching nuts utilize specially formed axially groves that can be mounted into a hole to provide a permanent, strong, threaded attachment point in PC boards.
- SMTSO surface mount nuts also available.

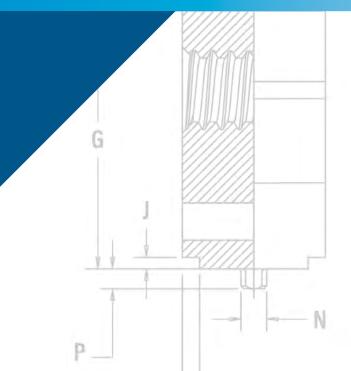


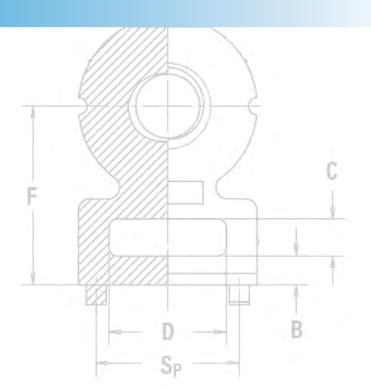
For the best mating hardware for your application please contact our Tech Support line or your local representative.

#### **PEM® TRADEMARKS** "PEM" Stamp **Single Groove Skirted Shoulder Identifier Double Squares** (Registered Trademark) (Registered Trademark) (Registered Trademark) (Registered Trademark) PSHP PF11, PF11M, PF11MF, PF11MW, PF11PM, PF12, PF12M, PF12MF, PFC4 F10 PF12MW, PF15, PF15M, PF7M, PF7MF, SMTPFLSM (Registered Trademark) PF10, PF30, PF31, PF32, PF50, PF51, PF52, PF60, PF61, PF62, PF11, PF11M, **Two Groove Blue Retaining Ring** PEM C.A.P.S. Dot Pattern PF11MF, PF11MW, PF11PM, PF12, PF12M, PF12MF, PF12MW, PF15, PF15M, PF7M, (Registered Trademark) (Trademark) (Trademark) PF7MF, PFC2, PFC2P, PFC4, PFHV, PFK, PFS2, PSHP, SCB, SCBJ, SCBR PF7M, PF7MF, N10, HSR PFC4, PFC2P, PFC2, PFS2, PFK To be sure that you are getting genuine PEM® brand fasteners, look for the unique PEM® product markings and identifiers.









PEM® R'ANGLE® fasteners provide strong right angle attachment points in thin sheets.



# $RA^{TM}$

# RIGHT ANGLE FASTENERS





PEM® R'ANGLE® fasteners provide strong right angle attachment points in sheet metal or PC Boards. **RAA™** and **RAS™** fasteners for metal are simply pressed into a rectangular mounting hole of the proper size. **SMTRA™** fasteners are installed onto PC Boards using standard surface mount techniques. The holding power of the fastener is unaffected by the repeated tightening and loosening of the screw.

PEM® R'ANGLE® fasteners are cost-effective replacements for:

- Bent edge tabs
- Bent center tabs
- Bent flanges

- Angle brackets
- Tack welds
- Loose hardware

PEM® R'ANGLE® fasteners provide many advantages over bent tabs and flanges, including:

- More predictable designs
- Tighter design control
- Reduction of loose hardware
- Unmarred panel surfaces

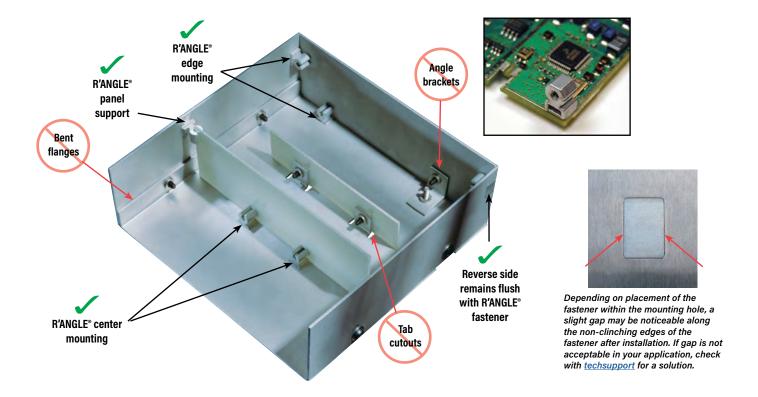
- Material savings
- Improved shielding characteristics
- Fewer assembly steps

RAS™ fasteners for sheet metal is a threaded right angle fastener that accepts standard unified or metric screws - PAGE 190



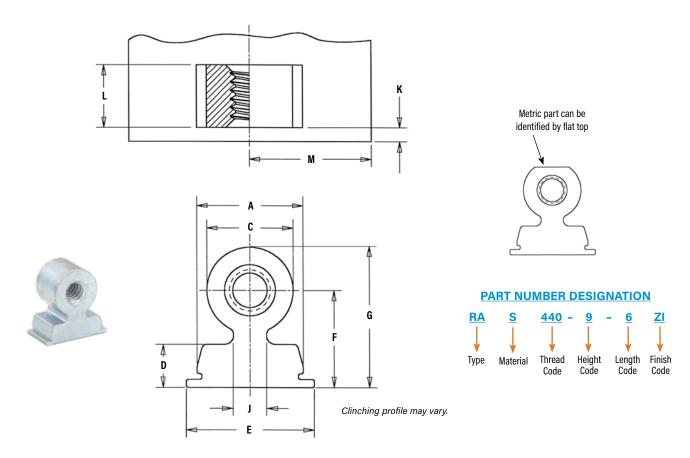
RAA™ right angle fasteners for sheet metal can accept thread forming or self-tapping screws - PAGE 191




SMTRA™ right angle threaded fasteners are installed on to PC Boards using standard surface mount techniques. They accept standard unified or metric screws - PAGE 192



**Material and finish specifications - PAGE 193** 


**Installation - PAGES 191-194** 

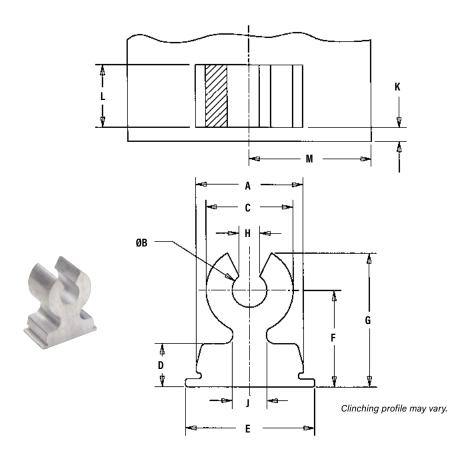
Performance data - PAGES 194-195

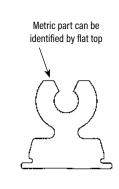


#### PEM® RAS™ THREADED RIGHT ANGLE FASTENER

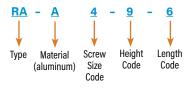
#### For use with standard metric or unified screws




#### All dimensions are in inches.


|       | Thread<br>Size     | Туре | Fastener<br>Material | Thread<br>Code | Height<br>Code | Length<br>Code | Length<br>L<br>±.003 | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.002<br>001 | A<br>±.003 | C<br>Nom. | D<br>Nom. | E<br>±.006 | Height<br>F<br>±.006 | G<br>Nom. | J<br>Nom. | Min. Part<br>Face to<br>Edge<br>K | Min. Dist.<br>Hole <b>©</b><br>To Edge<br>M |
|-------|--------------------|------|----------------------|----------------|----------------|----------------|----------------------|----------------------------|---------------------------------------|------------|-----------|-----------|------------|----------------------|-----------|-----------|-----------------------------------|---------------------------------------------|
|       |                    |      |                      |                |                | 4              | .121                 |                            | .312 x .125                           |            |           |           |            |                      |           |           |                                   | .30                                         |
| I E D | .112-40<br>(#4-40) | RA   | S                    | 440            | 9              | 6              | .183                 | .040                       | .312 x .187                           | .308       | .250      | .125      | .370       | .281                 | .406      | .096      | .040                              | .35                                         |
| 盂     | (#4-40)            |      |                      |                |                | 8              | .246                 |                            | .312 x .250                           |            |           |           |            |                      |           |           |                                   | .43                                         |
| Z     |                    |      |                      |                |                | 4              | .121                 |                            | .375 x .125                           |            |           |           |            |                      |           |           |                                   | .35                                         |
|       | .138-32            | RA   | S                    | 632            | 10             | 8              | .246                 | .040                       | .375 x .250                           | .371       | .300      | .125      | .433       | .312                 | .462      | .141      | .040                              | .50                                         |
|       | (#6-32)            |      |                      |                |                | 10             | .308                 |                            | .375 x .312                           |            |           |           |            |                      |           |           |                                   | .55                                         |
|       |                    |      |                      |                |                | 6              | .183                 |                            | .406 x .187                           |            |           |           |            |                      |           |           |                                   | .40                                         |
|       | .164-32            | RA   | S                    | 832            | 12             | 9              | .277                 | .040                       | .406 x .281                           | .402       | .350      | .125      | .464       | .375                 | .550      | .157      | .040                              | .58                                         |
|       | (#8-32)            |      |                      |                |                | 12             | .371                 |                            | .406 x .375                           |            |           |           |            |                      |           |           |                                   | .65                                         |

| ပ | Thread<br>Size x<br>Pitch | Туре | Fastener<br>Material | Thread<br>Code | Height<br>Code | Length<br>Code | Length<br>L<br>±0.08 | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.05<br>-0.03 | A<br>±0.08 | C<br>Nom. | D<br>Nom. | E<br>±0.15 | Height<br>F<br>±0.15 | G<br>Nom. | J<br>Nom. | Min. Part<br>Face to<br>Edge<br>K | Min. Dist.<br>Hole <b>©</b><br>To Edge<br>M |
|---|---------------------------|------|----------------------|----------------|----------------|----------------|----------------------|----------------------------|-----------------------------------------|------------|-----------|-----------|------------|----------------------|-----------|-----------|-----------------------------------|---------------------------------------------|
| = |                           |      |                      |                |                | 3              | 2.89                 |                            | 8 x 3                                   |            |           |           |            |                      |           |           |                                   | 7.6                                         |
| Ш | M3 x 0.5                  | RA   | S                    | М3             | 7              | 4              | 3.89                 | 1                          | 8 x 4                                   | 7.89       | 6.35      | 3.18      | 9.47       | 7                    | 9.78      | 2.87      | 1.02                              | 9.1                                         |
| Ξ |                           |      |                      |                |                | 6              | 5.89                 |                            | 8 x 6                                   |            |           |           |            |                      |           |           |                                   | 10.7                                        |
|   |                           |      |                      |                |                | 4              | 3.89                 |                            | 10 x 4                                  |            |           |           |            |                      |           |           |                                   | 10                                          |
|   | M4 x 0.7                  | RA   | S                    | M4             | 9              | 7              | 6.89                 | 1                          | 10 x 7                                  | 9.89       | 8.89      | 3.18      | 11.48      | 9                    | 13.21     | 4.06      | 1.02                              | 14.7                                        |
|   |                           |      |                      |                |                | 9              | 8.89                 |                            | 10 x 9                                  |            |           |           |            |                      |           |           |                                   | 16.3                                        |


#### **RAA™ RIGHT ANGLE FASTENER**

#### For use with thread forming screws





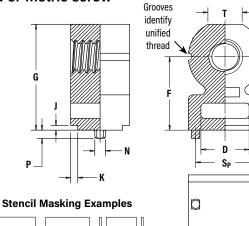
#### **PART NUMBER DESIGNATION**



#### All dimensions are in inches.

|   | 1   | Thread<br>Form<br>Screw<br>Size | Туре | Fastener<br>Material | Screw<br>Size<br>Code | Height<br>Code | Length<br>Code | Length<br>L<br>±.003 | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.002<br>001 | A<br>±.003 | ØB<br>±.004 | C<br>Nom. | D<br>Nom. | E<br>±.006 | Height<br>F<br>±.006 | G<br>Nom. | H<br>±.007 | J<br>Nom. | Min. Part<br>Face to<br>Edge<br>K | Min. Dist.<br>Hole <b>⊉</b><br>To Edge<br>M |
|---|-----|---------------------------------|------|----------------------|-----------------------|----------------|----------------|----------------------|----------------------------|---------------------------------------|------------|-------------|-----------|-----------|------------|----------------------|-----------|------------|-----------|-----------------------------------|---------------------------------------------|
| 1 | ш   | #4-40                           | RA   | ۸                    | 1                     | 0              | 6              | .183                 | .040                       | .312 x .187                           | .308       | .100        | .250      | .125      | .368       | .281                 | .389      | .054       | .096      | .040                              | .35                                         |
| 1 | _   | #4-40                           | nA   | А                    | 4                     | 9              | 8              | .246                 | .040                       | .312 x .250                           | .306       | .100        | .230      | .120      | .300       | .201                 | .309      | .054       | .090      | .040                              | .36                                         |
| I | Z [ | #6-32                           | RA   | ۸                    | c                     | 10             | 8              | .246                 | .040                       | .375 x .250                           | .371       | .123        | .300      | .125      | .431       | .312                 | .442      | .066       | .141      | .040                              | .50                                         |
|   |     | #0-32                           | nA   | А                    | O                     | 10             | 10             | .308                 | .040                       | .375 x .312                           | .3/1       | .123        | .500      | .120      | .431       | .312                 | .442      | .000       | .141      | .040                              | .55                                         |
|   |     | #8-32                           | RA   | ۸                    | 0                     | 12             | 9              | .277                 | .040                       | .406 x .281                           | .402       | .145        | .350      | .125      | .462       | .375                 | .525      | .078       | .157      | .040                              | .58                                         |
|   |     | #0-32                           | nA   | А                    | 0                     | IZ             | 12             | .371                 | .040                       | .406 x .375                           | .402       | .143        | .550      | .120      | .402       | .3/3                 | .525      | .076       | .107      | .040                              | .65                                         |

| RIC | Thread<br>Form<br>Screw<br>Size | Туре         | Fastener<br>Material | Screw<br>Size<br>Code | Height<br>Code | Length<br>Code | Length<br>L<br>±0.08 | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.05<br>-0.03 | A<br>±0.08 | ØB<br>±0.1 | C<br>Nom. | D<br>Nom. | E<br>±0.15 | Height<br>F<br>±0.15 | G<br>Nom. | H<br>±0.18 | J<br>Nom. | Min. Part<br>Face to<br>Edge<br>K | Min. Dist.<br>Hole <b>⊈</b><br>To Edge<br>M |
|-----|---------------------------------|--------------|----------------------|-----------------------|----------------|----------------|----------------------|----------------------------|-----------------------------------------|------------|------------|-----------|-----------|------------|----------------------|-----------|------------|-----------|-----------------------------------|---------------------------------------------|
| ΕŢ  | M3 x 0.5                        | RA           | ۸                    | M3                    | 7              | 4              | 3.89                 | 1                          | 8 x 4                                   | 7.89       | 2.77       | 6.35      | 3.18      | 9.42       | 7                    | 9.27      | 1,5        | 2.87      | 1.02                              | 9.1                                         |
| Σ   | IVIO X U.S                      | n <i>i</i> A | K                    | IVIO                  | ,              | 6              | 5.89                 | -                          | 8 x 6                                   | 7.05       | 2.11       | 0.33      | 3,10      | 3.42       | /                    | 3.21      | ניו        | 2.07      | 1.02                              | 10.7                                        |
|     | M4 v 0 7                        | RA           | ٨                    | MA                    | 0              | 7              | 6.89                 | 1                          | 10 x 7                                  | 9.89       | 3.68       | 8.89      | 2 10      | 11,43      |                      | 12.19     | 1.97       | 4.06      | 102                               | 14.7                                        |
|     | M4 x 0.7                        | nΑ           | A                    | M4                    | 9              | 9              | 8.89                 | _                          | 10 x 9                                  | 9.69       | 3.08       | 0.89      | 3.18      | 11.43      | 9                    | 12.19     | 1.97       | 4.06      | 1.02                              | 16.3                                        |


#### SMTRA™ ReelFast® RIGHT ANGLE FASTENERS

#### Surface mounted and threaded to accept standard unified or metric screw



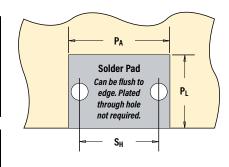


# PART NUMBER DESIGNATION SMTRA - 256 - 8 - 6 ET Type and Thread Height Length Finish Material Code Code Code Code (zinc die cast)



# Stencii Masking Examples




#### All dimensions are in inches.

|     |   | Thread<br>Size     | Туре  | Thread<br>Code | Height<br>Code | Length<br>Code | Length<br>L<br>±.005 | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | A<br>±.006 | B<br>±.006 | C<br>±.006 | D<br>±.006 | Height<br>F<br>±.006 | G<br>±.006 | J<br>Nom. | K<br>Nom. | N<br>Max. | P<br>Max. | S <sub>P</sub><br>±.003 | T<br>Nom. |
|-----|---|--------------------|-------|----------------|----------------|----------------|----------------------|----------------------------|-----------------------------------|------------|------------|------------|------------|----------------------|------------|-----------|-----------|-----------|-----------|-------------------------|-----------|
| L . |   | .086-56<br>(#2-56) | SMTRA | 256            | 8              | 6              | .188                 | .040                       | .053                              | .218       | .040       | .060       | .140       | .250                 | .345       | .020      | .030      | .048      | .040      | .157                    | .105      |
| 1   | _ | .112-40<br>(#4-40) | SMTRA | 440            | 9              | 6              | .188                 | .040                       | .053                              | .250       | .050       | .065       | .160       | .281                 | .390       | .020      | .030      | .048      | .040      | .188                    | .125      |
| =   |   | .138-32<br>(#6-32) | SMTRA | 632            | 10             | 8              | .250                 | .040                       | .053                              | .312       | .050       | .065       | .205       | .312                 | .450       | .020      | .030      | .048      | .040      | .250                    | .145      |
|     |   | .164-32<br>(#8-32) | SMTRA | 832            | 12             | 9              | .281                 | .040                       | .053                              | .375       | .050       | .075       | .250       | .375                 | .535       | .020      | .030      | .048      | .040      | .312                    | .195      |

| ပ        | Thread<br>Size x<br>Pitch | Туре  | Thread<br>Code | Height<br>Code | Length<br>Code | Length<br>L<br>±0.13 | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | A<br>±0.15 | B<br>±0.15 | C<br>±0.15 | D<br>±0.15 | Height<br>F<br>±0.15 | G<br>±0.15 | J<br>Nom. | K<br>Nom. | N<br>Max. | P<br>Max. | S <sub>P</sub><br>±0.08 | T<br>Nom. |
|----------|---------------------------|-------|----------------|----------------|----------------|----------------------|----------------------------|--------------------------------|------------|------------|------------|------------|----------------------|------------|-----------|-----------|-----------|-----------|-------------------------|-----------|
| <u>-</u> | M2 x 0.4                  | SMTRA | M2             | 6              | 5              | 5                    | 1                          | 1.35                           | 5.5        | 1          | 1.5        | 3.5        | 6                    | 8.4        | 0.5       | 0.75      | 1.22      | 1         | 4                       | 2.65      |
| ΙĒΤ      | M2.5 x 0.45               | SMTRA | M25            | 6              | 5              | 5                    | 1                          | 1.35                           | 5.5        | 1          | 1.5        | 3.5        | 6                    | 8.4        | 0.5       | 0.75      | 1.22      | 1         | 4                       | 2.65      |
| 2        | M3 x 0.5                  | SMTRA | M3             | 7              | 5              | 5                    | 1                          | 1.35                           | 6.35       | 1.25       | 1.65       | 4          | 7                    | 9.75       | 0.5       | 0.75      | 1.22      | 1         | 4.75                    | 3.2       |
|          | M4 x 0.7                  | SMTRA | M4             | 9              | 7              | 7                    | 1                          | 1.35                           | 9.53       | 1.25       | 1.65       | 6.35       | 9                    | 13.1       | 0.5       | 0.75      | 1.22      | 1         | 7.9                     | 4.8       |

| E D | Thread<br>Code | Pad Width<br>P <sub>A</sub><br>Min. | Pad Length<br>P <sub>L</sub><br>Min. | Hole Spacing<br>S <sub>H</sub><br>±.002 | Hole Size<br>In Sheet<br>+.003000 |
|-----|----------------|-------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------|
| ᇤ   | 256            | .262                                | .171                                 | .157                                    | .053                              |
| Ξ   | 440            | .294                                | .171                                 | .188                                    | .053                              |
|     | 632            | .356                                | .233                                 | .250                                    | .053                              |
|     | 832            | .419                                | .264                                 | .312                                    | .053                              |

| 21  | Thread<br>Code | Pad Width<br>P <sub>A</sub><br>Min. | Pad Length<br>P <sub>L</sub><br>Min. | Hole Spacing<br>S <sub>H</sub><br>±0.05 | Hole Size<br>In Sheet<br>+0.08 |
|-----|----------------|-------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------|
| T B | M2             | 6.62                                | 4.57                                 | 4                                       | 1.35                           |
| ш   | M25            | 6.62                                | 4.57                                 | 4                                       | 1.35                           |
| Σ   | M3             | 7.47                                | 4.57                                 | 4.75                                    | 1.35                           |
|     | M4             | 10.65                               | 6.57                                 | 7.9                                     | 1.35                           |





| Part<br>Number | Parts<br>Per Reel | Pitch<br>(mm) | Tape Width (mm) |
|----------------|-------------------|---------------|-----------------|
| SMTRA256-8-6   | 375               | 16            | 24              |
| SMTRA440-9-6   | 300               | 16            | 24              |
| SMTRA632-10-8  | 200               | 20            | 32              |
| SMTRA832-12-9  | 200               | 20            | 32              |
| SMTRAM2-6-5    | 375               | 16            | 24              |
| SMTRAM25-6-5   | 375               | 16            | 24              |
| SMTRAM3-7-5    | 300               | 16            | 24              |
| SMTRAM4-9-7    | 200               | 20            | 32              |

#### **MATERIAL AND FINISH SPECIFICATIONS**

|             | Threads                                       | ı        | astener Materials |                  |                                                                 | Standa  | rd Finishes <sup>(1)</sup>                                                             | For Use                      | In Sheet Hardne               | ess: <sup>(2)</sup> |
|-------------|-----------------------------------------------|----------|-------------------|------------------|-----------------------------------------------------------------|---------|----------------------------------------------------------------------------------------|------------------------------|-------------------------------|---------------------|
| Туре        | Internal, ASME<br>B1.1, 2B ASME<br>B1.13M, 6H | Aluminum | Steel             | Zinc<br>Die Cast | Zinc Plated per ASTM<br>B633, SC1 (5µm),<br>Type III, Colorless | Natural | Electro-plated Tin ASTM<br>B 545, Class A with Clear<br>Preservative Coating, Annealed | HRB 45 /<br>HB 84<br>or Less | HRB 60 /<br>HB 107<br>or Less | PC<br>Board         |
| RAS         | -                                             |          |                   |                  |                                                                 |         |                                                                                        |                              |                               |                     |
| RAA         |                                               | •        |                   |                  |                                                                 | •       |                                                                                        | •                            |                               |                     |
| SMTRA       |                                               |          |                   |                  |                                                                 |         | •                                                                                      |                              |                               | •                   |
| Part Number | Codes for Finishes                            |          |                   |                  | ZI                                                              | None    | ET <sup>(3)</sup>                                                                      |                              |                               |                     |

- (1) See PEM® Technical Support section of our website for related plating standards and specifications.
- (2) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (3) Optimal solderability life noted on packaging.

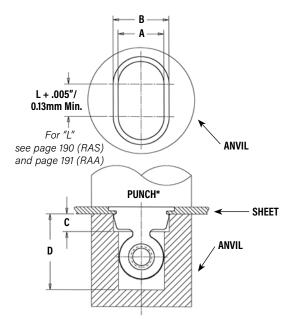
#### **INSTALLATION**

#### **RAS™ and RAA™ Fasteners**

- 1. Prepare a properly sized rectangular mounting hole in the sheet. Do not perform any secondary operations such as deburring.
- 2. Place the fastener through the mounting hole (preferably the punch side) and into the anvil as shown in the drawing to the right.
- 3. With the installation punch and anvil surfaces parallel, apply a squeezing force until the bottom of the fastener becomes flush with the sheet.

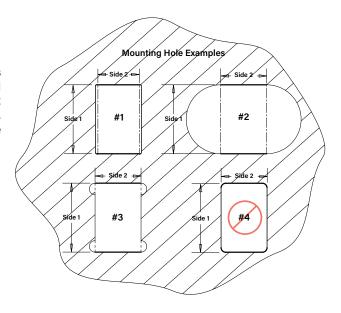
#### **PEMSERTER® Installation Tooling**

|        | Screw or            |            | Anvil Dime | nsions (in.) |           |                      |                      |
|--------|---------------------|------------|------------|--------------|-----------|----------------------|----------------------|
| I E D  | Thread Size<br>Code | A<br>±.001 | B<br>±.001 | C<br>±.005   | D<br>Min. | Anvil Part<br>Number | Punch Part<br>Number |
| 4      | 4 / 440             | .257       | .313       | .100         | .425      | 8002711              |                      |
| N<br>N | 6 / 632             | .307       | .376       | .100         | .500      | 8002712              | 8003076              |
|        | 8 / 832             | .357       | .407       | .100         | .575      | 8003642              |                      |


|      | Screw or            |            | Anvil Dimer | nsions (mm) |           |                      |                      |
|------|---------------------|------------|-------------|-------------|-----------|----------------------|----------------------|
| TRIC | Thread Size<br>Code | A<br>±0.03 | B<br>±0.03  | C<br>±0.1   | D<br>Min. | Anvil Part<br>Number | Punch Part<br>Number |
| ME   | М3                  | 6.53       | 8.02        | 2.54        | 10.8      | 8002713              | 8003076              |
| 2    | M4                  | 9.07       | 10.03       | 2.54        | 12.7      | 8002714              | 8003070              |

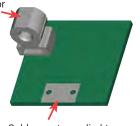
#### **MOUNTING HOLE EXAMPLES**

The mounting hole is defined by two dimensions. The two thick lines shown must be straight for the entire length defined by "Side 2" and must be separated by the distance shown as "Side 1" (Side 1 and Side 2 are the two dimensions given for the mounting hole on pages 3 and 4). The illustration shows three examples (#1, #2, and #3) of how it can be achieved. Example #4 in the lower right side will not work.

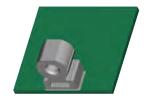

#### **INSTALLATION NOTES**

- For best results we recommend using a HAEGER® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for this product.




\* NOTE: The punch must be large enough to cover the entire base of the fastener to ensure proper installation.

Installation tooling is available from PennEngineering.




#### **SMTRA™ SURFACE MOUNT FASTENERS**

Flat top for vacuum pick up.



Solder paste applied to pad on PCB.

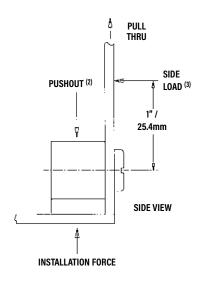


Solder fastener in place using standard surface mount techniques.



Undercut to accept solder fillet and permit flush to edge installation.

#### PERFORMANCE DATA(1) RAS™ THREADED FASTENERS


|   |        |                    |        |                                           |                        |                       |                         | Test Sheet          | Material                                  |                        |                       |                         |                     |      |     |    |      |     |    |     |
|---|--------|--------------------|--------|-------------------------------------------|------------------------|-----------------------|-------------------------|---------------------|-------------------------------------------|------------------------|-----------------------|-------------------------|---------------------|------|-----|----|------|-----|----|-----|
|   | Thread | Height             | Length |                                           | 5052-H34               | Aluminum              |                         |                     |                                           | Cold-roll              | ed Steel              |                         | ,                   |      |     |    |      |     |    |     |
|   | Code   | Code               | Code   | Max. Rec. Tightening<br>Torque (in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) (2) | Side Load<br>(lbs.) (3) | Pull Thru<br>(lbs.) | Max. Rec. Tightening<br>Torque (in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) (2) | Side Load<br>(lbs.) (3) | Pull Thru<br>(lbs.) |      |     |    |      |     |    |     |
| Δ |        |                    | 4      | 13                                        | 1800                   | 100                   | 7                       | 80                  | 16                                        | 2400                   | 180                   | 9                       | 80                  |      |     |    |      |     |    |     |
| = | 440    | 9                  | 6      | 17                                        | 1800                   | 145                   | 8                       | 80                  | 17                                        | 2400                   | 260                   | 9                       | 80                  |      |     |    |      |     |    |     |
| 쁘 |        |                    | 8      | 17                                        | 2100                   | 180                   | 13                      | 80                  | 17                                        | 3000                   | 315                   | 15                      | 80                  |      |     |    |      |     |    |     |
| Z |        |                    | 4      | 20                                        | 2000                   | 100                   | 7                       | 85                  | 20                                        | 2500                   | 190                   | 9                       | 85                  |      |     |    |      |     |    |     |
|   | 632    | 10                 | 8      | 21                                        | 2500                   | 190                   | 12                      | 85                  | 26                                        | 3200                   | 335                   | 16                      | 85                  |      |     |    |      |     |    |     |
|   |        | 10<br>6<br>12<br>9 | 10     | 21                                        | 2800                   | 230                   | 16                      | 85                  | 26                                        | 4000                   | 385                   | 20                      | 85                  |      |     |    |      |     |    |     |
|   |        |                    |        |                                           |                        |                       |                         |                     |                                           | 6                      | 20                    | 2400                    | 140                 | 15   | 100 | 27 | 3200 | 260 | 11 | 100 |
|   | 832 12 |                    | 9      | 23                                        | 3300                   | 195                   | 16                      | 100                 | 29                                        | 4200                   | 345                   | 20                      | 100                 |      |     |    |      |     |    |     |
|   |        |                    | 12     | 12                                        | 12                     | 12                    | 12                      | 30                  | 3500                                      | 260                    | 20                    | 100                     | 35                  | 4700 | 420 | 27 | 100  |     |    |     |

|   |        |        |        |                                      |                      |                    |                      | Test Sheet       | Material                             |                      |                    |                      |                  |    |     |      |      |
|---|--------|--------|--------|--------------------------------------|----------------------|--------------------|----------------------|------------------|--------------------------------------|----------------------|--------------------|----------------------|------------------|----|-----|------|------|
|   | Thread | Height | Length |                                      | 5052-H34             | Aluminum           |                      |                  |                                      | Cold-roll            | ed Steel           |                      |                  |    |     |      |      |
| 0 | Code   | Code   | Code   | Max. Rec. Tightening<br>Torque (N-m) | Installation<br>(kN) | Pushout<br>(N) (2) | Side Load<br>(N) (3) | Pull Thru<br>(N) | Max. Rec. Tightening<br>Torque (N-m) | Installation<br>(kN) | Pushout<br>(N) (2) | Side Load<br>(N) (3) | Pull Thru<br>(N) |    |     |      |      |
| 2 |        |        | 3      | 1.47                                 | 8                    | 423                | 36                   | 356              | 2.26                                 | 10.7                 | 778                | 40                   | 356              |    |     |      |      |
|   | М3     | 7      | 7      | 7                                    | 4                    | 1.92               | 8                    | 534              | 36                                   | 356                  | 2.71               | 10.7                 | 1001             | 40 | 356 |      |      |
| Σ |        |        | 6      | 2.15                                 | 9.3                  | 756                | 58                   | 356              | 2.71                                 | 13.3                 | 1312               | 67                   | 356              |    |     |      |      |
|   |        |        | 4      | 2.15                                 | 8.9                  | 556                | 53                   | 423              | 3.28                                 | 11.6                 | 956                | 44                   | 423              |    |     |      |      |
|   | M4     | 9      | 9      | 9                                    | 7                    | 2.6                | 13.3                 | 890              | 76                                   | 423                  | 4.07               | 16                   | 1512             | 80 | 423 |      |      |
|   |        |        |        |                                      | J                    | ,                  |                      | 9                | 9                                    | 9                    | 2.83               | 13.3                 | 1112             | 93 | 423 | 4.52 | 18.7 |

#### **RAA™ FASTENERS**

|     | Screw<br>Size<br>Code | Height<br>Code | Length<br>Code | Thread Forming<br>Torque<br>(in. lbs.) | Max. Rec.<br>Tightening Torque<br>(in. lbs.) | Test Sheet<br>Material | Installation<br>(lbs.) | Pushout<br>(lbs.)<br>(2) | Side Load<br>(lbs.)<br>(3) | Pull<br>Thru<br>(lbs.) |
|-----|-----------------------|----------------|----------------|----------------------------------------|----------------------------------------------|------------------------|------------------------|--------------------------|----------------------------|------------------------|
| E D | 4                     | 9              | 6              | 3                                      | 6                                            | 5052-H34               | 1800                   | 140                      | 8                          | 80                     |
| 盂   | 4                     | ח              | 8 4 10         |                                        | 10                                           | Aluminum               | 1800                   | 180                      | 13                         | 80                     |
| Z   | 6                     | 10             | 8              | 5.5                                    | 11                                           | 5052-H34               | 2500                   | 175                      | 12                         | 85                     |
|     | 0                     | 10             | 10             | 5.5                                    | 17                                           | Aluminum               | 2500                   | 235                      | 16                         | 85                     |
|     | 0                     | 12             | 9              | 6.5                                    | 18                                           | 5052-H34               | 3100                   | 205                      | 13                         | 105                    |
|     | 8                     | 12             | 12             | 8.0                                    | 20                                           | Aluminum               | 3100                   | 255                      | 21                         | 105                    |

| 1 C | Screw<br>Size<br>Code | Height<br>Code | Code (N-m) Ingritering Torque Materia |     | Test Sheet<br>Material | Installation<br>(kN) | Pushout<br>(N)<br>(2) | Side Load<br>(N)<br>(3) | Pull<br>Thru<br>(N) |     |     |     |
|-----|-----------------------|----------------|---------------------------------------|-----|------------------------|----------------------|-----------------------|-------------------------|---------------------|-----|-----|-----|
| T B | М3                    | 7              | 4                                     | .17 | .56                    | 5052-H34             | 7.1                   | 556                     | 27                  | 356 |     |     |
| ш   | IVIO                  | 7              | 6                                     | .23 | 1.02                   | Aluminum             | 7.1                   | 756                     | 44                  | 356 |     |     |
| Σ   | M4                    | 0              | 0                                     | 0   | 7                      | .56                  | 2.26                  | 5052-H34                | 13.3                | 890 | 76  | 423 |
|     | M4 9                  | 9              | 9                                     | 9   | .56                    | 2.83                 | Aluminum              | 13.3                    | 1045                | 107 | 423 |     |



- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.
- (2) Pushout test is conducted without side panel attached to R'ANGLE® fastener.
- (3) 1" / 25.4mm from screw centerline.

#### **PERFORMANCE DATA**

#### SMTRA™ R'ANGLE® FASTENERS WITH ET FINISH(1)(2)

| E D | Part<br>Number | Pullout<br>(lbs.) | Side Load<br>(lbs.) |
|-----|----------------|-------------------|---------------------|
| Ξ   | SMTRA256-8-6   | 51.7              | 7.1                 |
| Z   | SMTRA440-9-6   | 89.5              | 10.8                |
| n   | SMTRA632-10-8  | 110.3             | 8.4                 |
|     | SMTRA832-12-9  | 137.2             | 21.2                |

| ا د | Part<br>Number | Pullout<br>(N) | Side Load<br>(N) |
|-----|----------------|----------------|------------------|
| T B | SMTRAM2-6-5    | 418.2          | 56.8             |
| M E | SMTRAM25-6-5   | 216.5          | 36.9             |
| 2   | SMTRAM3-7-5    | 257.6          | 41.3             |
|     | SMTRAM4-9-7    | 369.3          | 73.3             |

#### **TESTING CONDITIONS**

**Oven** Quad ZCR convection oven with 4 zones

Vias Non

 High Temp
 518° F / 270° C

 Board Finish
 62% Sn, 38% Pb

Paste Amtech NC559LF Sn96.5/3.0Ag/0.5Cu (SAC305)

Lead-free

**Board** .062" thick, Single Layer FR-4

Stencil .0067" / 0.17 mm thick
Screen Printer Ragin Manual Printer

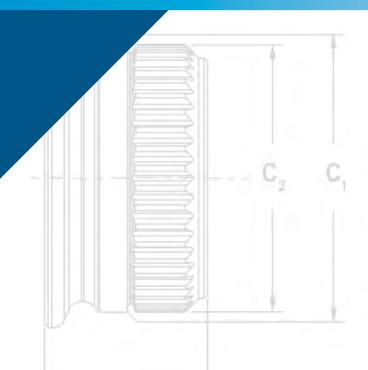
- (1) With lead-free paste. Average values of 30 test points. The data presented here is for general comparison purposes only. Actual performance is dependent upon application variables. We will be happy to provide samples for you to install. If required, we can also test your installed hardware and provide you with the performance data specific to your application.
- (2) Further testing details can be found in the literature section on our website.

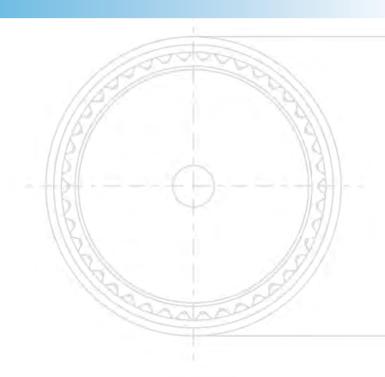
PEM® "Circle on Pedestal"
(Registered Trademark)

Fastener drawings and models are available at www.pemnet.com



Allows permanent joining in metal to metal and metal to PCB/plastic panels.



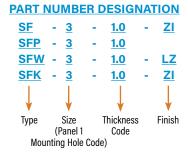


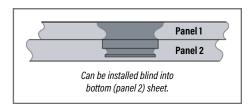

SF

SPOTFAST® FASTENERS






#### Allows permanent joining in metal to metal and metal to PCB/plastic panels


- Alternative to riveting and spot welding.
- No special installation equipment required.
- Flush or sub-flush on both sides.
- Minimal space requirements.
- No countersinking or other hole treatment required.
- Can be installed blind into bottom (panel 2) sheet.
- Can be concealed with paints and powder coatings.
- RoHS compliant.

Unlike rivets that "bulb" during installation, the ultimately flush profile of SpotFast® fasteners allows for unobtrusive attachment requiring minimal space. A smooth surface is retained for finishing and fasteners can be concealed easily with paints or powder coatings.

SF™ fasteners create a permanent, flush joining of two sheets. Squeezing the fastener into place causes a cold-flow of panel material into the fastener's two separate clinch profiles. The SF fastener is designed for joining metal to Metal Panel 1 metal. They install smooth with the top sheet, and flush or sub-flush with the Panel 2 bottom sheet. Fasteners can attach two metal sheets too difficult to weld; fasten sheets of unequal thicknesses; join dissimilar metals unable to be welded; and even attach ultra-thin metal sections. SFP™ fasteners offer the same benefits as the SF fastener but are made from **Stainless** Panel 1 precipitation hardened stainless steel for installation into stainless steel **Stainless** Panel 2 sheets. SFW™ fasteners offer the same benefits as the SF fastener but are specifically Washer > Metal designed to allow pivoting (hinging) of two sheets of metal. A wave washer Metal Panel 2 provides the consistent torsion to allow repeatable rotation. SFK™ fasteners are designed for flush joining of metal to PCB/plastic Metal Panel 1 panels P.C.B. Panel 2



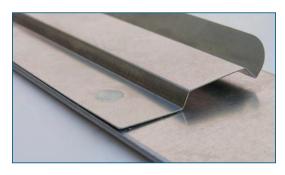




#### SPOTFAST® FASTENER SELECTOR GUIDE

|      |                                                       |                                                        | Primary Use                                        |                                   |                                                       |
|------|-------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|-----------------------------------|-------------------------------------------------------|
| Туре | Joining two panels of<br>similar or dissimilar metals | Joining two panels when one or more is stainless steel | Joining a metal panel to a<br>PCB or plastic panel | Single point hinging applications | Offers highest corrosion resistance in product family |
| SF   | •                                                     |                                                        |                                                    | <b>(1)</b>                        |                                                       |
| SFP  | <b>(1)</b>                                            | •                                                      |                                                    | <b>(1)</b>                        | •                                                     |
| SFW  | <b>(1)</b>                                            |                                                        |                                                    | •                                 |                                                       |
| SFK  | <b>(1)</b>                                            |                                                        | •                                                  | <b>(1)</b>                        |                                                       |

<sup>(1)</sup> Not primary use.


#### **METAL TO METAL**



SF™ fastener installed into unequal thickness sheets. Fastener is smooth with top of panel 1.



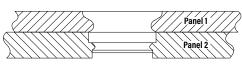
SF™ fastener installed sub-flush with panel 2. Fastener will be flush at minimum sheet thickness.

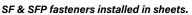


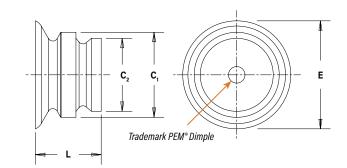
Sheets as thin as .005" / 0.13 mm may be attached to thicker sheets using a PEM® SpotFast® fastener. The thin sheet must be panel 1 and the "L" dimension must be equal to or less than the combined panel thicknesses. Consult our Applications Engineering department for more information.

#### **HINGING APPLICATIONS**




SFW<sup>™</sup> fastener offers flush-mounted, smooth pivot point.


#### **METAL TO PCB/PLASTIC**




SFK™ fastener joining metal to plastic.

#### SF™ AND SFP™ FASTENERS FOR PERMANENT JOINING OF TWO METAL SHEETS



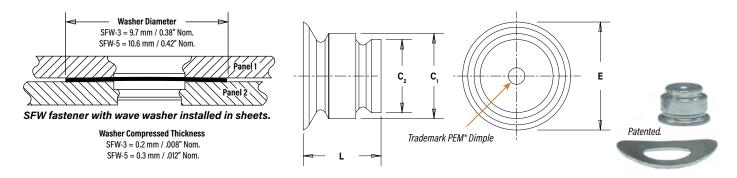






Patented

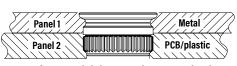
#### **SF™ Fastener**


|                     |                   |                       | Panel | 1     |                            |     | Panel              | 2   |      |        |                       |         |                       |         |          |      |          |      |                             |
|---------------------|-------------------|-----------------------|-------|-------|----------------------------|-----|--------------------|-----|------|--------|-----------------------|---------|-----------------------|---------|----------|------|----------|------|-----------------------------|
| Type<br>and<br>Size | Thickness<br>Code | Thick<br>±0.08<br>±.0 |       | +0.08 | ng Hole<br>  mm /<br>'000" | M   | rness<br>in.<br>1) |     |      | (<br>M | Ç <sub>ı</sub><br>ax. | (<br>Ma | ) <sub>2</sub><br>ax. | l<br>Ma | E<br>ax. | M    | L<br>ax. | Hole | Dist.<br>• <b>©</b><br>edge |
|                     |                   | mm                    | in.   | mm    | in.                        | mm  | in.                | mm  | in.  | mm     | in.                   | mm      | in.                   | mm      | in.      | mm   | in.      | mm   | in.                         |
| SF-3                | 0.8               | 0.8                   | .031  | 3     | .118                       | 0.8 | .031               | 2.5 | .098 | 2.98   | .117                  | 2.48    | .097                  | 3.53    | .139     | 1.5  | .059     | 2.54 | .1                          |
| SF-3                | 1.0               | 1                     | .039  | 3     | .118                       | 1   | .039               | 2.5 | .098 | 2.98   | .117                  | 2.48    | .097                  | 3.76    | .148     | 1.9  | .075     | 2.54 | .1                          |
| SF-3                | 1.2               | 1.2                   | .047  | 3     | .118                       | 1.2 | .047               | 2.5 | .098 | 2.98   | .117                  | 2.48    | .097                  | 3.76    | .148     | 2.31 | .091     | 2.54 | .1                          |
| SF-3                | 1.6               | 1.6                   | .063  | 3     | .118                       | 1.6 | .063               | 2.5 | .098 | 2.98   | .117                  | 2.48    | .097                  | 3.76    | .148     | 3.12 | .123     | 2.54 | .1                          |
| SF-5                | 0.8               | 0.8                   | .031  | 5     | .197                       | 0.8 | .031               | 4   | .157 | 4.98   | .196                  | 3.97    | .156                  | 5.56    | .219     | 1.5  | .059     | 3.6  | .14                         |
| SF-5                | 1.0               | 1                     | .039  | 5     | .197                       | 1   | .039               | 4   | .157 | 4.98   | .196                  | 3.97    | .156                  | 5.56    | .219     | 1.9  | .075     | 3.6  | .14                         |
| SF-5                | 1.2               | 1.2                   | .047  | 5     | .197                       | 1.2 | .047               | 4   | .157 | 4.98   | .196                  | 3.97    | .156                  | 5.56    | .219     | 2.31 | .091     | 3.6  | .14                         |
| SF-5                | 1.6               | 1.6                   | .063  | 5     | .197                       | 1.6 | .063               | 4   | .157 | 4.98   | .196                  | 3.97    | .156                  | 5.56    | .219     | 3.12 | .123     | 3.6  | .14                         |

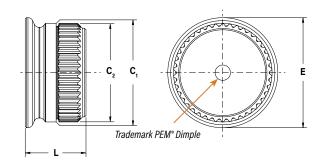
#### SFP™ Fastener for Installation Into Stainless Steel Sheets

|                     |                   |       | Panel       | 1     |                            |     | Panel                                        | 2   |      |         |                       |         |                  |         |          |         |          |                                        |     |
|---------------------|-------------------|-------|-------------|-------|----------------------------|-----|----------------------------------------------|-----|------|---------|-----------------------|---------|------------------|---------|----------|---------|----------|----------------------------------------|-----|
| Type<br>and<br>Size | Thickness<br>Code | ±0.08 | mm /<br>03" | +0.08 | ng Hole<br>8 mm /<br>'000" | M   | Thickness Mounting Min. +0.08 n (1) +.003" - |     | mm / | (<br>Ma | C <sub>1</sub><br>ax. | (<br>Ma | '2<br><b>3X.</b> | l<br>Ma | E<br>ax. | l<br>Ma | L<br>ax. | Min. Dist.<br>Hole <b>⊄</b><br>To Edge |     |
|                     |                   | mm    | in.         | mm    | in.                        | mm  | in.                                          | mm  | in.  | mm      | in.                   | mm      | in.              | mm      | in.      | mm      | in.      | mm                                     | in. |
| SFP-3               | 1.0               | 1     | .039        | 3     | .118                       | 1   | .039                                         | 2.5 | .098 | 2.98    | .117                  | 2.48    | .097             | 3.76    | .148     | 1.9     | .075     | 2.54                                   | .1  |
| SFP-3               | 1.2               | 1.2   | .047        | 3     | .118                       | 1.2 | .047                                         | 2.5 | .098 | 2.98    | .117                  | 2.48    | .097             | 3.76    | .148     | 2.31    | .091     | 2.54                                   | .1  |
| SFP-3               | 1.6               | 1.6   | .063        | 3     | .118                       | 1.6 | .063                                         | 2.5 | .098 | 2.98    | .117                  | 2.48    | .097             | 3.76    | .148     | 3.12    | .123     | 2.54                                   | .1  |
| SFP-5               | 1.0               | 1     | .039        | 5     | .197                       | 1   | .039                                         | 4.5 | .177 | 4.98    | .196                  | 4.47    | .176             | 5.56    | .219     | 1.9     | .075     | 3.6                                    | .14 |
| SFP-5               | 1.2               | 1.2   | .047        | 5     | .197                       | 1.2 | .047                                         | 4.5 | .177 | 4.98    | .196                  | 4.47    | .176             | 5.56    | .219     | 2.31    | .091     | 3.6                                    | .14 |
| SFP-5               | 1.6               | 1.6   | .063        | 5     | .197                       | 1.6 | .063                                         | 4.5 | .177 | 4.98    | .196                  | 4.47    | .176             | 5.56    | .219     | 3.12    | .123     | 3.6                                    | .14 |

<sup>(1)</sup> Fastener will provide flush application at minimum sheet thickness.


#### SFW™ FASTENER WITH WAVE WASHER FOR SINGLE POINT HINGING APPLICATIONS




|                     |                   |                       | Panel | 1     |                            |     | Panel                 | 2   |                         |         |               |         |                       |         |          |      |          |      |                             |
|---------------------|-------------------|-----------------------|-------|-------|----------------------------|-----|-----------------------|-----|-------------------------|---------|---------------|---------|-----------------------|---------|----------|------|----------|------|-----------------------------|
| Type<br>and<br>Size | Thickness<br>Code | Thick<br>±0.08<br>±.0 | mm /  | +0.08 | ng Hole<br>  mm /<br>'000" | Mi  | Min. +0.0<br>(1) +.00 |     | ng Hole<br>mm /<br>000" | (<br>Ma | )<br>1<br>3X. | (<br>Ma | S <sub>2</sub><br>ax. | I<br>Ma | E<br>ax. | M.   | L<br>ax. | Hole | Dist.<br>e <b>Œ</b><br>Edge |
| (2)                 |                   | mm                    | in.   | mm    | in.                        | mm  | in.                   | mm  | in.                     | mm      | in.           | mm      | in.                   | mm      | in.      | mm   | in.      | mm   | in.                         |
| SFW-3               | 0.8               | 0.8                   | .031  | 3     | .118                       | 0.8 | .031                  | 2.5 | .098                    | 2.98    | .117          | 2.48    | .097                  | 3.53    | .139     | 2.09 | .082     | 2.54 | .1                          |
| SFW-3               | 1.0               | 1                     | .039  | 3     | .118                       | 1   | .039                  | 2.5 | .098                    | 2.98    | .117          | 2.48    | .097                  | 3.76    | .148     | 2.49 | .098     | 2.54 | .1                          |
| SFW-3               | 1.2               | 1.2                   | .047  | 3     | .118                       | 1.2 | .047                  | 2.5 | .098                    | 2.98    | .117          | 2.48    | .097                  | 3.76    | .148     | 2.90 | .114     | 2.54 | .1                          |
| SFW-3               | 1.6               | 1.6                   | .063  | 3     | .118                       | 1.6 | .063                  | 2.5 | .098                    | 2.98    | .117          | 2.48    | .097                  | 3.76    | .148     | 3.71 | .146     | 2.54 | .1                          |
| SFW-5               | 0.8               | 0.8                   | .031  | 5     | .197                       | 0.8 | .031                  | 4   | .157                    | 4.98    | .196          | 3.97    | .156                  | 5.56    | .219     | 1.98 | .078     | 3.6  | .14                         |
| SFW-5               | 1.0               | 1                     | .039  | 5     | .197                       | 1   | .039                  | 4   | .157                    | 4.98    | .196          | 3.97    | .156                  | 5.56    | .219     | 2.39 | .094     | 3.6  | .14                         |
| SFW-5               | 1.2               | 1.2                   | .047  | 5     | .197                       | 1.2 | .047                  | 4   | .157                    | 4.98    | .196          | 3.97    | .156                  | 5.56    | .219     | 2.79 | .110     | 3.6  | .14                         |
| SFW-5               | 1.6               | 1.6                   | .063  | 5     | .197                       | 1.6 | .063                  | 4   | .157                    | 4.98    | .196          | 3.97    | .156                  | 5.56    | .219     | 3.61 | .142     | 3.6  | .14                         |

<sup>(1)</sup> Fastener will provide flush application at minimum sheet thickness.

#### SFK™ FASTENER FOR JOINING METAL TO PCB/PLASTIC PANELS



SFK fastener joining metal to PCB/plastic.





Patented.

|                     |                   |                       | Panel | 1     |                            |     | Panel              | 2   |                            |      |                       |              |      |         |          |      |          |      |                             |
|---------------------|-------------------|-----------------------|-------|-------|----------------------------|-----|--------------------|-----|----------------------------|------|-----------------------|--------------|------|---------|----------|------|----------|------|-----------------------------|
| Type<br>and<br>Size | Thickness<br>Code | Thick<br>±0.08<br>±.0 |       | +0.08 | ng Hole<br>8 mm /<br>'000" | M   | rness<br>in.<br>1) | I   | ng Hole<br>8 mm /<br>'000" |      | S <sub>1</sub><br>ax. | ±0.08<br>±.0 | mm / | I<br>Ma | E<br>ax. | M    | L<br>ax. | Hole | Dist.<br>e <b>©</b><br>Edge |
|                     |                   | mm                    | in.   | mm    | in.                        | mm  | in.                | mm  | in.                        | mm   | in.                   | mm           | in.  | mm      | in.      | mm   | in.      | mm   | in.                         |
| SFK-3               | 0.8               | 0.8                   | .031  | 3     | .118                       | 1.6 | .063               | 2.5 | .098                       | 2.98 | .117                  | 2.9          | .114 | 3.53    | .139     | 2.31 | .091     | 3    | 0.12                        |
| SFK-3               | 1.0               | 1                     | .039  | 3     | .118                       | 1.6 | .063               | 2.5 | .098                       | 2.98 | .117                  | 2.9          | .114 | 3.76    | .148     | 2.51 | .099     | 3    | 0.12                        |
| SFK-3               | 1.2               | 1.2                   | .047  | 3     | .118                       | 1.6 | .063               | 2.5 | .098                       | 2.98 | .117                  | 2.9          | .114 | 3.76    | .148     | 2.72 | .107     | 3    | 0.12                        |
| SFK-3               | 1.6               | 1.6                   | .063  | 3     | .118                       | 1.6 | .063               | 2.5 | .098                       | 2.98 | .117                  | 2.9          | .114 | 3.76    | .148     | 3.12 | .123     | 3    | 0.12                        |
| SFK-5               | 0.8               | 0.8                   | .031  | 5     | .197                       | 1.6 | .063               | 4.5 | .177                       | 4.98 | .196                  | 4.9          | .193 | 5.56    | .219     | 2.31 | .091     | 5.1  | 0.20                        |
| SFK-5               | 1.0               | 1                     | .039  | 5     | .197                       | 1.6 | .063               | 4.5 | .177                       | 4.98 | .196                  | 4.9          | .193 | 5.56    | .219     | 2.51 | .099     | 5.1  | 0.20                        |
| SFK-5               | 1.2               | 1.2                   | .047  | 5     | .197                       | 1.6 | .063               | 4.5 | .177                       | 4.98 | .196                  | 4.9          | .193 | 5.56    | .219     | 2.72 | .107     | 5.1  | 0.20                        |
| SFK-5               | 1.6               | 1.6                   | .063  | 5     | .197                       | 1.6 | .063               | 4.5 | .177                       | 4.98 | .196                  | 4.9          | .193 | 5.56    | .219     | 3.12 | .123     | 5.1  | 0.20                        |

<sup>(1)</sup> Fastener will provide flush application at minimum sheet thickness.

<sup>(2)</sup> SFW fasteners are shipped with mating washers.

#### MATERIAL AND FINISH SPECIFICATIONS

|                  | Fastener                 | Materials                                           |                                              | Standard Finishes                                                   |                                                                                            | For Use in Shee            | t Hardness: (2)            |
|------------------|--------------------------|-----------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------|----------------------------|
| Туре             | Hardened<br>Carbon Steel | Precipitation<br>Hardening Grade<br>Stainless Steel | Passivated and/or<br>Tested Per<br>ASTM A380 | Zinc Plated per ASTM B633,<br>SC1 (5µm), Type III,<br>Colorless (1) | Zinc Plated per ASTM B633,<br>SC1 (5µm), Type III, Colorless<br>Plus Sealant/Lubricant (1) | HRB 80 /<br>HB 150 or Less | HRB 88 /<br>HB 183 or Less |
| SF               | •                        |                                                     |                                              | •                                                                   |                                                                                            | •                          |                            |
| SFP              |                          |                                                     |                                              |                                                                     |                                                                                            |                            | •                          |
| SFW              | •                        |                                                     |                                              | (Washer)                                                            | ■ (Fastener)                                                                               | •                          |                            |
| SFK              | •                        |                                                     |                                              | •                                                                   |                                                                                            | •                          |                            |
| Part Number Code | For Finishes             |                                                     | None                                         | ZI                                                                  | LZ                                                                                         |                            |                            |

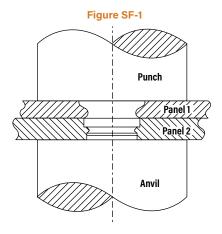
- (1) See PEM Technical Support section of our web site for related plating standards and specifications.
- (2) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.

#### INSTALLATION

#### SF™ AND SFP™ FASTENERS

- **Step 1.** Prepare properly sized mounting hole in both panels. Do not perform any secondary operations such as deburring. If the hole is punched, be sure to install fastener into punched side of hole.
- **Step 2.** Place Panel 2 with smaller mounting hole on anvil and align Panel 1 mounting hole with the mounting hole of Panel 2. Place the smaller diameter end of the fastener through the mounting holes as shown in the drawing to the right. (See figure SF-1).
- **Step 3.** With the punch and anvil surfaces parallel, apply squeezing force until the fastener is flush with the top of Panel 1. (See figure SF-1).

**NOTE:** To use SF or SFP fasteners as a flush-mounted pivot point, for best results, install SpotFast fastener into Panel 1 first, then place Panel 2 over fastener and squeeze again.

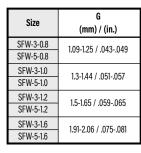

**PEMSERTER® Installation Tooling** 

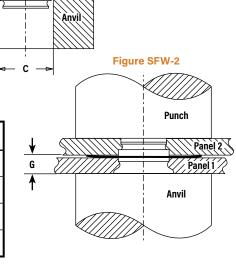
| Size        | Punch<br>Part No. | Anvil<br>Part No. |
|-------------|-------------------|-------------------|
| SF-3 / SF-5 | 975200048         | 975200046         |

Figure SFW-1

Punch

Panel 1





#### **SFW™ FASTENERS**

- **Step 1.** Prepare properly sized mounting hole in both panels. Do not perform any secondary operations such as deburring. If the hole is punched, be sure to install fastener into punched side of hole.
- **Step 2.** Using only Panel 1, with the punch and anvil surfaces parallel, apply squeezing force until the fastener is flush with the top of Panel 1. (See figure SFW-1).
- Step 3. To ensure proper function of washer, place washer over installed fastener (concave side facing up), then place Panel 2 over fastener. Apply squeezing force. Keep gap between Panel 2 and anvil. (See "G" in figure SFW-2).

#### **PEMSERTER®** Installation Tooling

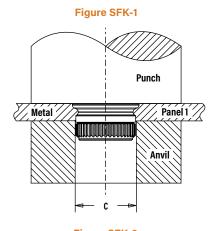
| Size  | C<br>+0.08/+.003<br>(mm) / (in.) | Punch<br>Part No. | Part Number<br>For Anvil Used<br>In Step 2 | Part Number<br>For Anvil Used<br>In Step 3 |
|-------|----------------------------------|-------------------|--------------------------------------------|--------------------------------------------|
| SFW-3 | 3.05 / .120                      | 975200048         | 970200229300                               | 975200046                                  |
| SFW-5 | 5.05 / .199                      | 975200048         | 970200020300                               | 975200046                                  |

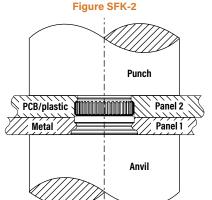




#### INSTALLATION

#### **SFK™ FASTENER**


- Step 1. Prepare properly sized mounting hole in both panels. Do not perform any secondary operations such as deburring. If the hole is punched, be sure to install fastener into punched side of hole.
- Step 2. Using only Panel 1, with the punch and anvil surfaces parallel, apply squeezing force until the fastener is flush with the top of Panel 1. (See figure SFK-1).
- Step 3. Place Panel 2 over fastener and apply squeezing force. (See figure SFK-2).


#### **PEMSERTER® Installation Tooling**

| Size  | C<br>+0.08/+.003<br>(mm) / (in.) | Punch<br>Part No. | Part Number<br>For Anvil Used<br>In Step 2 | Part Number<br>For Anvil Used<br>In Step 3 |
|-------|----------------------------------|-------------------|--------------------------------------------|--------------------------------------------|
| SFW-3 | 3.05 / .120                      | 975200048         | 970200229300                               | 975200046                                  |
| SFW-5 | 5.05 / .199                      | 975200048         | 970200020300                               | 975200046                                  |

#### **INSTALLATION NOTES**

- For best results we recommend using a HAEGER® or PEMSERTER® machine for installation of PEM self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.





#### PERFORMANCE DATA(1)

#### **SF™ FASTENER**

|          |           |           | Insta     | lation   |       | Pushout of Panel 2 (2) |          |      |      |  |  |  |
|----------|-----------|-----------|-----------|----------|-------|------------------------|----------|------|------|--|--|--|
| Type and | Thickness | Cold-roll | led Steel | Alum     | ninum | Cold-roll              | ed Steel | Alum | inum |  |  |  |
| Size     | Code      | kN        | lbs.      | kN       | lbs.  | N                      | lbs.     | N    | lbs. |  |  |  |
| SF-3     | 0.8       | 8         | 1800      | 6        | 1350  | 360                    | 80       | 200  | 45   |  |  |  |
| SF-3     | 1.0       | 9         | 2025      | 6.5 1475 |       | 525                    | 115      | 250  | 55   |  |  |  |
| SF-3     | 1.2       | 11        | 2475      | 7 1575   |       | 555                    | 125      | 310  | 70   |  |  |  |
| SF-3     | 1.6       | 13        | 2925      | 7.5      | 1700  | 920                    | 205      | 550  | 125  |  |  |  |
| SF-5     | 0.8       | 11        | 2475      | 8        | 1800  | 625                    | 140      | 310  | 70   |  |  |  |
| SF-5     | 1.0       | 12        | 2700      | 9.5      | 2150  | 800                    | 180      | 515  | 115  |  |  |  |
| SF-5     | 1.2       | 18        | 4050      | 10       | 2250  | 1200                   | 270      | 770  | 170  |  |  |  |
| SF-5     | 1.6       | 20        | 4500      | 12.5     | 2825  | 1500                   | 335      | 1145 | 255  |  |  |  |

#### **SFP™ FASTENER**

|          |           |        | Stainle | ss Steel      |            |
|----------|-----------|--------|---------|---------------|------------|
| Type and | Thickness | Instal | lation  | Pushout of Pa | anel 2 (2) |
| Size     | Code      | kN     | lbs.    | N             | lbs.       |
| SFP-3    | 1.0       | 13.5   | 3000    | 620           | 140        |
| SFP-3    | 1.2       | 20     | 4500    | 830           | 186        |
| SFP-3    | 1.6       | 22     | 5000    | 1500          | 340        |
| SFP-5    | 1.0       | 18     | 4000    | 990           | 222        |
| SFP-5    | 1.2       | 27     | 6000    | 1158          | 260        |
| SFP-5    | 1.6       | 33     | 7500    | 3117          | 701        |

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.
- (2) In most applications, pullout strength of the SpotFast fastener in Panel 1 exceeds pushout strength of Panel 2.

#### PERFORMANCE DATA(1)

#### **SFW™ FASTENER**

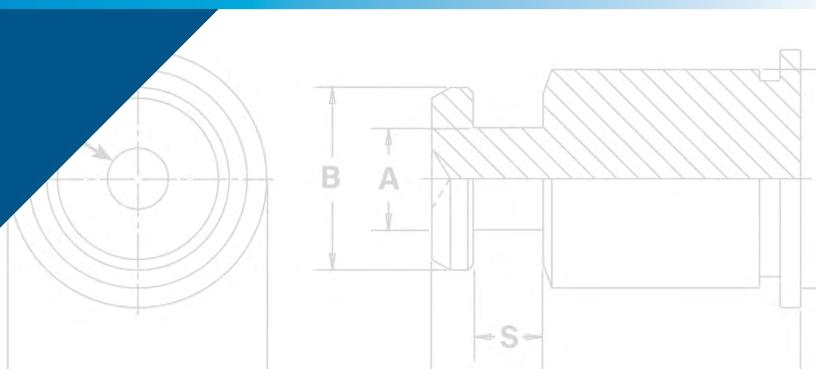
|          |           |          | Installation | into Panel 1 |      |           | Installation | into Panel 2 |      |           | Pushout o | f Panel 2 <sup>(2)</sup> |      |
|----------|-----------|----------|--------------|--------------|------|-----------|--------------|--------------|------|-----------|-----------|--------------------------|------|
| Type and | Thickness | Cold-rol | led Steel    | Alum         | inum | Cold-roll | ed Steel     | Alum         | inum | Cold-roll | ed Steel  | Alum                     | inum |
| Size     | Code      | kN       | lbs.         | kN           | lbs. | kN        | lbs.         | kN           | lbs. | N         | lbs.      | N                        | lbs. |
| SFW-3    | 0.8       | 4.5      | 1010         | 2.5          | 560  | 3         | 675          | 2            | 450  | 350       | 78        | 85                       | 19   |
| SFW-3    | 1.0       | 5.5      | 1240         | 3.5          | 780  | 4.5       | 1010         | 2            | 450  | 375       | 84        | 140                      | 31   |
| SFW-3    | 1.2       | 6        | 1350         | 3.5          | 780  | 5         | 1125         | 2            | 450  | 500       | 112       | 250                      | 56   |
| SFW-3    | 1.6       | 7        | 1575         | 4            | 900  | 6         | 1350         | 2.5          | 560  | 780       | 175       | 340                      | 76   |
| SFW-5    | 0.8       | 7        | 1575         | 3.5          | 780  | 8         | 1800         | 4            | 900  | 350       | 78        | 270                      | 61   |
| SFW-5    | 1.0       | 7        | 1575         | 3.5          | 780  | 8.5       | 1910         | 5            | 1125 | 380       | 153       | 425                      | 96   |
| SFW-5    | 1.2       | 7        | 1575         | 4            | 900  | 8.5       | 1910         | 5            | 1125 | 925       | 208       | 510                      | 115  |
| SFW-5    | 1.6       | 9        | 2025         | 5            | 1125 | 10        | 2250         | 5            | 1125 | 1450      | 326       | 600                      | 135  |

#### **SFK™ FASTENER**

|          |           | Installation | into Panel 1 | Installation | into Panel 2 | Pushout of | : Domal (2)            |
|----------|-----------|--------------|--------------|--------------|--------------|------------|------------------------|
| Type and | Thickness | Cold-roll    | ed Steel     | FR-4 Fib     | erglass      | Pusnout of | ranei 2 <sup>(5)</sup> |
| Size     | Code      | kN           | lbs.         | kN           | lbs.         | N          | lbs.                   |
| SFK-3    | 0.8       | 6.2          | 1400         | 1.8          | 400          | 200        | 45                     |
| SFK-3    | 1.0       | 8 1800       |              | 1.8          | 400          | 200        | 45                     |
| SFK-3    | 1.2       | 8.9 2000     |              | 1.8          | 400          | 200        | 45                     |
| SFK-3    | 1.6       | 10.2 2300    |              | 1.8          | 400          | 200        | 45                     |
| SFK-5    | 0.8       | 11.1         | 2500         | 1.8          | 400          | 400        | 90                     |
| SFK-5    | 1.0       | 13.5         | 3000         | 1.8          | 400          | 400        | 90                     |
| SFK-5    | 1.2       | 15.6         | 3500         | 1.8          | 400          | 400        | 90                     |
| SFK-5    | 1.6       | 17.8         | 4000         | 1.8          | 400          | 400        | 90                     |

(1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.

(2) In most applications, pullout strength of the SpotFast fastener in Panel 1 exceeds pushout strength of Panel 2.






PEM® KEYHOLE® fasteners are designed for quick panel attachment and reduction of loose hardware.

NEW - SKS-R™ Fasteners Provide high side-load in verticle component mounting applications





PEM® KEYHOLE® Standoffs and sheet joining fasteners are designed so that a PC board or panel can be quickly slipped into place and then removed from an assembly by simply sliding the board sideways and lifting it off. These standoffs and fasteners can save valuable time and dramatically reduce the amount of loose hardware required.

**SKC™/SK4™ standoffs** can be used for spacing or mounting of replaceable components. Typically, several standoffs are used with one standard PEM® threaded standoff which accepts a screw to secure the board or component against any unwanted movement.

- Allow detachable spacing of two sheets
- Clinch feature mounts fastener permanently and flush into metal sheet
- Unique barrel design allows for quick attachment and detachment
- Makes horizontal or vertical component mounting possible
- SK4™ standoffs are available for installation into stainless steel sheets



**SKC-F™/SK4-F™/SKS-R™ fasteners** are designed so that two sheets can be quickly joined flat against each other. Typically, several fasteners are used with one standard PEM® threaded F™ flush nut (<u>PEM® Bulletin F</u>) which accepts a screw to secure the sheets against any unwanted movement.

- Allow detachable spacing of two sheets
- Clinch feature mounts fastener permanently and flush or sub-flush into metal sheet
- Unique barrel design allows for quick "panel-on-panel" attachment and detachment
- Can be clinched into blind hole where concealed head is required
- Makes horizontal or vertical component mounting possible
- SK4-F™ fasteners are available for installation into stainless steel sheets
- SKS-R™ fasteners are designed to provide high side-load in verticle component mounting applications
- SKS-R<sup>™</sup> fasteners are available for various top sheet thicknesses and hole sizes



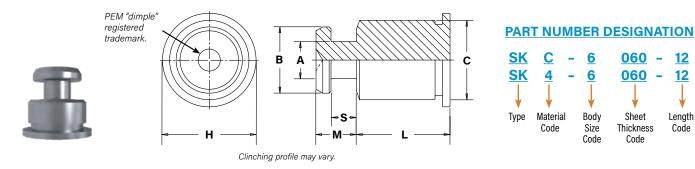
SKC-F™/SK4-F™ Fasteners



SKS-R™ Fasteners



SKC™/SK4™ Standoffs



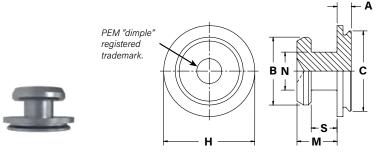

SKC-F™/SK4-F™ Fasteners





#### SKC™/SK4™ STANDOFF DIMENSIONAL DATA




#### All dimensions are in inches.

| ED | Ty<br>300 Series        |      | Body<br>Size -<br>Sheet |      |      |      |      | (Len | Len<br>gth Code | gth "L" ±<br>in 32nds |      | h)   |      |      |      |       | A<br>±.003 | B<br>±.003 | C<br>Max. | S<br>±.003 | M<br>Max. | H<br>Nom. |
|----|-------------------------|------|-------------------------|------|------|------|------|------|-----------------|-----------------------|------|------|------|------|------|-------|------------|------------|-----------|------------|-----------|-----------|
| NF | Stainless Stainless SIR | Code | .063                    | .125 | .188 | .250 | .312 | .375 | .437            | .500                  | .562 | .625 | .750 | .875 | 1.00 | ±.003 | ±.003      | WdX.       | I.003     | WdX.       | NUIII.    |           |
|    | SKC                     | SK4  | 6060                    | 2    | 4    | 6    | 8    | 10   | 12              | 14                    | 16   | 18   | 20   | 24   | 28   | 32    | .099       | .177       | .212      | .068       | .108      | .250      |

#### All dimensions are in millimeters.

| ETRIC | 300 Series<br>Stainless<br>Steel (1) |     | Body<br>Size -<br>Sheet<br>Code |   | Length "L" $\pm$ 0.13 (Length Code in millimeters) |  |  |  |  |  |  |  |  |  |    | A<br>± 0.08 | B<br>± 0.08 | C<br>Max. | S<br>± 0.08 | M<br>Max. | H<br>Nom. |
|-------|--------------------------------------|-----|---------------------------------|---|----------------------------------------------------|--|--|--|--|--|--|--|--|--|----|-------------|-------------|-----------|-------------|-----------|-----------|
| ×     | SKC                                  | SK4 | 61.5                            | 2 | 4 6 8 10 12 14 16 18 20 22 25                      |  |  |  |  |  |  |  |  |  | 25 | 2.51        | 4.5         | 5.39      | 1.73        | 2.75      | 6.35      |

#### SKC-F™/SK4-F™ FASTENER DIMENSIONAL DATA



#### Clinching profile may vary.

#### **PART NUMBER DESIGNATION**

<u>6</u>

6

Body

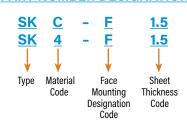
Size

Code

060 - 12

12

Length


Code

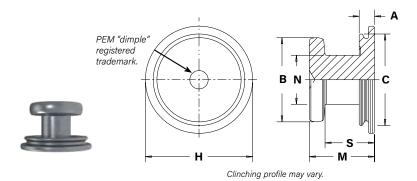
060 -

Sheet

Thickness

Code




#### All dimensions are in inches.

|        | Туј                              | ре                               | Face                            | To a Observat                  |           |        | •    |      |           | , u         |            |
|--------|----------------------------------|----------------------------------|---------------------------------|--------------------------------|-----------|--------|------|------|-----------|-------------|------------|
| NIFIED | 300 Series<br>Stainless<br>Steel | 400 Series<br>Stainless<br>Steel | Mounting<br>Designation<br>Code | Top Sheet<br>Thickness<br>Code | A<br>Max. | ± .003 | Max. | Nom. | M<br>Max. | n<br>± .003 | 5<br>±.003 |
| 0      | SKC                              | SK4                              | F                               | 1.5                            | .039      | .177   | .212 | .237 | .108      | .099        | .068       |

| Γ |        | Тур                              | Туре                             |                                 | Ton Choot                      |      | р      |      | u    | M    | N      | ·     |
|---|--------|----------------------------------|----------------------------------|---------------------------------|--------------------------------|------|--------|------|------|------|--------|-------|
|   | METRIC | 300 Series<br>Stainless<br>Steel | 400 Series<br>Stainless<br>Steel | Mounting<br>Designation<br>Code | Top Sheet<br>Thickness<br>Code | Max. | ± 0.08 | Max. | Nom. | Max. | ± 0.08 | ±0.08 |
|   | 2      | SKC                              | SK4                              | F                               | 1.5                            | 1    | 4.5    | 5.39 | 6.02 | 2.75 | 2.5    | 1.73  |

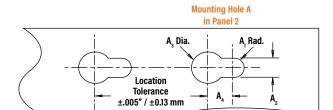
#### NEW

#### SKS-R™ FASTENER DIMENSIONAL DATA

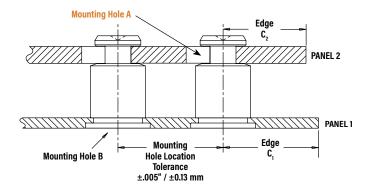


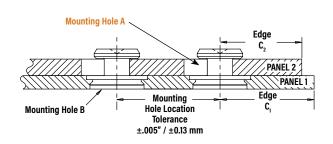
#### 

#### All dimensions are in inches.


|          | Type<br>Hardened<br>Steel | Face<br>Mounting<br>Designation<br>Code | Top<br>Sheet<br>Thickness<br>Code | Neck<br>Diameter<br>Code | A<br>(Shank)<br>Max. | B<br>±.003 | C<br>Max. | H<br>Nom. | M<br>Max. | N<br>±.003 | \$<br>+.003<br>008 |
|----------|---------------------------|-----------------------------------------|-----------------------------------|--------------------------|----------------------|------------|-----------|-----------|-----------|------------|--------------------|
| <u> </u> |                           |                                         |                                   | 2.5                      |                      | .177       | .212      | .236      |           | .099       |                    |
| ᇤ        | SKS                       | R                                       | 1.5                               | 3.2                      | .039                 | .217       | .235      | .276      | .148      | .126       | .107               |
| ᇤ        |                           |                                         |                                   | 4.0                      |                      | .256       | .275      | .307      |           | .157       |                    |
| Z        |                           |                                         |                                   | 2.5                      |                      | .177       | .212      | .236      |           | .099       |                    |
| 5        | SKS                       | R                                       | 2                                 | 3.2                      | .039                 | .217       | .235      | .276      | .167      | .126       | .127               |
|          |                           |                                         |                                   | 4.0                      |                      | .256       | .275      | .307      |           | .157       |                    |
|          |                           |                                         |                                   | 2.5                      |                      | .177       | .212      | .236      |           | .099       |                    |
|          | SKS                       | R                                       | 2.5                               | 3.2                      | .039                 | .217       | .235      | .276      | 1.87      | .126       | .147               |
|          |                           |                                         |                                   | 4.0                      |                      | .256       | .275      | .307      |           | .157       |                    |

| S  | Type<br>Hardened<br>Steel | Face<br>Mounting<br>Designation<br>Code | Top<br>Sheet<br>Thickness<br>Code | Neck<br>Diameter<br>Code | A<br>(Shank)<br>Max. | B<br>±0.08 | C<br>Max. | H<br>Nom. | M<br>Max. | N<br>±0.08 | \$<br>+0.08<br>-0.21 |
|----|---------------------------|-----------------------------------------|-----------------------------------|--------------------------|----------------------|------------|-----------|-----------|-----------|------------|----------------------|
| EB |                           |                                         |                                   | 2.5                      |                      | 4.5        | 5.39      | 6         |           | 2.5        |                      |
| -  | SKS                       | R                                       | 1.5                               | 3.2                      | 1                    | 5.5        | 5.98      | 7         | 3.75      | 3.2        | 2.73                 |
| Z  |                           |                                         |                                   | 4.0                      |                      | 6.5        | 6.98      | 7.8       |           | 4          |                      |
| =  |                           |                                         |                                   | 2.5                      |                      | 4.5        | 5.39      | 6         |           | 2.5        |                      |
| 7  | SKS                       | R                                       | 2                                 | 3.2                      | 1                    | 5.5        | 5.98      | 7         | 4.25      | 3.2        | 3.23                 |
| Ξ  |                           |                                         |                                   | 4.0                      |                      | 6.5        | 6.98      | 7.8       |           | 4          |                      |
| _  |                           |                                         |                                   | 2.5                      |                      | 4.5        | 5.39      | 6         |           | 2.5        |                      |
|    | SKS                       | R                                       | 2.5                               | 3.2                      | 1                    | 5.5        | 5.98      | 7         | 4.75      | 3.2        | 3.73                 |
|    |                           |                                         |                                   | 4.0                      |                      | 6.5        | 6.98      | 7.8       |           | 4          | 7                    |


#### **APPLICATION DATA**


#### SKC™/SK4™ STANDOFF

#### **Mounting Hole A** in Panel 2 A, Dia. Location Tolerance ±.005" / ±0.13 mm



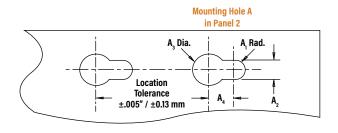
SKC-F™/SK4-F™ FASTENER

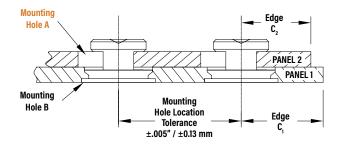




#### All dimensions are in inches.

|   |          |                                     | PANEL                   | 1                          |                                         | PANEL 2                |                          |                          |                        |          |                    |                                         |
|---|----------|-------------------------------------|-------------------------|----------------------------|-----------------------------------------|------------------------|--------------------------|--------------------------|------------------------|----------|--------------------|-----------------------------------------|
|   |          | Bottom                              | Sheet                   | M:                         | Edna                                    |                        | Top Moun                 | ting Hole A              |                        |          |                    | Edna                                    |
| 4 | Туре     | Mounting<br>Hole B<br>+ .003<br>000 | Hardness<br>Max.<br>(1) | Min.<br>Sheet<br>Thickness | Edge<br>Distance<br>C <sub>1</sub> Min. | A <sub>1</sub><br>Nom. | A <sub>2</sub><br>± .003 | A <sub>3</sub><br>± .003 | A <sub>4</sub><br>Min. | Material | Thickness<br>Range | Edge<br>Distance<br>C <sub>2</sub> Min. |
| 9 | SKC-6060 | .213                                | HRB 70 / HB 125         | .040                       | .260                                    | .059                   | .118                     | .197                     | .148                   | ANY      | .057064            | .160                                    |
| = |          | .213                                | HRB 88 / HB 183         | .040                       | .260                                    | .059                   | .118                     | .197                     | .148                   | ANY      | .057064            | .160                                    |
|   | SKC-F1.5 | .213                                | HRB 70 / HB 125         | .040 <sup>(2)</sup>        | .150                                    | .059                   | .118                     | .197                     | .148                   | ANY      | .057064            | .160                                    |
|   | SK4-F1.5 | .213                                | HRB 88 / HB 183         | .040 <sup>(2)</sup>        | .150                                    | .059                   | .118                     | .197                     | .148                   | ANY      | .057064            | .160                                    |


|   |          |                             | PANEL 1                 | 1                          |                                         | PANEL 2                |                          |                          |                        |          |                    |                                         |
|---|----------|-----------------------------|-------------------------|----------------------------|-----------------------------------------|------------------------|--------------------------|--------------------------|------------------------|----------|--------------------|-----------------------------------------|
|   |          | Bottom                      | Sheet                   |                            |                                         |                        | Top Mount                | ting Hole A              |                        |          |                    |                                         |
| 0 | Туре     | Mounting<br>Hole B<br>+0.08 | Hardness<br>Max.<br>(1) | Min.<br>Sheet<br>Thickness | Edge<br>Distance<br>C <sub>1</sub> Min. | A <sub>i</sub><br>Nom. | A <sub>2</sub><br>± 0.08 | A <sub>3</sub><br>± 0.08 | A <sub>4</sub><br>Min. | Material | Thickness<br>Range | Edge<br>Distance<br>C <sub>2</sub> Min. |
| H | SKC-61.5 | 5.41                        | HRB 70 / HB 125         | 1                          | 6.6                                     | 1.5                    | 3                        | 5                        | 3.75                   | ANY      | 1.45 - 1.62        | 4.1                                     |
| 2 | SK4-61.5 | 5.41                        | HRB 88 / HB 183         | 1                          | 6.6                                     | 1.5                    | 3                        | 5                        | 3.75                   | ANY      | 1.45 - 1.62        | 4.1                                     |
|   | SKC-F1.5 | 5.41                        | HRB 70 / HB 125         | 1 (2)                      | 3.8                                     | 1.5                    | 3                        | 5                        | 3.75                   | ANY      | 1.45 - 1.62        | 4.1                                     |
|   | SK4-F1.5 | 5.41                        | HRB 88 / HB 183         | 1 <sup>(2)</sup>           | 3.8                                     | 1.5                    | 3                        | 5                        | 3.75                   | ANY      | 1.45 - 1.62        | 4.1                                     |


<sup>(1)</sup> HRB - Hardness Rockwell "B" Scale. HB - Hardness Brinell.

<sup>(2)</sup> SKC-F™/SK4-F™ fasteners may also be installed into a .043" / 1.1 mm minimum depth blind milled hole in a .062" / 1.6 mm minimum sheet thickness.

#### **APPLICATION DATA**

#### **SKS-R™ FASTENER**



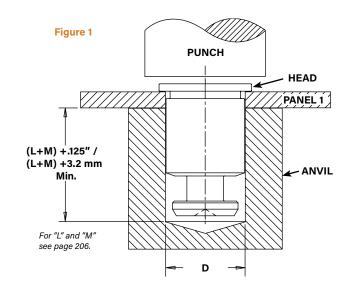


#### All dimensions are in inches.

|     |                 |                                 | PANEL 1                 |                    |                                         |                        |                          |                          | PANEL 2                |          |                   |                                         |
|-----|-----------------|---------------------------------|-------------------------|--------------------|-----------------------------------------|------------------------|--------------------------|--------------------------|------------------------|----------|-------------------|-----------------------------------------|
|     |                 | Bottom                          | Sheet                   |                    |                                         |                        | Top Mount                | ting Hole A              |                        |          |                   |                                         |
|     | Туре            | Mounting<br>Hole B<br>+ .003000 | Hardness<br>Max.<br>(1) | Thickness<br>Range | Edge<br>Distance<br>C <sub>1</sub> Min. | A <sub>1</sub><br>Nom. | A <sub>2</sub><br>± .003 | A <sub>3</sub><br>± .003 | A <sub>4</sub><br>Min. | Material | Thickness<br>Max. | Edge<br>Distance<br>C <sub>2</sub> Min. |
|     | SKS-R1.5-2.5-ZI | .213                            | HRB 80 / HB 150         | .040047            | .236                                    | .059                   | .118                     | .197                     | .148                   | ANY      | .060              | .160                                    |
| Q   | SKS-R1.5-3.2-ZI | .236                            | HRB 80 / HB 150         | .040047            | .236                                    | .073                   | .146                     | .236                     | .181                   | ANY      | .060              | .201                                    |
| Ξ.  | SKS-R1.5-4.0-ZI | .276                            | HRB 80 / HB 150         | .040047            | .236                                    | .089                   | .177                     | .276                     | .217                   | ANY      | .060              | .240                                    |
| N H | SKS-R2.0-2.5-ZI | .213                            | HRB 80 / HB 150         | .040047            | .236                                    | .059                   | .118                     | .197                     | .148                   | ANY      | .080              | .160                                    |
| n   | SKS-R2.0-3.2-ZI | .236                            | HRB 80 / HB 150         | .040047            | .236                                    | .073                   | .146                     | .236                     | .181                   | ANY      | .080              | .201                                    |
|     | SKS-R2.0-4.0-ZI | .276                            | HRB 80 / HB 150         | .040047            | .236                                    | .089                   | .177                     | .276                     | .217                   | ANY      | .080              | .240                                    |
|     | SKS-R2.5-2.5-ZI | .213                            | HRB 80 / HB 150         | .040047            | .236                                    | .059                   | .118                     | .197                     | .148                   | ANY      | .100              | .160                                    |
|     | SKS-R2.5-3.2-ZI | .236                            | HRB 80 / HB 150         | .040047            | .236                                    | .073                   | .146                     | .236                     | .181                   | ANY      | .100              | .201                                    |
|     | SKS-R2.5-4.0-ZI | .276                            | HRB 80 / HB 150         | .040047            | .236                                    | .089                   | .177                     | .276                     | .217                   | ANY      | .100              | .240                                    |

|     |                 |                              | PANEL 1                 |                    |                                         |                        |                          |                          | PANEL 2                |          |                   |                                         |
|-----|-----------------|------------------------------|-------------------------|--------------------|-----------------------------------------|------------------------|--------------------------|--------------------------|------------------------|----------|-------------------|-----------------------------------------|
|     |                 | Bottom                       | Sheet                   |                    |                                         |                        | Top Mount                | ting Hole A              |                        |          |                   |                                         |
|     | Туре            | Mounting<br>Hole B<br>+ 0.08 | Hardness<br>Max.<br>(1) | Thickness<br>Range | Edge<br>Distance<br>C <sub>1</sub> Min. | A <sub>1</sub><br>Nom. | A <sub>2</sub><br>± 0.08 | A <sub>3</sub><br>± 0.08 | A <sub>4</sub><br>Min. | Material | Thickness<br>Max. | Edge<br>Distance<br>C <sub>2</sub> Min. |
| S   | SKS-R1.5-2.5-ZI | 5.41                         | HRB 80 / HB 150         | 1 - 1.19           | 6                                       | 1.5                    | 3                        | 5                        | 3.75                   | ANY      | 1.54              | 4.1                                     |
| EB  | SKS-R1.5-3.2-ZI | 6                            | HRB 80 / HB 150         | 1 - 1.19           | 6                                       | 1.85                   | 3.7                      | 6                        | 4.6                    | ANY      | 1.54              | 5.1                                     |
| MET | SKS-R1.5-4.0-ZI | 7                            | HRB 80 / HB 150         | 1 - 1.19           | 6                                       | 2.25                   | 4.5                      | 7                        | 5.5                    | ANY      | 1.54              | 6.1                                     |
| -   | SKS-R2.0-2.5-ZI | 5.41                         | HRB 80 / HB 150         | 1 - 1.19           | 6                                       | 1.5                    | 3                        | 5                        | 3.75                   | ANY      | 2.04              | 4.1                                     |
| 1   | SKS-R2.0-3.2-ZI | 6                            | HRB 80 / HB 150         | 1 - 1.19           | 6                                       | 1.85                   | 3.7                      | 6                        | 4.6                    | ANY      | 2.04              | 5.1                                     |
| Σ   | SKS-R2.0-4.0-ZI | 7                            | HRB 80 / HB 150         | 1 - 1.19           | 6                                       | 2.25                   | 4.5                      | 7                        | 5.5                    | ANY      | 2.04              | 6.1                                     |
|     | SKS-R2.5-2.5-ZI | 5.41                         | HRB 80 / HB 150         | 1 - 1.19           | 6                                       | 1.5                    | 3                        | 5                        | 3.75                   | ANY      | 2.54              | 4.1                                     |
|     | SKS-R2.5-3.2-ZI | 6                            | HRB 80 / HB 150         | 1 - 1.19           | 6                                       | 1.85                   | 3.7                      | 6                        | 4.6                    | ANY      | 2.54              | 5.1                                     |
|     | SKS-R2.5-4.0-ZI | 7                            | HRB 80 / HB 150         | 1 - 1.19           | 6                                       | 2.25                   | 4.5                      | 7                        | 5.5                    | ANY      | 2.54              | 6.1                                     |

#### **INSTALLATION**


#### SKC™/SK4™ STANDOFFS

- 1. Prepare properly sized mounting hole in Panel 1.
- 2. Place the fastener through (punched side of) the mounting hole and into anvil as shown in figure 1.
- With installation punch and anvil surfaces parallel, apply only enough squeezing force to embed the head flush with the panel.

#### **PEMSERTER® Installation Tooling**

| ΞD      | Body Size     | Anvil Dimension (in.) |                      |                      |  |
|---------|---------------|-----------------------|----------------------|----------------------|--|
| UNIFIED | Sheet<br>Code | D<br>+.003000         | Anvil Part<br>Number | Punch Part<br>Number |  |
|         | 6060          | .216                  | 970200012300         | 975200048            |  |

| ၁   | Body Size     | Anvil Dimension (mm) |                      |                      |
|-----|---------------|----------------------|----------------------|----------------------|
| ETR | Sheet<br>Code | D<br>+0.08           | Anvil Part<br>Number | Punch Part<br>Number |
| I≣  | 61.5          | 5.49                 | 970200012300         | 975200048            |

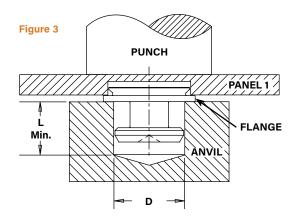


#### SKC-F™/SK4-F™ FASTENERS

#### **Through Hole Installation Procedure**

- 1. Prepare properly sized mounting hole in Panel 1.
- 2. Place the fastener into anvil hole as shown in Figure 2.
- 3. Place the (punch side of) mounting hole over the shank of the fastener.
- **4.** With installation punch and anvil surfaces parallel, apply only enough squeezing force until flange is flush with panel.

#### Blind Hole Installation Procedure


- 1. Mill a properly sized blind hole into Panel 1 to .043"/1.1 mm minimum depth.
- 2. Place the fastener into anvil hole as shown in Figure 3.
- 3. Place the panel mounting hole over the shank of the fastener.
- **4.** With installation punch and anvil surfaces parallel, apply only enough squeezing force to embed the flange flush with the panel.

#### **PEMSERTER® Installation Tooling**

| ED    | Sheet             | Anvil Din         | nensions (in.) |                      |                      |
|-------|-------------------|-------------------|----------------|----------------------|----------------------|
| NIFIE | Thickness<br>Code | L D Min. +.003000 |                | Anvil Part<br>Number | Punch Part<br>Number |
| NO    | 1.5               | .233              | .184           | 8012608              | 975200048            |

| ပ   | Sheet             | Anvil Din | nensions (mm) |                      |                      |
|-----|-------------------|-----------|---------------|----------------------|----------------------|
| TRI | Thickness<br>Code | L<br>Min. | D<br>+0.08    | Anvil Part<br>Number | Punch Part<br>Number |
| ME  | 1.5               | 5.95      | 4.67          | 8012608              | 975200048            |

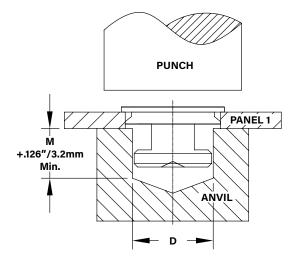
# PUNCH PANEL 1 L Min. PANUL FLANGE



#### **End Mill Information**

Double-ended, two-flute H.S.S. center-cutting end mills are available from stock. PennEngineering does not manufacture center-cutting end mills, but we do keep a supply in stock for your convenience.




#### SKS-R™ FASTENERS

- 1. Prepare properly sized mounting hole in Panel 1.
- Place the fastener through (punch side of) the mounting hole and into anvil as shown.
- 3. With installation punch and anvil surfaces parallel, apply only enough squeezing force to embed the head flush with the panel.

#### **PEMSERTER®** Installation Tooling

|      | Neck             | Anvil Dimensions (in.) |                      |                      |
|------|------------------|------------------------|----------------------|----------------------|
| FIED | Diameter<br>Code | D<br>+.003000          | Anvil Part<br>Number | Punch Part<br>Number |
| UNIF | 25               | .183                   | 8026244              |                      |
| 5    | 32               | .222                   | 8026245              | 975200048            |
|      | 40               | .262                   | 8026246              |                      |

|      | Neck             | Anvil Dimensions (mm) |                      |                      |
|------|------------------|-----------------------|----------------------|----------------------|
| 'RIC | Diameter<br>Code | D<br>+0.08            | Anvil Part<br>Number | Punch Part<br>Number |
| Ш    | 25               | 4.65                  | 8026244              |                      |
| ME   | 32               | 5.65                  | 8026245              | 975200048            |
|      | 40               | 6.65                  | 8026246              |                      |



#### **INSTALLATION NOTES**

- For best results we recommend using a <u>HAEGER</u>® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.

#### MATERIAL AND FINISH SPECIFICATIONS

|                |                               | Fastene                       | er Materials                              |                                              | Standard Finish                                                               | For Use in Sheet Hardness: (1) |                            |                            |  |
|----------------|-------------------------------|-------------------------------|-------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|--------------------------------|----------------------------|----------------------------|--|
| Туре           | Hardened<br>Steel             | 300 Series<br>Stainless Steel | Hardened<br>400 Series<br>Stainless Steel | Passivated<br>and/or Tested<br>per ASTM A380 | Zinc Plated per<br>ASTM B633, SC1 (5um)<br>Type III, Colorless <sup>(2)</sup> | HRB 88 / HB 183<br>or less     | HRB 80 / HB 150<br>or less | HRB 70 / HB 125<br>or less |  |
| SKC            |                               | •                             |                                           | •                                            |                                                                               |                                |                            | •                          |  |
| SK4            |                               |                               | •                                         | •                                            |                                                                               | •                              |                            |                            |  |
| SKC-F          |                               | •                             |                                           | •                                            |                                                                               |                                |                            | •                          |  |
| SC4-F          |                               |                               | •                                         | •                                            |                                                                               | •                              |                            |                            |  |
| SKS-R          |                               |                               |                                           |                                              |                                                                               |                                | •                          |                            |  |
| Part Number Co | Part Number Code For Finishes |                               |                                           | None                                         | ZI                                                                            |                                |                            | •                          |  |

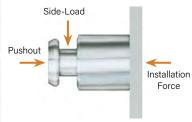
- (1) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (2) See PEM Technical Support section of our web site for related plating standards and specifications.

#### A NOTE ABOUT 400 SERIES FASTENERS FOR STAINLESS STEEL PANELS

In order for self-clinching fasteners to work properly, the fastener must be harder than the sheet into which it is being installed. In the case of stainless steel panels, fasteners made from 300 Series Stainless Steel do not meet this hardness criteria. It is for this reason that 400 series fasteners (SK4 and SK4-F) are offered. However, while these 400 Series fasteners install and perform well in 300 Series stainless sheets they should not be used if the end product:

- Will be exposed to any appreciable corrosive presence.
- Requires non-magnetic fasteners.
- Will be exposed to any temperatures above 300°F (149°C)

If any of the these are issues, please contact techsupport@pemnet.com for other options.


#### PERFORMANCE DATA<sup>(1)</sup>

#### SKC™/SK4™ STANDOFFS

#### Installation and pushout

| Test | Sheet Material ➤          | .060" 5052-H                       | 34 Aluminum | .060" Cold-F           | tolled Steel      | .060" 300 Series Stainless Steel   |     |  |
|------|---------------------------|------------------------------------|-------------|------------------------|-------------------|------------------------------------|-----|--|
| IED  | Body Size -<br>Sheet Code | Installation Pushout (lbs.) (lbs.) |             | Installation<br>(lbs.) | Pushout<br>(lbs.) | Installation Pushout (lbs.) (lbs.) |     |  |
| F    | SKC-6060                  | 1600                               | 250         | 3200                   | 600               | _                                  | _   |  |
| 5    | SK4-6060                  | _                                  | _           | _                      | -                 | 9015                               | 720 |  |

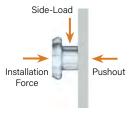
| Test | Sheet Material ➤                         | t Material ➤ 1.52 mm 5052-H34 Aluminum |                      |                | -Rolled Steel                 | 1.52 mm 300 Series Stainless Steel |      |  |
|------|------------------------------------------|----------------------------------------|----------------------|----------------|-------------------------------|------------------------------------|------|--|
| RIC  | Body Size - Installation Pushout (N) (N) |                                        | Installation<br>(kN) | Pushout<br>(N) | Installation Pushout (kN) (N) |                                    |      |  |
| E    | SKC-61.5                                 | 7.1                                    | 1100                 | 14.2           | 2600                          | -                                  | -    |  |
| Σ    | SK4-61.5                                 | _                                      | _                    | _              | -                             | 40.1                               | 3200 |  |



#### SKC™/SK4™ STANDOFFS

#### Side-load

| • | ٠.٠      | c-iouu      |                            |      |                   |     |     |             |           |            |           |     |     |     |     |     |
|---|----------|-------------|----------------------------|------|-------------------|-----|-----|-------------|-----------|------------|-----------|-----|-----|-----|-----|-----|
|   |          |             | Test Sheet Thick. →        | .040 | )" <sup>(2)</sup> |     |     |             |           |            | .060"     |     |     |     |     |     |
|   |          |             |                            |      |                   |     | Len | ength Codes |           |            |           |     |     |     |     |     |
|   | D        | Body Size - |                            | -2   | -4                | -6  | -8  | -10         | -12       | -14        | -16       | -18 | -20 | -24 | -28 | -32 |
|   | #        | Sheet Code  | Test Sheet Material        |      |                   |     |     |             | Side-Load | d Force Ma | x. (lbs.) |     |     |     |     |     |
|   | <u>ш</u> | SKC-6060    | 5052-H34 Aluminum          | 130  | 95                | 82  | 63  | 52          | 44        | 38         | 34        | 30  | 27  | 22  | 19  | 17  |
|   | 5        | SKC-6060    | Cold-Rolled Steel          | 185  | 120               | 197 | 153 | 126         | 106       | 92         | 81        | 71  | 66  | 55  | 47  | 42  |
|   |          | SK4-6060    | 300 Series Stainless Steel | 400  | 300               | 220 | 180 | 160         | 140       | 120        | 110       | 100 | 100 | 80  | 70  | 50  |


|             |             | Test Sheet Thick. →        | 1 m                      | m <sup>(2)</sup> |     |     |     |     | 1.52 | mm  |     |     |     |     |
|-------------|-------------|----------------------------|--------------------------|------------------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|
| Length Code |             |                            |                          | les              |     |     |     |     |      |     |     |     |     |     |
| ے ا         | Body Size - | Total Charles Made and all | -2                       | -4               | -6  | -8  | -10 | -12 | -14  | -16 | -18 | -20 | -22 | -25 |
| -           | Sneet Code  | Test Sheet Material        | Side-Load Force Max. (N) |                  |     |     |     |     |      |     |     |     |     |     |
| L           |             | 5052-H34 Aluminum          | 545                      | 370              | 296 | 228 | 184 | 156 | 136  | 116 | 104 | 96  | 88  | 76  |
| 2           | SKC-61.5    | Cold-Rolled Steel          | 735                      | 490              | 696 | 540 | 440 | 372 | 320  | 280 | 252 | 228 | 208 | 184 |
|             | SK4-61.5    | 300 Series Stainless Steel | 1690                     | 1140             | 860 | 710 | 610 | 540 | 480  | 440 | 400 | 380 | 320 | 250 |

#### SKC-F™/SK4-F™ FASTENERS

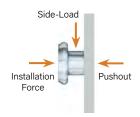
#### Installation, Pushout and Side-load

| Test Sheet Material → |       | et Material ➤ .060" 5052-H34 Aluminum |                   | .0                             | 60" Cold-F             | tolled Steel      | .060" 300 Series Stainless Steel |                        |                   |                                |
|-----------------------|-------|---------------------------------------|-------------------|--------------------------------|------------------------|-------------------|----------------------------------|------------------------|-------------------|--------------------------------|
| :IED                  | Туре  | Installation<br>(lbs.)                | Pushout<br>(lbs.) | Side-Load Force Max.<br>(lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Side-Load Force Max.<br>(lbs.)   | Installation<br>(lbs.) | Pushout<br>(lbs.) | Side-Load Force Max.<br>(lbs.) |
| ۳                     | SKC-F | 1100                                  | 120               | 120                            | 2100                   | 160               | 185                              | _                      | _                 | _                              |
| É                     | SK4-F | -                                     | _                 | _                              | _                      | _                 | -                                | 10210                  | 292               | 202                            |

| Test Sheet Material ➤ |       | 1.52 ו               | nm 5052-l      | H34 Aluminum                | 1.52                 | 2 mm Cold      | -Rolled Steel               | 1.52 mm              | 300 Serie      | es Stainless Steel          |
|-----------------------|-------|----------------------|----------------|-----------------------------|----------------------|----------------|-----------------------------|----------------------|----------------|-----------------------------|
| RIC                   | Туре  | Installation<br>(kN) | Pushout<br>(N) | Side-Load Force Max.<br>(N) | Installation<br>(kN) | Pushout<br>(N) | Side-Load Force Max.<br>(N) | Installation<br>(kN) | Pushout<br>(N) | Side-Load Force Max.<br>(N) |
| ᆸ                     | SKC-F | 4.9                  | 533            | 533                         | 9.3                  | 711            | 822                         | _                    | _              | -                           |
| Σ                     | SK4-F | _                    | _              | _                           | _                    | _              | _                           | 45.4                 | 1300           | 900                         |



<sup>(1)</sup> Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.


(2) .040" / 1 mm test sheet material thickness was used for the -2 and -4 SKC/SK4 standoffs due to the short length of the parts.

#### **PERFORMANCE DATA**

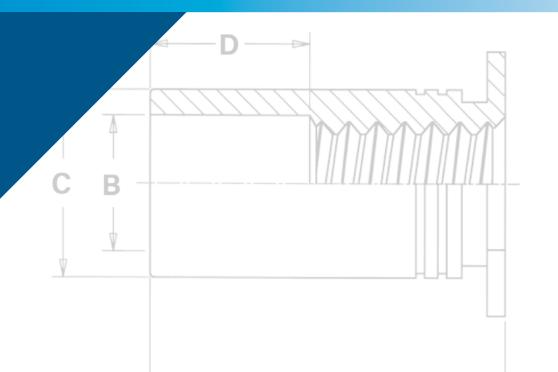
#### SKS-R™ FASTENERS

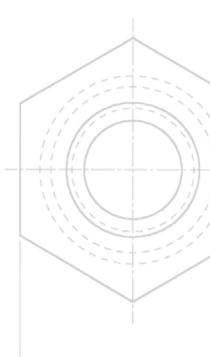
Installation, Pushout and Side-load

| Test | t Sheet Material → | .040                   | " Cold-Rolled Ste | el HRB 67                      |
|------|--------------------|------------------------|-------------------|--------------------------------|
|      | Туре               | Installation<br>(lbs.) | Pushout<br>(lbs.) | Side-Load Force Max.<br>(lbs.) |
|      | SKS-R1.5-2.5-ZI    | 3200                   | 160               | 191                            |
|      | SKS-R1.5-3.2-ZI    | 4000                   | 180               | 213                            |
| ED   | SKS-R1.5-4.0-ZI    | 5000                   | 180               | 258                            |
| E    | SKS-R2.0-2.5-ZI    | 3200                   | 160               | 169                            |
| N    | SKS-R2.0-3.2-ZI    | 4000                   | 180               | 191                            |
| _    | SKS-R2.0-4.0-ZI    | 5000                   | 180               | 225                            |
|      | SKS-R2.5-2.5-ZI    | 3200                   | 160               | 124                            |
|      | SKS-R2.5-3.2-ZI    | 4000                   | 180               | 137                            |
|      | SKS-R2.5-4.0-ZI    | 5000                   | 180               | 182                            |



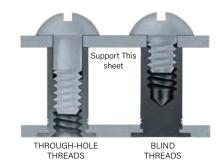
| Tes | t Sheet Material ➤ | 1 m                  | m Cold-Rolled Ste | el HRB 67                   |
|-----|--------------------|----------------------|-------------------|-----------------------------|
|     | Туре               | Installation<br>(kN) | Pushout<br>(N)    | Side-Load Force Max.<br>(N) |
|     | SKS-R1.5-2.5-ZI    | 14.2                 | 711               | 850                         |
|     | SKS-R1.5-3.2-ZI    | 17.8                 | 800               | 950                         |
| 2   | SKS-R1.5-4.0-ZI    | 22.3                 | 800               | 1150                        |
| TR  | SKS-R2.0-2.5-ZI    | 14.2                 | 711               | 750                         |
| ME  | SKS-R2.0-3.2-ZI    | 17.8                 | 800               | 850                         |
|     | SKS-R2.0-4.0-ZI    | 22.3                 | 800               | 1000                        |
|     | SKS-R2.5-2.5-ZI    | 14.2                 | 711               | 550                         |
|     | SKS-R2.5-3.2-ZI    | 17.8                 | 800               | 610                         |
|     | SKS-R2.5-4.0-ZI    | 22.3                 | 800               | 810                         |





PEM® through hole threaded and unthreaded standoffs for mounting, spacing or stacking panels.



**SO**<sup>™</sup>


# SELF-CLINCHING STANDOFFS





PEM® self-clinching standoffs, which use the proven self-clinching design, provide ideal solutions for applications where mounting, spacing or stacking of panels, boards or components are required. Pressed into round holes, these fasteners mount permanently into metal sheets as thin as .025" / 0.63 mm.

Specially designed SO4™, BSO4™ and TSO4™ standoffs are made from hardened stainless steel and are ideal for clinching into stainless steel sheets. An optional nickel plating is now available if product is expected to be used in a corrosive environment.



For more information on the proper use of PEM® self-clinching standoffs, check our website for Tech Sheet PEM® - REF/Standoff Basics.

# **HEAD SIDE OF SHEET AFTER INSTALLATION**



SO/SOS/SOA/SO4 TSO/TSOS/TSOA/TSO4 (Styles 1 & 2) SOSG/SOAG



BSO/BSOS/BSOA/BSO4 TSO/TSOS/TSOA/TSO4 (Style 3)



DSOS/DSO

SOTM/SOSTM/SOATM/SO4TM through hole threaded self-clinching standoffs - PAGE 218



BSO™/BSOS™/BSOA™/BSO4™ Blind hole, threaded self-clinching standoffs -PAGE 219



SO™/SOS™/SOA™/SO4™ Through hole, unthreaded self-clinching standoffs - PAGE 220



TSO™/TSOS™/TSOA™/TSO4™ Through hole threaded standoffs for clinching into thinner sheets than SO™ standoffs - PAGE 221



DSOS™/DSO™ Through hole, threaded standoffs with round, knurled head allowing closer-to-edge clinch installation - PAGE 222



SOSG™/SOAG™ Through hole, threaded grounding standoffs with "grounding/earthing teeth" on end of barrel - PAGE 222



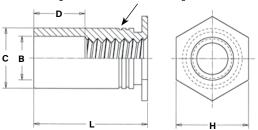
**Material and finish specifications - PAGE 223** 

Installation - PAGES 223 & 224

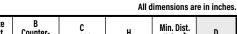
Performance data - PAGES 225 & 226

|                          |                                                        |                                     |                       |                                       | Application                                   | n Requires:                             |                         |                              |                                              |              |
|--------------------------|--------------------------------------------------------|-------------------------------------|-----------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------|-------------------------|------------------------------|----------------------------------------------|--------------|
| PEM®<br>Standoff<br>Type | Installation<br>into stainless<br>steel <sup>(1)</sup> | Superior<br>corrosion<br>resistance | Threads at barrel end | Closed-end<br>for flush<br>appearance | Grounding/<br>earthing teeth<br>on barrel end | Closest-to-edge<br>distance<br>mounting | Available<br>Unthreaded | Thinnest<br>minimum<br>sheet | Most varied<br>standard length<br>increments | Non-magnetic |
| BS0                      |                                                        |                                     |                       |                                       |                                               |                                         |                         |                              |                                              |              |
| BSOA                     |                                                        |                                     | •                     | •                                     |                                               |                                         |                         |                              |                                              | -            |
| BSOS                     |                                                        | •                                   | •                     | •                                     |                                               |                                         |                         |                              |                                              |              |
| BS04                     | •                                                      | (2)                                 | •                     | •                                     |                                               |                                         |                         |                              |                                              |              |
| DS0                      |                                                        |                                     |                       |                                       |                                               | •                                       |                         |                              |                                              |              |
| DSOS                     |                                                        | •                                   |                       |                                       |                                               | •                                       |                         |                              |                                              | •            |
| S0                       |                                                        |                                     |                       |                                       |                                               |                                         | •                       |                              |                                              |              |
| SOA                      |                                                        |                                     |                       |                                       |                                               |                                         | •                       |                              |                                              | -            |
| SOS                      |                                                        |                                     |                       |                                       |                                               |                                         | •                       |                              |                                              | -            |
| S04                      | •                                                      | (2)                                 |                       |                                       |                                               |                                         | •                       |                              |                                              |              |
| SOAG                     |                                                        |                                     |                       |                                       | •                                             |                                         |                         |                              |                                              |              |
| SOSG                     |                                                        |                                     |                       |                                       | •                                             |                                         |                         |                              |                                              | -            |
| TS0                      |                                                        |                                     | •                     | <b>(</b> 3)                           |                                               |                                         |                         |                              |                                              |              |
| TS0A                     |                                                        |                                     | •                     | <b>(3)</b>                            |                                               |                                         |                         |                              | •                                            | •            |
| TSOS                     |                                                        |                                     | •                     | <b>(3)</b>                            |                                               |                                         |                         |                              | •                                            | -            |
| TS04                     | •                                                      | (2)                                 |                       | <b>(3)</b>                            |                                               |                                         |                         | •                            | •                                            |              |

(1) See note 5 on page 223 about installing fasteners into stainless steel sheets.


(2) When used with optional nickel plating.

(3) Style #3 only.


# SO™/SOS™/SOA™/SOA™ - THROUGH-HOLE THREADED STANDOFFS

- SO standoffs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 80 / HB (Hardness Brinell) 150 or less.
- SOS standoffs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 70 / HB (Hardness Brinell) 125 or less.
- SOA standoffs are recommended for use in aluminum sheets HRB (Rockwell "B" scale) 50 / HB (Hardness Brinell) 82 or less.
- SO4 standoffs are recommended for use in stainless steel sheets HRB (Rockwell "B" scale) 88 / HB (Hardness Brinell) 183 or less.





Clinching profile may vary.



**GENERAL DIMENSIONAL DATA** 

|      | Thread<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003<br>000 | B<br>Counter-<br>Bore Dia.<br>±.005 | C<br>+.000<br>005 | H<br>Nom. | Min. Dist.<br>Hole <b>⊈</b><br>To Edge | D<br>±.010              |
|------|----------------|----------------------------|---------------------------------------|-------------------------------------|-------------------|-----------|----------------------------------------|-------------------------|
| ED   | 440            | .040                       | .166                                  | .125                                | .165              | .187      | .23                                    |                         |
| 표    | 6440           | .040                       | .213                                  | .125                                | .212              | .250      | .27                                    | Varies                  |
| IN O | 632            | .040                       | .213                                  | .156                                | .212              | .250      | .27                                    | according<br>to length. |
| )    | 8632           | .050                       | .281                                  | .156                                | .280              | .312      | .31                                    | See length<br>charts    |
|      | 832            | .050                       | .281                                  | .188                                | .280              | .312      | .31                                    | below.                  |
|      | 032            | .050                       | .281                                  | .203                                | .280              | .312      | .31                                    |                         |

All dimensions are in millimeters.

|     | Thread<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | B<br>Counter-<br>Bore Dia.<br>±0.13 | C<br>-0.13 | H<br>Nom. | Min. Dist.<br>Hole <b>⊈</b><br>To Edge | D<br>±0.25               |
|-----|----------------|----------------------------|--------------------------------|-------------------------------------|------------|-----------|----------------------------------------|--------------------------|
| RIC | М3             | 1                          | 4.22                           | 3.2                                 | 4.2        | 4.8       | 6                                      | Maria .                  |
| ETI | 3.5M3          | 1                          | 5.41                           | 3.2                                 | 5.39       | 6.4       | 6.8                                    | Varies according         |
| Σ   | M3.5           | 1                          | 5.41                           | 3.9                                 | 5.39       | 6.4       | 6.8                                    | to length.<br>See length |
|     | M4             | 1.27                       | 7.14                           | 4.8                                 | 7.12       | 7.9       | 8                                      | charts<br>below.         |
|     | M5             | 1.27                       | 7.14                           | 5.35                                | 7.12       | 7.9       | 8                                      | BCIOW.                   |

**PART NUMBER DESIGNATION** SO/SOS/SOA SO SO 440 SO 440

Type

SO4

Installs into stainless steel

Thread

Code

8

8

Lenath

Code

NC\*

Finish

Micro sizes also available. See PEM® Bulletin MPF for more information.

# THREAD SIZE AND LENGTH SELECTION DATA

Material

Code

All dimensions are in inches.

|    |                     |                   | Fas                | Type<br>tener Materia | ı                           |                            |      |      |      | Le   | ngth "L" | +.0020 | 005 (Len | gth Code | in 32nd | s of an i | nch) |      |      |      |      |       |
|----|---------------------|-------------------|--------------------|-----------------------|-----------------------------|----------------------------|------|------|------|------|----------|--------|----------|----------|---------|-----------|------|------|------|------|------|-------|
|    | Thread<br>Size      | Steel             | Stainless<br>Steel | Aluminum              | Hardened<br>Stainless Steel | Thread<br>Code             | .125 | .187 | .250 | .312 | .375     | .437   | .500     | .562     | .625    | .687      | .750 | .812 | .875 | .937 | 1.00 | 1.062 |
| ED | .112-40<br>(#4-40)  | S0                | SOS                | SOA                   | S04                         | 440<br>6440 <sup>(1)</sup> | 4    | 6    | 8    | 10   | 12       | 14     | 16       | 18       | 20      | 22        | 24   | 1    | 1    | -    | -    | -     |
| H  | .138-32<br>(#6-32)  | S0                | SOS                | SOA                   | S04                         | 632<br>8632 <sup>(1)</sup> | 4    | 6    | 8    | 10   | 12       | 14     | 16       | 18       | 20      | 22        | 24   | 26   | 28   | 30   | 32   | 34    |
|    | .164-32<br>(#8-32)  | S0                | SOS                | SOA                   | S04                         | 832                        | 4    | 6    | 8    | 10   | 12       | 14     | 16       | 18       | 20      | 22        | 24   | 26   | 28   | 30   | 32   | 34    |
|    | .190-32<br>(#10-32) | S0                | SOS                | SOA                   | S04                         | 032                        | 4    | 6    | 8    | 10   | 12       | 14     | 16       | 18       | 20      | 22        | 24   | 26   | 28   | 30   | 32   | 34    |
|    |                     | D Dimension ±.010 |                    |                       |                             |                            |      | No   | ne   |      |          | .18    | 37       |          |         | .3        | 12   |      |      | .43  | 37   |       |

### All dimensions are in millimeters.

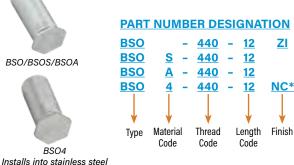
|   |   | Thread<br>Size x |       | Faster             | Type<br>ner Material |                             | Thread                     |   |    |    |   | Lenç    | gth "L" +0. | 05 -0.13<br>nillimeters |    |    |    |    |    |
|---|---|------------------|-------|--------------------|----------------------|-----------------------------|----------------------------|---|----|----|---|---------|-------------|-------------------------|----|----|----|----|----|
|   |   | Pitch            | Steel | Stainless<br>Steel | Aluminum             | Hardened<br>Stainless Steel | Code                       |   |    |    |   | (Lengin | Code III II | minieters               | 5) |    |    |    |    |
|   |   | M3 x 0.5         | S0    | SOS                | SOA                  | S04                         | M3<br>3.5M3 <sup>(1)</sup> | 3 | 4  | 6  | 8 | 10      | 12          | 14                      | 16 | 18 | ı  | ı  | -  |
| 1 | 1 | M3.5 x 0.6       | S0    | SOS                | SOA                  | S04                         | M3.5                       | 3 | 4  | 6  | 8 | 10      | 12          | 14                      | 16 | 18 | 20 | 22 | 25 |
| 1 |   | M4 x 0.7         | S0    | SOS                | SOA                  | S04                         | M4                         | 3 | 4  | 6  | 8 | 10      | 12          | 14                      | 16 | 18 | 20 | 22 | 25 |
|   |   | M5 x 0.8         |       |                    |                      |                             | M5                         | 3 | 4  | 6  | 8 | 10      | 12          | 14                      | 16 | 18 | 20 | 22 | 25 |
| I |   |                  |       | D Dimensi          | on ±0.25             |                             |                            |   | No | ne |   |         | 4           |                         |    | 8  |    | 1  | 11 |

<sup>(1)</sup> Standoffs with thread codes 6440, 8632, and 3.5M3 have a thicker wall to provide more bearing surface for the mating component or panel reducing the chance of cracking or cutting into the board.

Please contact your local PEM® distributor for availability, minimum quantity, and pricing information.

<sup>\*</sup> NC suffix is required if optional nickel plating (for corrosion resistance) is desired. Otherwise, no suffix is necessary.

# BSO™/BSOS™/BSOA™/BSO4™ - BLIND THREADED STANDOFFS


- BSO standoffs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 80 / HB (Hardness Brinell) 150 or less.
- BSOS standoffs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 70 / HB (Hardness Brinell) 125 or less.
- BSOA standoffs are recommended for use in aluminum sheets HRB (Rockwell "B" scale) 50 / HB (Hardness Brinell) 82 or less.
- BSO4 standoffs are recommended for use in stainless steel sheets HRB (Rockwell "B" scale) 88 / HB (Hardness Brinell) 183 or less.

# PEM® "Single" or PEM® "Two Groove" Registered Trademark Clinching profile may vary

### Hole Size In Sheet Min. Min. Dist. Thread Sheet Thickness +.000 Hole **©** To Edge Code +.003 Nom. Min. 440 .040 .166 .165 .187 .23 Varies 6440 .040 .213 .212 .250 .27 according .213 632 .040 .212 .250 .27 to length.

**BSO BSO** <u>440</u>

See length 8632 .281 .312 .31 .050 .280 charts below .31 832 .050 .281 .280 .312 032 .050 .281 .280 .312 .31



# All dimensions are in millimeters.

All dimensions are in inches.

**GENERAL DIMENSIONAL DATA** 

|    | Thread<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>-0.13 | H<br>Nom. | Min. Dist.<br>Hole <b>⊈</b><br>To Edge | F<br>Min.                |
|----|----------------|----------------------------|--------------------------------|------------|-----------|----------------------------------------|--------------------------|
| 2  | М3             | 1                          | 4.22                           | 4.2        | 4.8       | 6                                      |                          |
| TR | 3.5M3          | 1                          | 5.41                           | 5.39       | 6.4       | 6.8                                    | Varies<br>according      |
| M  | M3.5           | 1                          | 5.41                           | 5.39       | 6.4       | 6.8                                    | to length.<br>See length |
|    | M4             | 1.27                       | 7.14                           | 7.12       | 7.9       | 8                                      | charts<br>below.         |
|    | M5             | 1.27                       | 7.14                           | 7.12       | 7.9       | 8                                      |                          |

<sup>\*</sup> NC suffix is required if optional nickel plating (for corrosion resistance) is desired. Otherwise, no suffix is necessary.

## THREAD SIZE AND LENGTH SELECTION DATA

All dimensions are in inches.

|       | Thread              |       | Ту                 | уре       |                             | Thread                     |      |      |      | Length "L | ." +.0020 | 005 (Lengt | h Code in | 32nds of a | ın inch) |      |      |      |       |
|-------|---------------------|-------|--------------------|-----------|-----------------------------|----------------------------|------|------|------|-----------|-----------|------------|-----------|------------|----------|------|------|------|-------|
|       | Size                | Steel | Stainless<br>Steel | Aluminum  | Hardened<br>Stainless Steel | Code                       | .312 | .375 | .437 | .500      | .562      | .625       | .687      | .750       | .812     | .875 | .937 | 1.00 | 1.062 |
| Q     | .112-40<br>(#4-40)  | BS0   | BSOS               | BS0A      | BS04                        | 440<br>6440 <sup>(1)</sup> | 10   | 12   | 14   | 16        | 18        | 20         | 22        | 24         | 26       | 28   | 30   | 32   | 34    |
| NIFIE | .138-32<br>(#6-32)  | BS0   | BSOS               | BS0A      | BS04                        | 632<br>8632 <sup>(1)</sup> | 10   | 12   | 14   | 16        | 18        | 20         | 22        | 24         | 26       | 28   | 30   | 32   | 34    |
| Π     | .164-32<br>(#8-32)  | BS0   | BSOS               | BS0A      | BS04                        | 832                        | 10   | 12   | 14   | 16        | 18        | 20         | 22        | 24         | 26       | 28   | 30   | 32   | 34    |
|       | .190-32<br>(#10-32) | BS0   | BSOS               | BSOA      | BS04                        | 032                        | 10   | 12   | 14   | 16        | 18        | 20         | 22        | 24         | 26       | 28   | 30   | 32   | 34    |
|       |                     |       | F Dim              | ension Mi | n.                          |                            | .19  | 56   | .187 |           | .250      |            |           |            |          | .375 |      |      |       |

### All dimensions are in millimeters

|      | Thread               |       | T                  | уре        |                             | Thread                     |     |   |    | Le    | ngth "L" +0.0<br>th Code in m | 05 -0.13    |    |    |    |    |
|------|----------------------|-------|--------------------|------------|-----------------------------|----------------------------|-----|---|----|-------|-------------------------------|-------------|----|----|----|----|
|      | Size x<br>Pitch      | Steel | Stainless<br>Steel | Aluminum   | Hardened<br>Stainless Steel | Code                       |     |   |    | (Leng | th Code in m                  | illimeters) |    |    |    |    |
| TRIC | M3 x 0.5             | BS0   | BSOS               | BSOA       | BS04                        | M3<br>3.5M3 <sup>(1)</sup> | 6   | 8 | 10 | 12    | 14                            | 16          | 18 | 20 | 22 | 25 |
| M    | M3.5 x 0.6           | BS0   | BSOS               | BSOA       | BS04                        | M3.5                       | 6   | 8 | 10 | 12    | 14                            | 16          | 18 | 20 | 22 | 25 |
| -    | M4 x 0.7             | BS0   | BSOS               | BSOA       | BS04                        | M4                         | 6   | 8 | 10 | 12    | 14                            | 16          | 18 | 20 | 22 | 25 |
|      | M4 x 0.7<br>M5 x 0.8 | BS0   | BSOS               | BSOA       | BS04                        | M5                         | 6   | 8 | 10 | 12    | 14                            | 16          | 18 | 20 | 22 | 25 |
|      |                      |       | F Dime             | nsion Min. |                             |                            | 3.2 | 4 | 1  | 5     | 6                             | .5          |    | 9. | 5  |    |

<sup>(1)</sup> Standoffs with thread codes 6440, 8632, and 3.5M3 have a thicker wall to provide more bearing surface for the mating component or panel reducing the chance of cracking or cutting into the board.

Please contact your local PEM® distributor for availability, minimum quantity, and pricing information.

# SO™/SOS™/SOA™/SO4™ - THROUGH-HOLE UNTHREADED STANDOFFS (SPECIAL ORDER)

- SO standoffs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 80 / HB (Hardness Brinell) 150 or less.
- SOS standoffs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 70 / HB (Hardness Brinell) 125 or less.
- SOA standoffs are recommended for use in aluminum sheets HRB (Rockwell "B" scale) 50 / HB (Hardness Brinell) 82 or less.
- SO4 standoffs are recommended for use in stainless steel sheets HRB (Rockwell "B" scale) 88 / HB (Hardness Brinell) 183 or less.

# PEM® "Single" or PEM® "Two Groove" Registered Trademark СВ Clinching profile may vary. PART NUMBER DESIGNATION 4116 -ΖI SO/SOS/SOA SO 4116 8 SO 4116 SO 4116 NC\* 8 Type Material Thru-hole Lenath Finish

Code

Code

Code

### **GENERAL DIMENSIONAL DATA**

All dimensions are in inches.

|    | Thru-hole<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003<br>000 | C<br>+.000<br>005 | H<br>Nom. | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|----|-------------------|----------------------------|---------------------------------------|-------------------|-----------|----------------------------------------|
| ED | 4116              | .040                       | .166                                  | .165              | .187      | .23                                    |
| Ξ  | 6116              | .040                       | .213                                  | .212              | .250      | .27                                    |
| Z  | 6143              | .040                       | .213                                  | .212              | .250      | .27                                    |
|    | 8143              | .050                       | .281                                  | .280              | .312      | .31                                    |
|    | 8169              | .050                       | .281                                  | .280              | .312      | .31                                    |
|    | 8194              | .050                       | .281                                  | .280              | .312      | .31                                    |

All dimensions are in millimeters.

|     | Thru-hole<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>-0.13 | H<br>Nom. | Min. Dist.<br>Hole <b>©</b><br>To Edge |
|-----|-------------------|----------------------------|--------------------------------|------------|-----------|----------------------------------------|
| ပ   | 43.1              | 1                          | 4.22                           | 4.2        | 4.8       | 6                                      |
| -B  | 63.1              | 1                          | 5.41                           | 5.39       | 6.4       | 6.8                                    |
| MET | 63.6              | 1                          | 5.41                           | 5.39       | 6.4       | 6.8                                    |
| 2   | 83.6              | 1.27                       | 7.14                           | 7.12       | 7.9       | 8                                      |
|     | 84.1              | 1.27                       | 7.14                           | 7.12       | 7.9       | 8                                      |
|     | 85.1              | 1.27                       | 7.14                           | 7.12       | 7.9       | 8                                      |

Micro sizes also available. See PEM® Bulletin MPF for more information.

# THROUGH-HOLE AND LENGTH SELECTION DATA

All dimensions are in inches.

Installs into stainless steel

|      | B<br>Thru-hole       |       | T                  | уре      |                             |                             |      |      | Length "L" | +.00200 | 5 (Length C | ode in 32nd | s of an incl | 1)   |      |      |      |
|------|----------------------|-------|--------------------|----------|-----------------------------|-----------------------------|------|------|------------|---------|-------------|-------------|--------------|------|------|------|------|
|      | Diameter<br>+.004003 | Steel | Stainless<br>Steel | Aluminum | Hardened<br>Stainless Steel | Thru-hole<br>Code           | .125 | .187 | .250       | .312    | .375        | .437        | .500         | .562 | .625 | .687 | .750 |
| FIED | .116                 | S0    | SOS                | SOA      | S04                         | 4116<br>6116 <sup>(1)</sup> | 4    | 6    | 8          | 10      | 12          | 14          | 16           | 18   | 20   | 22   | 24   |
| N O  | .143                 | S0    | SOS                | SOA      | S04                         | 6143<br>8143 <sup>(1)</sup> | 4    | 6    | 8          | 10      | 12          | 14          | 16           | 18   | 20   | 22   | 24   |
|      | .169                 | S0    | SOS                | SOA      | S04                         | 8169                        | 4    | 6    | 8          | 10      | 12          | 14          | 16           | 18   | 20   | 22   | 24   |
|      | .194                 | S0    | SOS                | SOA      | S04                         | 8194                        | 4    | 6    | 8          | 10      | 12          | 14          | 16           | 18   | 20   | 22   | 24   |

# All dimensions are in millimeters.

|      | B<br>Thru-hole         |       | Ţ                  | уре      |                             |                             |   |   |   |    | Length "L"   | +0.05 -0.13<br>n millimeters |    |    |    |    |
|------|------------------------|-------|--------------------|----------|-----------------------------|-----------------------------|---|---|---|----|--------------|------------------------------|----|----|----|----|
|      | Diameter<br>+0.1 -0.08 | Steel | Stainless<br>Steel | Aluminum | Hardened<br>Stainless Steel | Thru-hole<br>Code           |   |   |   | (L | ength Code i | n millimeters                | s) |    |    |    |
| TRIC | 3.1                    | S0    | SOS                | SOA      | S04                         | 43.1<br>63.1 <sup>(1)</sup> | 3 | 4 | 6 | 8  | 10           | 12                           | 14 | 16 | 18 | 20 |
| M    | 3.6                    | S0    | SOS                | SOA      | S04                         | 63.6<br>83.6 <sup>(1)</sup> | 3 | 4 | 6 | 8  | 10           | 12                           | 14 | 16 | 18 | 20 |
|      | 4.1                    | S0    | SOS                | SOA      | S04                         | 84.1                        | 3 | 4 | 6 | 8  | 10           | 12                           | 14 | 16 | 18 | 20 |
|      | 5.1                    | S0    | SOS                | SOA      | S04                         | 85.1                        | 3 | 4 | 6 | 8  | 10           | 12                           | 14 | 16 | 18 | 20 |

<sup>(1)</sup> Standoffs with thru-hole codes 6116, 8143, 63.1 and 83.6 have a thicker wall to provide more bearing surface for the mating component or panel reducing the chance of cracking or cutting into the board.

Please contact your local PEM® distributor for availability, minimum quantity, and pricing information.

<sup>\*</sup> NC suffix is required if optional nickel plating (for corrosion resistance) is desired. Otherwise, no suffix is necessary.

# TSO™/TSOS™/TSOA™/TSO4™ THREADED STANDOFFS FOR SHEETS AS THIN AS .025"/0.63mm

Thread

Code

256

6256

440

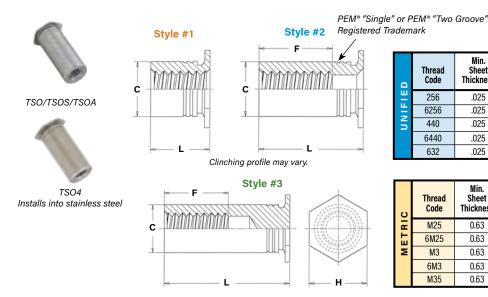
6440

632

Sheet

Thickness

.025


.025

.025

.025

.025

- TSO standoffs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 60 / HB (Hardness Brinell) 150 or less.
- TSOS standoffs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 70 / HB (Hardness Brinell) 125 or less.
- TSOA standoffs are recommended for use in aluminum sheets HRB (Rockwell "B" scale) 50 / HB (Hardness Brinell) 82 or less.
- TSO4 standoffs are recommended for use in stainless steel sheets HRB (Rockwell "B" scale) 88 / HB (Hardness Brinell) 183 or less.



### All dimensions are in inches. F Min. **Hole Size** Min. Dist. In Sheet +.003 -.000 +.000 Thread -.005 To Edge Depth Nom. .166 .165 .187 .23 .200 .213 .212 .250 .27 .166 .165 .187 .23

.220

.270

**GENERAL DIMENSIONAL DATA** 

.250 All dimensions are in millimeters.

.250

.27

.27

| c  | Thread<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>-0.13 | F Min.<br>Thread<br>Depth | H<br>Nom. | Min. Dist.<br>Hole <b>⊉</b><br>To Edge |
|----|----------------|----------------------------|--------------------------------|------------|---------------------------|-----------|----------------------------------------|
| R  | M25            | 0.63                       | 4.22                           | 4.2        | 5.2                       | 4.8       | 5.8                                    |
| ΕT | 6M25           | 0.63                       | 5.41                           | 5.39       | 3.2                       | 6.4       | 7.1                                    |
| Σ  | М3             | 0.63                       | 4.22                           | 4.2        | 6.2                       | 4.8       | 5.8                                    |
|    | 6M3            | 0.63                       | 5.41                           | 5.39       | 6.4                       |           | 7.1                                    |
|    | M35            | 0.63                       | 5.41                           | 5.39       | 7                         | 6.4       | 7.1                                    |

.212

.212

.213

.213

# THREAD SIZE AND LENGTH SELECTION DATA

All dimensions are in inches.

|    |                    |       | Тур       | е        |                                |                            |                    |                    |                    |                    |                    | •                  | "L" ±.003          | 1                     |                     |                    |                    |                    |
|----|--------------------|-------|-----------|----------|--------------------------------|----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------------|---------------------|--------------------|--------------------|--------------------|
|    | Thread<br>Size     | Ctool | Stainless | Aluminum | Hardened<br>Stainless<br>Steel | Thread<br>Code             | .090               | .125               | .187               | .250               | .312               | .375               | .437               | chart at bott<br>.500 | om of page.<br>.562 | .625               | .687               | .750               |
| ED |                    | Steel | Steel     | Aluminum | Steel                          |                            |                    |                    |                    | Len                | igth Code (I       | Length "L" w       | rithout deci       | mal point)            |                     |                    |                    |                    |
| IE | .086-56<br>(#2-56) | TS0   | TS0S      | TS0A     | TS04                           | 256<br>6256 <sup>(4)</sup> | 090 <sup>(1)</sup> | 125 <sup>(1)</sup> | 187 <sup>(1)</sup> | 250 <sup>(1)</sup> | 312 <sup>(2)</sup> | 375 <sup>(2)</sup> | 437 <sup>(3)</sup> | 500 <sup>(3)</sup>    | 562 <sup>(3)</sup>  | 625 <sup>(3)</sup> | 687 <sup>(3)</sup> | 750 <sup>(3)</sup> |
| ٦  | .112-40<br>(#4-40) | TS0   | TS0S      | TS0A     | TS04                           | 440<br>6440 <sup>(4)</sup> | 090 <sup>(1)</sup> | 125 <sup>(1)</sup> | 187 <sup>(1)</sup> | 250 <sup>(1)</sup> | 312 <sup>(2)</sup> | 375 <sup>(2)</sup> | 437 <sup>(2)</sup> | 500 <sup>(3)</sup>    | 562 <sup>(3)</sup>  | 625 <sup>(3)</sup> | 687 <sup>(3)</sup> | 750 <sup>(3)</sup> |
|    | .138-32<br>(#6-32) | TS0   | TS0S      | TS0A     | TS04                           | 632                        | -                  | 125 <sup>(1)</sup> | 187 <sup>(1)</sup> | 250 <sup>(1)</sup> | 312 <sup>(1)</sup> | 375 <sup>(2)</sup> | 437 <sup>(2)</sup> | 500 <sup>(2)</sup>    | 562 <sup>(3)</sup>  | 625 <sup>(3)</sup> | 687 <sup>(3)</sup> | 750 <sup>(3)</sup> |

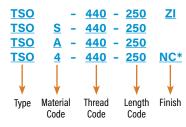
### All dimensions are in millimeters.

| Γ |      | Thread          |       | Тур                | e        |                                |                            |                    |                    |                    | Ear athar la       | natha / thros      | Length "L" ±<br>nd depth data         |                     | hottom of n         | 000                 |                     |                     |
|---|------|-----------------|-------|--------------------|----------|--------------------------------|----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|   | ა    | Size x<br>Pitch | Steel | Stainless<br>Steel | Aluminum | Hardened<br>Stainless<br>Steel | Thread<br>Code             | 2.00               | 3.00               | 4.00               | 6.00               | 8.00               | 10.00<br>g <mark>th "L" withou</mark> | 12.00               | 14.00               | 16.00               | 18.00               | 19.00               |
| п | ETRI | M2.5 x 0.45     | TS0   | TS0S               | TS0A     | TS04                           | M25<br>6M25 <sup>(4)</sup> | 200 <sup>(1)</sup> | 300 <sup>(1)</sup> | 400 <sup>(1)</sup> | 600 <sup>(1)</sup> | 800 <sup>(2)</sup> | 1000 <sup>(3)</sup>                   | 1200 <sup>(3)</sup> | 1400 <sup>(3)</sup> | 1600 <sup>(3)</sup> | 1800 <sup>(3)</sup> | 1900 <sup>(3)</sup> |
|   | Σ    | M3 x 0.5        | TS0   | TS0S               | TS0A     | TS04                           | M3<br>6M3 <sup>(4)</sup>   | 200 <sup>(1)</sup> | 300 <sup>(1)</sup> | 400 <sup>(1)</sup> | 600 <sup>(1)</sup> | 800 <sup>(2)</sup> | 1000 <sup>(2)</sup>                   | 1200 <sup>(3)</sup> | 1400 <sup>(3)</sup> | 1600 <sup>(3)</sup> | 1800 <sup>(3)</sup> | 1900 <sup>(3)</sup> |
|   |      | M3.5 x 0.6      | TS0   | TS0S               | TS0A     | TS04                           | M35                        | -                  | 300 <sup>(1)</sup> | 400 <sup>(1)</sup> | 600 <sup>(1)</sup> | 800 <sup>(1)</sup> | 1000 <sup>(2)</sup>                   | 1200 <sup>(2)</sup> | 1400 <sup>(3)</sup> | 1600 <sup>(3)</sup> | 1800 <sup>(3)</sup> | 1900 <sup>(3)</sup> |

- (1) Style #1. Thru-threaded.
- (2) Style #2. Screw might not pass through unthreaded end. Tapped to minimum full thread depth shown. Incomplete threads on tap may allow screw to pass through.
- (3) Style #3. Blind.
- (4) Standoffs with thread codes 6256, 6440, 6M25 and 6M3 have a thicker wall to provide more bearing surface for the mating component or panel reducing the chance of cracking or cutting into the board.

Please contact your local PEM® distributor for availability, minimum quantity, and pricing information.

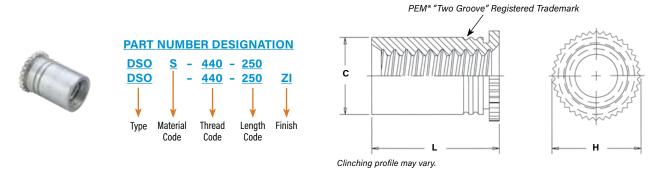
### LENGTH/STYLE DATA


All dimensions are in inches. (Length can be specified in .001" increments.)

| UNIFIED | Thread<br>Code | Length "L"<br>(Style #1) | Length "L"<br>(Style #2) | Length "L"<br>(Style #3) |  |  |
|---------|----------------|--------------------------|--------------------------|--------------------------|--|--|
| F       | 256 / 6256     | .090250                  | .251375                  | .376750                  |  |  |
| N       | 440 / 6440     | .090280                  | .281450                  | .451750                  |  |  |
| ۱       | 632            | .120350                  | .351540                  | .541750                  |  |  |

All dimensions are in millimeters. (Length can be specified in 0.02 mm increments.)

| 10     | Thread<br>Code | Length "L"<br>(Style #1) | Length "L"<br>(Style #2) | Length "L"<br>(Style #3) |
|--------|----------------|--------------------------|--------------------------|--------------------------|
| METRIC | M25 / 6M25     | 2.00 - 6.30              | 6.32 - 9.50              | 9.52 - 19.00             |
| ΝE     | M3 / 6M3       | 2.00 - 7.50              | 7.52 - 11.00             | 11.02 - 19.00            |
|        | M35            | 3.00 - 8.80              | 8.82 - 12.80             | 12.82 - 19.00            |


# PART NUMBER DESIGNATION



\* NC suffix is required if optional nickel plating (for corrosion resistance) is desired. Otherwise, no suffix is necessary.

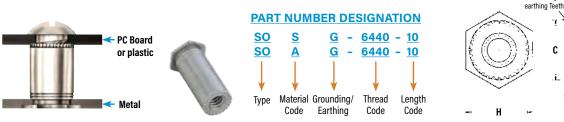
# DSOS™/DSO™ THREADED STANDOFFS - FOR CLOSE-TO-EDGE APPLICATIONS

- DSO standoffs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 80 / HB (Hardness Brinell) 150 or less.
- DSOS standoffs are recommended for use in steel or aluminum sheets HRB (Rockwell "B" scale) 70 / HB (Hardness Brinell) 125 or less.



### All dimensions are in inches.

|   | D   |                | Ту                 | ре    |                |                | <b>.</b>           | Hole Size            | _         |           | L (1)        | Min. Dist.               |
|---|-----|----------------|--------------------|-------|----------------|----------------|--------------------|----------------------|-----------|-----------|--------------|--------------------------|
|   | 313 | Thread<br>Size | Stainless<br>Steel | Steel | Thread<br>Code | Length<br>Code | Sheet<br>Thickness | In Sheet<br>+.003000 | C<br>Max. | H<br>Nom. | +.002<br>005 | Hole <b>©</b><br>To Edge |
| ı | Ξ   | .112-40        | DSOS               | DS0   | 440            | 250            | .037250            | .166                 | .165      | .194      | .250         | .126                     |
|   |     | (#4-40)        | DSUS               | ספע   | 440            | 275            | .031250            | .100                 | .100      | .134      | .275         | .120                     |


### All dimensions are in millimeters.

| ပ   | Thread          | Ту                 | ре    | - ·            |                |                    | Hole Size         | r    |           | L (1)          | Min. Dist.                   |
|-----|-----------------|--------------------|-------|----------------|----------------|--------------------|-------------------|------|-----------|----------------|------------------------------|
| 18. | Size x<br>Pitch | Stainless<br>Steel | Steel | Thread<br>Code | Length<br>Code | Sheet<br>Thickness | In Sheet<br>+0.08 | Max. | H<br>Nom. | +0.05<br>-0.13 | Hole <b>&amp;</b><br>To Edge |
| lΨ  | M3 x 0.5        | DSOS               | DSO   | M3             | 6.35           | 0.94 - 6.35        | 4.22              | 4.2  | 4.02      | 6.35           | 2.2                          |
| ≥   | INIO X U.S      | D202               | D20   | IVIO           | 7              | 0.94 - 6.35        | 4.22              | 4.2  | 4.92      | 7              | 3.2                          |

(1) Available in other lengths on special order.

Please contact your local PEM® distributor for availability, minimum quantity, and pricing information.

# SOSG™/SOAG™ GROUNDING/EARTHING STANDOFFS



L Clinching profile may vary. All dimensions are in inches.

|         | Thread             | Туре               | e        | Thread |      |      |      | th "L" +.010 ·<br>le is in 32nd: |      |      |      | Min.<br>Sheet  | Hole<br>Size In       | C            | Н     | Р    | Min. Dist.               |
|---------|--------------------|--------------------|----------|--------|------|------|------|----------------------------------|------|------|------|----------------|-----------------------|--------------|-------|------|--------------------------|
| : I E D | Size               | Stainless<br>Steel | Aluminum | Code   | .125 | .187 | .250 | .312                             | .375 | .437 | .500 | Thick-<br>ness | Sheet<br>+.003<br>000 | +.000<br>005 | ±.005 | Nom. | Hole <b>©</b><br>To Edge |
| NIF     | .112-40<br>(#4-40) | SOSG               | SOAG     | 6440   | 4    | 6    | 8    | 10                               | 12   | 14   | 16   | .040           | .213                  | .212         | .250  | .030 | .27                      |
|         | .138-32<br>(#6-32) | SOSG               | SOAG     | 8632   | 4    | 6    | 8    | 10                               | 12   | 14   | 16   | .050           | .281                  | .280         | .312  | .030 | .31                      |

### All dimensions are in millimeters.

| ETRIC | Thread<br>Size x<br>Pitch | Type<br>Stainless<br>Steel | Aluminum | Thread<br>Code |   | ( | Length "<br>Length Code is | 'L" +0.25<br>s in millimeters | s) |    | Min.<br>Sheet<br>Thick-<br>ness | Hole<br>Size In<br>Sheet<br>+0.08 | C<br>-0.13 | H<br>±0.25 | P<br>Nom. | Min. Dist.<br>Hole <b>©</b><br>To Edge |
|-------|---------------------------|----------------------------|----------|----------------|---|---|----------------------------|-------------------------------|----|----|---------------------------------|-----------------------------------|------------|------------|-----------|----------------------------------------|
| ≥     | M3 x 0.5                  | SOSG                       | SOAG     | 3.5M3          | 3 | 4 | 6                          | 8                             | 10 | 12 | 1                               | 5.4                               | 5.39       | 6.4        | 0.76      | 6.8                                    |

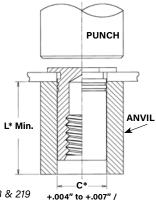
PEM® "Two Groove"

Registered Trademark

Grounding/

# MATERIAL AND FINISH SPECIFICATIONS

|                                              | Threads (1)                                      |                             | Fas                                    | stener Mate | rials                               |                                                  | Stand                                                                 | dard Finishes                                   |              | Optional Finish                                                                  |                               | For Use I                     | n Sheet Hard                  | Iness: <sup>(4)</sup>         |                              |
|----------------------------------------------|--------------------------------------------------|-----------------------------|----------------------------------------|-------------|-------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|--------------|----------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|
| Туре                                         | Internal, ASME<br>B1.1, 2B<br>ASME<br>B1.13M, 6H | Hardened<br>Carbon<br>Steel | Non-heat<br>Treated<br>Carbon<br>Steel | Aluminum    | 300<br>Series<br>Stainless<br>Steel | Hardened<br>400 Series<br>Stainless Steel<br>(5) | Zinc Plated<br>per ASTM B633,<br>SC1 (5µm), Type III<br>Colorless (2) | Passivated<br>and/or Tested<br>Per ASTM<br>A380 | No<br>Finish | Electroless Nickel<br>over Copper over<br>Nickel Strike<br>Per ASTM B733 (2) (3) | HRB 88 /<br>HB 183<br>or Less | HRB 80 /<br>HB 150<br>or Less | HRB 70 /<br>HB 125<br>or Less | HRB 60 /<br>HB 107<br>or Less | HRB 50 /<br>HB 82<br>or Less |
| S0                                           | •                                                | •                           |                                        |             |                                     |                                                  | •                                                                     |                                                 |              |                                                                                  |                               | •                             |                               |                               |                              |
| SOA                                          | •                                                |                             |                                        | •           |                                     |                                                  |                                                                       |                                                 | •            |                                                                                  |                               |                               |                               |                               | •                            |
| SOS                                          | •                                                |                             |                                        |             | •                                   |                                                  |                                                                       | •                                               |              |                                                                                  |                               |                               | •                             |                               |                              |
| S04                                          | •                                                |                             |                                        |             |                                     | •                                                |                                                                       | •                                               |              | -                                                                                | •                             |                               |                               |                               |                              |
| BS0                                          | •                                                | •                           |                                        |             |                                     |                                                  | •                                                                     |                                                 |              |                                                                                  |                               | •                             |                               |                               |                              |
| BSOA                                         | •                                                |                             |                                        | •           |                                     |                                                  |                                                                       |                                                 | •            |                                                                                  |                               |                               |                               |                               | •                            |
| BSOS                                         | •                                                |                             |                                        |             | •                                   |                                                  |                                                                       | •                                               |              |                                                                                  |                               |                               | •                             |                               |                              |
| BS04                                         | •                                                |                             |                                        |             |                                     | •                                                |                                                                       | •                                               |              | •                                                                                | •                             |                               |                               |                               |                              |
| TS0                                          | •                                                |                             | •                                      |             |                                     |                                                  | •                                                                     |                                                 |              |                                                                                  |                               |                               |                               | •                             |                              |
| TSOS                                         | •                                                |                             |                                        |             | •                                   |                                                  |                                                                       | •                                               |              |                                                                                  |                               |                               | •                             |                               |                              |
| TS0A                                         | •                                                |                             |                                        | •           |                                     |                                                  |                                                                       |                                                 | •            |                                                                                  |                               |                               |                               |                               | •                            |
| TS04                                         | •                                                |                             |                                        |             |                                     | •                                                |                                                                       | •                                               |              | -                                                                                | •                             |                               |                               |                               |                              |
| DS0                                          | •                                                | •                           |                                        |             |                                     |                                                  | •                                                                     |                                                 |              |                                                                                  |                               | •                             |                               |                               |                              |
| DSOS                                         | •                                                |                             |                                        |             | •                                   |                                                  |                                                                       | •                                               |              |                                                                                  |                               |                               | •                             |                               |                              |
| SOAG                                         | •                                                |                             |                                        | •           |                                     |                                                  |                                                                       |                                                 | •            |                                                                                  |                               |                               |                               |                               | •                            |
| SOSG                                         | •                                                |                             |                                        |             | •                                   |                                                  |                                                                       | •                                               |              |                                                                                  |                               |                               | •                             |                               |                              |
| Part Number Codes For Finishes ZI None NC NC |                                                  |                             |                                        |             |                                     |                                                  |                                                                       |                                                 |              |                                                                                  |                               |                               |                               |                               |                              |


- (1) Where applicable.
- (2) See PEM Technical Support section of our website for related plating standards and specifications.
- (3) Not stocked, available on special order. Minimum quantities apply. Contact your local PEM® distributor for details.
- (4) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (5) In order for self-clinching fasteners to work properly, the fastener must be harder than the sheet into which it is being installed (For more information, see our <u>tech sheet</u> for installing fasteners into stainless steel sheets). In the case of stainless steel panels, fasteners made from 300 Series Stainless Steel do not meet this hardness criteria. It is for this reason that SO4™, BSO4™ and TSO4™ 400 series fasteners are offered. However, while these 400 Series fasteners install and perform well in 300 Series stainless sheets they should not be used if the end product will be exposed to any appreciable corrosive environment (unless finished with optional nickel plating), requires non-magnetic fasteners or will be exposed to any temperatures above 300°F (149°C). If any of the these are issues, please contact <u>techsupport@pemnet.com</u> for other options.

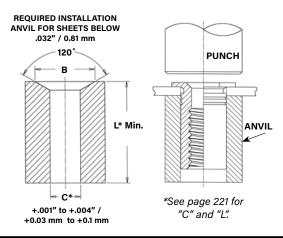
### INSTALLATION

# SO™/SOS™/SOA™/SO4™/BSO™/BSOS™/BSOA™/BSO4™ STANDOFFS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operation such as deburring.
- 2. Insert standoff through mounting hole (preferably the punch side) of sheet and into anvil as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply only enough squeezing force to embed the standoff's head flush in the sheet. Drawing at right shows suggested tooling for applying these forces.

| Thread<br>Code      | Anvil Part<br>Number | Punch Part<br>Number |
|---------------------|----------------------|----------------------|
| 440/M2/M2.5/M3      | 970200487300         |                      |
| 632/6440/3.5M3/M3.5 | 970200012300         |                      |
| 832/8632/M4         | 970200013300         | 975200048            |
| 032/M5              | 970200013300         |                      |
| 0420/M6             | 970200393300         |                      |




\*See pages 218 & 219 for "C" and "L".

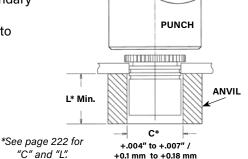
+.004" to +.007" / +0.1 mm to +0.18 mm

# **INSTALLATION**

# TSO™/TSOS™/TSOA™/TSO4™ STANDOFFS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operation such as deburring.
- 2. Insert standoff through mounting hole (preferably the punch side) of sheet and into anvil as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply only enough squeezing force to embed the standoff's head flush in the sheet. Drawing at right shows required installation anvil for sheet thickness of .025" to .032" / 0.63 mm to 0.81 mm. A chamfered anvil is not required for sheets over .032" / 0.81 mm.




# **PEMSERTER® Installation Tooling**

| E D | Thread        |         | mensions (in.)<br>ets Below .032" | Anvil Part No.<br>For Sheets | Punch Part |  |  |
|-----|---------------|---------|-----------------------------------|------------------------------|------------|--|--|
| ᇤ   | Code          | В       | Anvil Part No.                    | Over .032"                   | Number     |  |  |
| INO | 256/440       | .187194 | 8003291                           | 970200487300                 | 975200048  |  |  |
| n   | 6256/6440/632 | .250257 | 8003292                           | 970200012300                 | 975200048  |  |  |

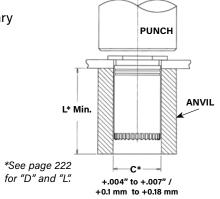
|       | ıc | Thread       |             | nensions (mm)<br>s Below 0.81 mm | Anvil Part No.<br>For Sheets | Punch Part |  |
|-------|----|--------------|-------------|----------------------------------|------------------------------|------------|--|
| T B I | Œ  | Code         | В           | Anvil Part No.                   | Over 0.81 mm                 | Number     |  |
| ı     | ME | M2.5/M3      | 4.75 - 4.93 | 8003291                          | 970200487300                 | 975200048  |  |
|       | _  | 6M25/6M3/M35 | 6.35 - 6.53 | 8003292                          | 970200012300                 | 975200048  |  |

# DSOS™/DSO™ STANDOFFS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert fastener through mounting hole (preferably the punch side) and into anvil as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply only enough squeezing force to embed the standoff's head flush in the sheet.



# **PEMSERTER®** Installation Tooling


| Thread<br>Code | Anvil Part<br>Number | Punch Part<br>Number |
|----------------|----------------------|----------------------|
| 440/M3         | 970200487300         |                      |
| 6440/3.5M3     | 970200012300         | 975200048            |
| 8632           | 970200013300         |                      |

# SOSG™/SOAG™ STANDOFFS

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert fastener through mounting hole (preferably the punch side) and into anvil as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply only enough squeezing force to embed the standoff's head flush in the sheet.

# **PEMSERTER® Installation Tooling**

| Thread<br>Code | Anvil Part<br>Number | Punch Part<br>Number |  |  |
|----------------|----------------------|----------------------|--|--|
| 440/M3         | 970200487300         |                      |  |  |
| 6440/3.5M3     | 970200012300         | 975200048            |  |  |
| 8632           | 970200013300         |                      |  |  |



# **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® press for installation of PEM® standoffs. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for this product.

# PERFORMANCE DATA(1)

# SOTM/SOSTM/SOATM/BSOTM/BSOSTM/BSOATM STANDOFFS

|   |        |                 | Max. Rec.                  |                        |                   |                                         | Test Sheet                         | Material <sup>(2)</sup> |                   |                                         |                                    |
|---|--------|-----------------|----------------------------|------------------------|-------------------|-----------------------------------------|------------------------------------|-------------------------|-------------------|-----------------------------------------|------------------------------------|
|   | Thread | Standoff        | Tightening<br>Torque For   |                        | .060" 5052-H      | 34 Aluminum                             |                                    |                         | .060" Cold        | rolled Steel                            |                                    |
|   | Code   | Material        | Mating Screw<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out <sup>(3)</sup><br>(in. lbs.) | Pull-thru <sup>(3)</sup><br>(lbs.) | Installation<br>(lbs.)  | Pushout<br>(lbs.) | Torque-out <sup>(3)</sup><br>(in. lbs.) | Pull-thru <sup>(3)</sup><br>(lbs.) |
|   |        | Steel           | 4.75                       | 1100                   | 160               | 11                                      | 280                                | 2200                    | 225               | 19                                      | 330                                |
|   | 440    | Stainless Steel | 3.8                        | 1100                   | 160               | 11                                      | 224                                | 2200                    | 225               | 19                                      | 264                                |
|   |        | Aluminum        | 2.85                       | 1100                   | 160               | 11                                      | 168                                | -                       | -                 | -                                       | -                                  |
|   |        | Steel           | 4.75                       | 1700                   | 300               | 25                                      | 310                                | 3300                    | 420               | 35                                      | 380                                |
|   | 6440   | Stainless Steel | 3.8                        | 1700                   | 300               | 25                                      | 248                                | 3300                    | 420               | 35                                      | 304                                |
| ш |        | Aluminum        | 2.85                       | 1700                   | 300               | 25                                      | 186                                | -                       | -                 | -                                       | -                                  |
| 盂 | 632    | Steel           | 8.75                       | 1700                   | 300               | 25                                      | 310                                | 3300                    | 420               | 35                                      | 380                                |
| Ξ |        | Stainless Steel | 7                          | 1700                   | 300               | 25                                      | 248                                | 3300                    | 420               | 35                                      | 304                                |
| 5 |        | Aluminum        | 5.25                       | 1700                   | 300               | 25                                      | 186                                | -                       | -                 | -                                       | -                                  |
|   |        | Steel           | 8.75                       | 2400                   | 400               | 45                                      | 580                                | 4000                    | 560               | 75                                      | 700                                |
|   | 8632   | Stainless Steel | 7                          | 2400                   | 400               | 45                                      | 464                                | 4000                    | 560               | 75                                      | 560                                |
|   |        | Aluminum        | 5.25                       | 2400                   | 400               | 45                                      | 248                                | -                       | -                 | -                                       | -                                  |
|   |        | Steel           | 18                         | 2400                   | 400               | 45                                      | 580                                | 4000                    | 560               | 75                                      | 700                                |
|   | 832    | Stainless Steel | 14.4                       | 2400                   | 400               | 45                                      | 464                                | 4000                    | 560               | 75                                      | 560                                |
|   |        | Aluminum        | 11                         | 2400                   | 400               | 45                                      | 348                                | -                       | -                 | -                                       | -                                  |
|   |        | Steel           | 32                         | 2400                   | 400               | 45                                      | 580                                | 4000                    | 560               | 75                                      | 700                                |
|   | 032    | Stainless Steel | 25.6                       | 2400                   | 400               | 45                                      | 464                                | 4000                    | 560               | 75                                      | 560                                |
|   |        | Aluminum        | 19                         | 2400                   | 400               | 45                                      | 348                                | -                       | -                 | -                                       | -                                  |

|   |        |                 | Max. Rec.                |                      |                |                                    | Test Sheet                      | Material <sup>(2)</sup>  |                |                                    |                                 |
|---|--------|-----------------|--------------------------|----------------------|----------------|------------------------------------|---------------------------------|--------------------------|----------------|------------------------------------|---------------------------------|
|   | Thread | Standoff        | Tightening<br>Torque For |                      | 1.5 mm 5052-   | H34 Aluminum                       |                                 | 1.5 mm Cold-rolled Steel |                |                                    |                                 |
|   | Code   | Material        | Mating Screw<br>(N-m)    | Installation<br>(kN) | Pushout<br>(N) | Torque-out <sup>(3)</sup><br>(N-m) | Pull-thru <sup>(3)</sup><br>(N) | Installation<br>(kN)     | Pushout<br>(N) | Torque-out <sup>(3)</sup><br>(N-m) | Pull-thru <sup>(3)</sup><br>(N) |
|   |        | Steel           | 0.55                     | 4.9                  | 710            | 1.24                               | 1245                            | 9.8                      | 1000           | 2.15                               | 1465                            |
|   | M3     | Stainless Steel | 0.44                     | 4.9                  | 710            | 1.24                               | 996                             | 9.8                      | 1000           | 2.15                               | 1172                            |
|   |        | Aluminum        | 0.33                     | 4.9                  | 710            | 1.24                               | 747                             | -                        | -              | -                                  | -                               |
| ပ | 3.5M3  | Steel           | 0.55                     | 7.6                  | 1330           | 2.82                               | 1375                            | 14.7                     | 1860           | 3.95                               | 1690                            |
| = |        | Stainless Steel | 0.44                     | 7.6                  | 1330           | 2.82                               | 1100                            | 14.7                     | 1860           | 3.95                               | 1352                            |
| Н |        | Aluminum        | 0.33                     | 7.6                  | 1330           | 2.82                               | 825                             |                          | -              | -                                  | -                               |
| N |        | Steel           | 0.91                     | 7.6                  | 1330           | 2.82                               | 1375                            | 14.7                     | 1860           | 3.95                               | 1690                            |
| _ | M3.5   | Stainless Steel | 0.73                     | 7.6                  | 1330           | 2.82                               | 1100                            | 14.7                     | 1860           | 3.95                               | 1352                            |
|   |        | Aluminum        | 0.55                     | 7.6                  | 1330           | 2.82                               | 825                             |                          | -              | -                                  | -                               |
|   |        | Steel           | 2                        | 10.7                 | 1780           | 5.08                               | 2575                            | 17.8                     | 2490           | 8.47                               | 3110                            |
|   | M4     | Stainless Steel | 1.6                      | 10.7                 | 1780           | 5.08                               | 2060                            | 17.8                     | 2490           | 8.47                               | 2488                            |
|   |        | Aluminum        | 1.2                      | 10.7                 | 1780           | 5.08                               | 1545                            | -                        | -              | -                                  | -                               |
|   |        | Steel           | 3.6                      | 10.7                 | 1780           | 5.08                               | 2575                            | 17.8                     | 2490           | 8.47                               | 3110                            |
|   | M5     | Stainless Steel | 2.88                     | 10.7                 | 1780           | 5.08                               | 2060                            | 17.8                     | 2490           | 8.47                               | 2488                            |
|   |        | Aluminum        | 2.16                     | 10.7                 | 1780           | 5.08                               | 1545                            | -                        | -              | -                                  | -                               |

# SO4™/BSO4™ STANDOFFS

|   |        | Max. Rec.                  | Test Sheet Material              |                   |                              |                         |  |  |  |  |
|---|--------|----------------------------|----------------------------------|-------------------|------------------------------|-------------------------|--|--|--|--|
|   | Thread | Tightening<br>Torque For   | .050" 300 Series Stainless Steel |                   |                              |                         |  |  |  |  |
| D | Code   | Mating Screw<br>(in. lbs.) | Installation<br>(lbs.)           | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) (2) | Pull-thru<br>(lbs.) (2) |  |  |  |  |
| = | 440    | 4.75                       | 5500                             | 336               | 17                           | 600                     |  |  |  |  |
| = | 6440   | 4.75                       | 9500                             | 647               | 30                           | 680                     |  |  |  |  |
| N | 632    | 8.75                       | 9500                             | 647               | 30                           | 680                     |  |  |  |  |
|   | 8632   | 8.75                       | 10500                            | 900               | 71                           | 1392                    |  |  |  |  |
|   | 832    | 18                         | 10500                            | 900               | 71                           | 1517                    |  |  |  |  |
|   | 032    | 32                         | 10500                            | 900               | 71                           | 1368                    |  |  |  |  |

|          |        | Max. Rec.                | Test Sheet Material 1.3 mm 300 Series Stainless Steel |                |                         |                      |  |  |  |  |
|----------|--------|--------------------------|-------------------------------------------------------|----------------|-------------------------|----------------------|--|--|--|--|
|          | Thread | Tightening<br>Torque For |                                                       |                |                         |                      |  |  |  |  |
| <u>2</u> | Code   | Mating Screw<br>(N-m)    | Installation<br>(kN)                                  | Pushout<br>(N) | Torque-out<br>(N-m) (2) | Pull-thru<br>(N) (2) |  |  |  |  |
| TR       | M3     | 0.55                     | 24.5                                                  | 1493           | 2.36                    | 2650                 |  |  |  |  |
| ME       | 3.5M3  | 0.55                     | 42.3                                                  | 2877           | 3.06                    | 3025                 |  |  |  |  |
| _        | M3.5   | 0.91                     | 42.3                                                  | 2877           | 3.06                    | 3025                 |  |  |  |  |
|          | M4     | 2                        | 46.7                                                  | 4003           | 8.89                    | 6458                 |  |  |  |  |
|          | M5     | 3.6                      | 46.7                                                  | 4003           | 8.89                    | 6226                 |  |  |  |  |

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.
- (2) See tech sheet on our website for performance data of PEM® SO™ standoffs installed into copper sheets.
- (3) Joint failure in torque-out and pull-thru will depend on the strength and type of screw being used. In some cases the failure will be in the screw and not in the self-clinching standoff. Please contact our Applications Engineering group with any questions.

# PERFORMANCE DATA(1)

# TSO™/TSOS™/TSOA™ STANDOFFS

| 0. 1 (( #0#               | 0. 1."               |        |                                   |        |      |            |                      |        | Test Shee          | t Material                        |         |        |      |            |                      |        |                     |
|---------------------------|----------------------|--------|-----------------------------------|--------|------|------------|----------------------|--------|--------------------|-----------------------------------|---------|--------|------|------------|----------------------|--------|---------------------|
| Standoff "C"<br>Dimension | Standoff<br>Material |        | .025" / 0.64 mm 5052-H34 Aluminum |        |      |            |                      |        |                    | .025" / 0.64 mm Cold-rolled Steel |         |        |      |            |                      |        |                     |
| Dimonoion                 | material             | Instal | lation                            | Pus    | hout | Torqu      | e-out <sup>(2)</sup> | Pull-t | hru <sup>(2)</sup> | Insta                             | llation | Pusl   | nout | Torque     | e-out <sup>(2)</sup> | Pull-t | thru <sup>(2)</sup> |
|                           |                      | (lbs.) | (kN)                              | (lbs.) | (N)  | (in. lbs.) | (N-m)                | (lbs.) | (N)                | (lbs.)                            | (kN)    | (lbs.) | (N)  | (in. lbs.) | (N-m)                | (lbs.) | (N)                 |
| .165" /                   | Steel                | 700    | 3.1                               | 70     | 311  | 6          | 0.68                 | 230    | 1022               | 1100                              | 4.9     | 100    | 445  | 9          | 1                    | 206    | 916                 |
| 4.2 mm                    | Stainless Steel      | 700    | 3.1                               | 70     | 311  | 6          | 0.68                 | 268    | 1191               | 1100                              | 4.9     | 100    | 445  | 9          | 1                    | 260    | 1155                |
| 4.2 111111                | Aluminum             | 700    | 3.1                               | 70     | 311  | 6          | 0.68                 | 227    | 1009               | _                                 | _       | ı      | _    | _          | ı                    | ı      | _                   |
| .212" /                   | Steel                | 700    | 3.1                               | 90     | 400  | 11         | 1.24                 | 264    | 1173               | 1800                              | 8       | 150    | 667  | 15         | 1.7                  | 207    | 920                 |
| 5.39 mm                   | Stainless Steel      | 700    | 3.1                               | 90     | 400  | 11         | 1.24                 | 340    | 1511               | 1800                              | 8       | 150    | 667  | 15         | 1.7                  | 344    | 1529                |
| 0.00 111111               | Aluminum             | 700    | 3.1                               | 90     | 400  | 11         | 1.24                 | 300    | 1333               | _                                 | _       | -      | _    | _          | _                    | _      | -                   |

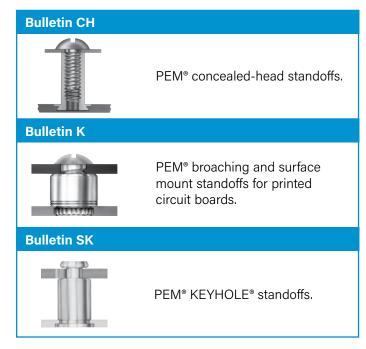
# **TSO4™ STANDOFFS**

|                 |        |                                            |        | Test She | et Material |                     |                          |      |  |  |  |  |  |
|-----------------|--------|--------------------------------------------|--------|----------|-------------|---------------------|--------------------------|------|--|--|--|--|--|
| Standoff "C"    |        | .025" / 0.64 mm 300 series stainless steel |        |          |             |                     |                          |      |  |  |  |  |  |
| Dimension       | Instal | lation                                     | Pus    | hout     | Torque      | -out <sup>(2)</sup> | Pull-thru <sup>(2)</sup> |      |  |  |  |  |  |
|                 | (lbs.) | (kN)                                       | (lbs.) | (N)      | (in. lbs.)  | (N-m)               | (lbs.)                   | (N)  |  |  |  |  |  |
| .165" / 4.2 mm  | 6500   | 28.9                                       | 125    | 555      | 13          | 1.5                 | 414                      | 1840 |  |  |  |  |  |
| .212" / 5.39 mm | 6800   | 30.3                                       | 160    | 710      | 22          | 2.5                 | 552                      | 2453 |  |  |  |  |  |

# DSOS™/DSO™ STANDOFFS

|       | Thread<br>Code | Max. Rec.<br>Tightening<br>Torque For<br>Mating Screw<br>(in. Ibs.) | Test Sheet Material    |                   |                                         |                                    |                         |                   |                                         |                                    |  |  |  |
|-------|----------------|---------------------------------------------------------------------|------------------------|-------------------|-----------------------------------------|------------------------------------|-------------------------|-------------------|-----------------------------------------|------------------------------------|--|--|--|
|       |                |                                                                     |                        | .040" 5052-H      | 34 Aluminum                             |                                    | .040" Cold-rolled Steel |                   |                                         |                                    |  |  |  |
| JNIFI |                |                                                                     | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) <sup>(2)</sup> | Pull-thru<br>(lbs.) <sup>(2)</sup> | Installation<br>(lbs.)  | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) <sup>(2)</sup> | Pull-thru<br>(lbs.) <sup>(2)</sup> |  |  |  |
|       | 440            | 3.8                                                                 | 700                    | 50                | 10                                      | 320                                | 1100                    | 75                | 10                                      | 357                                |  |  |  |

|        |                | Max. Rec.<br>Tightening<br>Torque For<br>Mating Screw<br>(N-m) | Test Sheet Material  |                |                                    |                                 |                        |                |                                    |                                 |  |  |  |
|--------|----------------|----------------------------------------------------------------|----------------------|----------------|------------------------------------|---------------------------------|------------------------|----------------|------------------------------------|---------------------------------|--|--|--|
| METRIC | Thread<br>Code |                                                                |                      | 1 mm 5052-H3   | 34 Aluminum                        |                                 | 1 mm Cold-rolled Steel |                |                                    |                                 |  |  |  |
|        |                |                                                                | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N•m) <sup>(2)</sup> | Pull-thru<br>(N) <sup>(2)</sup> | Installation<br>(kN)   | Pushout<br>(N) | Torque-out<br>(N-m) <sup>(2)</sup> | Pull-thru<br>(N) <sup>(2)</sup> |  |  |  |
|        | M3             | 0.44                                                           | 3.1                  | 223            | 1.1                                | 1422                            | 4.9                    | 334            | 1.1                                | 1587                            |  |  |  |


# SOSG™/SOAG™ STANDOFFS

| IED | Thread<br>Code | Code Test Sheet Material |      | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) <sup>(2)</sup> | Pull-thru<br>(Ibs.) <sup>(2)</sup> |
|-----|----------------|--------------------------|------|-------------------|-----------------------------------------|------------------------------------|
| ij  | 6440           | .064" 5052-H34 Aluminum  | 1700 | 300               | 25                                      | 186                                |
| ı n | 8632           | .064" 5052-H34 Aluminum  | 1700 | 400               | 45                                      | 248                                |

| LBIC | Thread | Test Sheet Thickness and | Installation | Pushout | Torque-out | Pull-thru          |
|------|--------|--------------------------|--------------|---------|------------|--------------------|
|      | Code   | Test Sheet Material      | (kN)         | (N)     | (N-m) (2)  | (N) <sup>(2)</sup> |
| ME   | 3.5M3  | 1.6 mm 5052-H34 Aluminum | 7.6          | 1330    | 2.82       | 825                |

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/ or samples for this purpose.
- (2) Joint failure in torque-out and pull-thru will depend on the strength and type of screw being used. In some cases the failure will be in the screw and not in the self-clinching standoff. Please contact our Applications Engineering group with any questions.

If you require a standoff which we do not offer in this bulletin, please contact us. We will be happy to work with you to satisfy your special need. For other types of standard PEM® brand standoffs and spacers see:



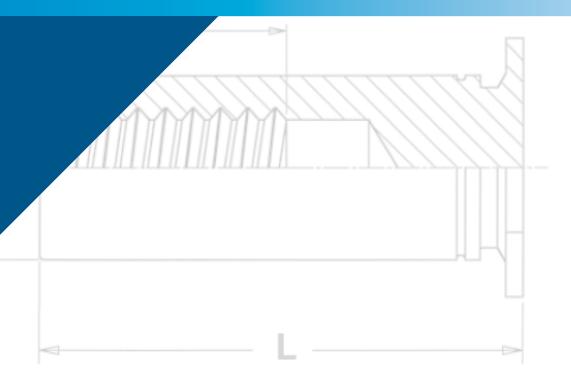


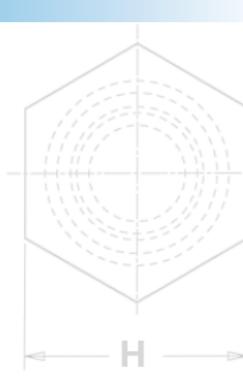
For more information on how to use PEM® self-clinching standoffs, see Tech Sheet "PEM®-Ref/Standoff Basics" on our web site.









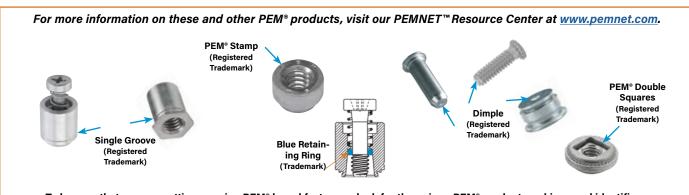


These PEM® fasteners install permanently; reduce hardware; and promote thinner and lighter designs in stainless applications.



SS<sup>TM</sup>


# FASTENERS FOR USE IN STAINLESS STEEL SHEETS






One of the very basics of self-clinching is that the fastener must always be harder than the host sheet to ensure proper and permanent installation. This is particularly challenging when installing fasteners into stainless steel sheets. Therefore we have developed this line of specially hardened stainless steel fasteners for installation into stainless steel. Refer to "Dos and Don'ts" on page 251 for further information.

Fasteners made from precipitation hardened grade stainless including A286 stainless are particularly useful in applications such as outdoor equipment, medical devices and chemical and food processing equipment or anywhere corrosive element exposure is possible.

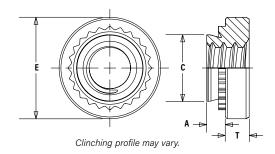


studs offer externally threaded attachment points in two stainless materials, depending on the level of corrosion resistance required. (See page 24 for other non-clinching stud solutions) - PAGE 237 SGPC™ Swaging Collar Studs can install into most panel material and accommodate multiple panels as long as the total thickness does not exceed the maximum sheet thickness TP4™ pins provide an unthreaded solution for a wide range of positioning, pivot and alignment applications. - PAGE 239 PFC4™ captive panel screws provides a tool only, captive screw solution for stainless steel sheets. (See page 24 for other nonclinching captive screw solutions) - PAGE 240 SFP™ SpotFast® fasteners provide a solution for flush "face-on-face" sheet attachment in **Material and finish specifications - PAGE 242** Installation - PAGES 237 - 247



To be sure that you are getting genuine PEM® brand fasteners, look for the unique PEM® product markings and identifiers. On actual parts, location of groove on fastener may be different than shown in photo.


# SP™ PEM 300® SELF-CLINCHING NUTS


- After installation, reverse side of sheet remains flush and smooth.
- For use in stainless steel sheets HRB 90 / HB 192 or less.
- Corrosion resistance similar to 300 series stainless steel.



The PEM 300° Identification Marks

# **PART NUMBER DESIGNATION**





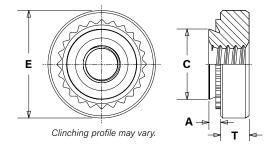
All dimensions are in inches.

|    | Thread<br>Size      | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Rec.<br>Min. Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | C<br>Max. | E<br>±.010 | T<br>±.010 | Min. Dist.<br>Hole <b>⊈</b><br>To Edge |
|----|---------------------|------|----------------|---------------|----------------------|---------------------------------|-----------------------------------|-----------|------------|------------|----------------------------------------|
|    | 000 50              |      |                | 0             | .030                 | .030                            |                                   |           |            |            |                                        |
|    | .086-56             | SP   | 256            | 1             | .038                 | .040                            | .166                              | .165      | .250       | .070       | .19                                    |
|    | (#2-56)             |      |                | 2             | .054                 | .056                            | 1                                 |           |            |            |                                        |
|    | 110 40              |      |                | 0             | .030                 | .030                            |                                   |           |            |            |                                        |
|    | .112-40             | SP   | 440            | 1             | .038                 | .040                            | .166                              | .165      | .250       | .070       | .19                                    |
|    | (#4-40)             |      |                | 2             | .054                 | .056                            | 1                                 |           |            |            |                                        |
|    | .138-32             |      |                | 0             | .030                 | .030                            |                                   |           |            |            |                                        |
|    |                     | SP   | 632            | 1             | .038                 | .040                            | .1875                             | .187      | .280       | .070       | .22                                    |
|    | (#6-32)             |      |                | 2             | .054                 | .056                            |                                   |           |            |            |                                        |
|    | .164-32             |      |                | 0             | .030                 | .030                            |                                   |           |            |            |                                        |
| ΕD | (#8-32)             | SP   | 832            | 1             | .038                 | .040                            | .213                              | .212      | .310       | .090       | .27                                    |
| Ξ  | (#0-32)             |      |                | 2             | .054                 | .056                            |                                   |           |            |            |                                        |
| N  | .190-24             | SP   |                | 0             | .030                 | .030                            |                                   | 240       |            |            |                                        |
| N  | (#10-24)            |      | 024            | 1             | .038                 | .040                            | .250                              | .249      | .340       | .090       | .28                                    |
|    | (#10-24)            |      | 024            | 2             | .054                 | .056                            | .200                              | 1243      |            |            |                                        |
|    | .190-32             |      |                | 0             | .030                 | .030                            |                                   |           |            |            |                                        |
|    | (#10-32)            | SP   | 032            | 1             | .038                 | .040                            | .250                              | .249      | .340       | .090       | .28                                    |
|    |                     |      |                | 2             | .054                 | .056                            |                                   |           |            |            |                                        |
|    | .250-20             | SP   | 0420           | 1             | .054                 | .056                            | .344                              | .343      | .440       | .170       | .34                                    |
|    | (1/4-20)            | SI.  | 0420           | 2             | .087                 | .090                            | .344                              | .343      | .440       | .170       | 1,34                                   |
|    | .313-18             | SP   | 0518           | 1             | .054                 | .056                            | .413                              | .412      | .500       | .230       | .38                                    |
|    | (5/16-18)           | JI   | 0310           | 2             | .087                 | .090                            | .410                              | .712      | .500       | .230       | .50                                    |
|    | .313-24             | SP   | 0524           | 1             | .054                 | .056                            | .413                              | .412      | .500       | .230       | .38                                    |
|    | (5/16-24)           | oi - | 0024           | 2             | .087                 | .090                            | OIF.                              | ITIL      | 1000       | 1200       | .00                                    |
|    | .375-16             | SP   | 0616           | 1             | .087                 | .090                            | .500                              | .499      | .560       | .270       | .44                                    |
|    | (3/8-16)            | 31   | 2310           | 2             | .120                 | .125                            |                                   |           |            |            |                                        |
|    | .375-24<br>(3/8-24) | SP   | 0624           | 2             | .087<br>.120         | .090<br>.125                    | .500                              | .499      | .560       | .270       | .44                                    |

All dimensions are in millimeters.

|     | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Shank<br>Code    | A<br>(Shank)<br>Max.         | Rec.<br>Min. Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>Max. | E<br>±0.25 | T<br>±0.25 | Min. Dist.<br>Hole <b>⊈</b><br>To Edge |
|-----|---------------------------|------|----------------|------------------|------------------------------|---------------------------------|--------------------------------|-----------|------------|------------|----------------------------------------|
|     | M2 x 0.4                  | SP   | M2             | 1 2              | 0.97<br>1.38                 | 1 1,4                           | 4.22                           | 4.2       | 6.35       | 1.5        | 4.8                                    |
|     | M2.5 x 0.45               | SP   | M2.5           | 0                | 0.77<br>0.97                 | 0.8<br>1<br>1.4                 | 4.22                           | 4.2       | 6.35       | 1.5        | 4.8                                    |
| RIC | M3 x 05                   | SP   | M3             | 2<br>0<br>1<br>2 | 1.38<br>0.77<br>0.97<br>1.38 | 0.8<br>1<br>1.4                 | 4.22                           | 4.2       | 6.35       | 1.5        | 4.8                                    |
| MET | M4 x 0.7                  | SP   | M4             | 0 1 2            | 0.77<br>0.97                 | 0.8<br>1<br>1.4                 | 5.41                           | 5.38      | 7.87       | 2          | 6.9                                    |
|     | M5 x 0.8                  | SP   | M5             | 0<br>1<br>2      | 0.77<br>0.97<br>1.38         | 0.8<br>1<br>1.4                 | 6.35                           | 6.33      | 8.64       | 2          | 7:1                                    |
|     | M6 x 1                    | SP   | M6             | 1 2              | 1.38<br>2.21                 | 1.4<br>2.29                     | 8.75                           | 8.73      | 11.18      | 4.08       | 8.6                                    |
|     | M8 x 1.25                 | SP   | M8             | 1 2              | 1.38<br>2.21                 | 1.4<br>2.29                     | 10.5                           | 10.47     | 12.7       | 5.47       | 9.7                                    |
|     | M10 x 1.5                 | SP   | M10            | 1                | 2.21                         | 2.29                            | 14                             | 13.97     | 17.35      | 7.48       | 13.5                                   |

The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.


NOTE: Occasionally, users of our self-clinching fasteners encounter thread binding issues when assembling fasteners made from stainless steel. This problem is typically related to galling. Technical paper, PEM® REF/THREAD GALLING, answers many of the typical questions that we receive surrounding this problem.

# **SMPP™ SELF-CLINCHING NUTS**

- Installs into stainless steel sheets as thin as .025"/0.64mm.
- Corrosion resistance similar to 300 series stainless steel.
- Reduced outer dimensions and thinner sheet capabilities compared to SP nut thread sizes.
- Recommended for use in stainless steel sheets HRB 90 / HB 192 or less.



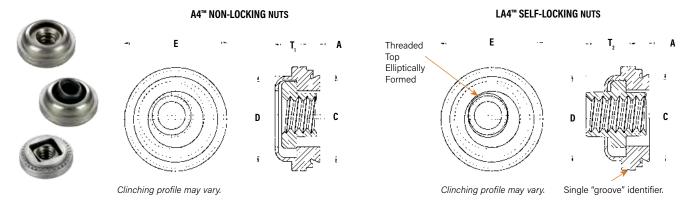
# PART NUMBER DESIGNATION SMPP - 440 Type and Thread Code



## All dimensions are in inches.

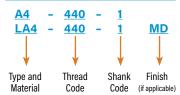
|   | D | Thread<br>Size     | Туре | Thread<br>Code | A<br>(Shank)<br>Max. | Min. Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | C<br>Max. | E<br>±.010 | T<br>±.010 | Min. Dist.<br>Hole <b>位</b><br>To Edge |
|---|---|--------------------|------|----------------|----------------------|-------------------------|-----------------------------------|-----------|------------|------------|----------------------------------------|
| ı | _ | .086-56<br>(#2-56) | SMPP | 256            | .024                 | .025                    | .136                              | .135      | .220       | .065       | .16                                    |
|   | z | .112-40<br>(#4-40) | SMPP | 440            | .024                 | .025                    | .166                              | .165      | .220       | .065       | .20                                    |
|   |   | .138-32<br>(#6-32) | SMPP | 632            | .024                 | .025                    | .187                              | .186      | .252       | .065       | .22                                    |

### All dimensions are in millimeters.


| 01     | Thread<br>Size x<br>Pitch |      | Thread<br>Code | A<br>(Shank)<br>Max. | Min. Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>Max. | E<br>±0.25 | T<br>±0.25 | Min. Dist.<br>Hole <b>⊈</b><br>To Edge |
|--------|---------------------------|------|----------------|----------------------|-------------------------|--------------------------------|-----------|------------|------------|----------------------------------------|
| ⊢<br>R | M2.5 x 0.45               | SMPP | M2.5           | 0.61                 | 0.64                    | 3.8                            | 3.79      | 5.6        | 1.4        | 3.9                                    |
| Z      | M3 x 0.5                  | SMPP | M3             | 0.61                 | 0.64                    | 4.24                           | 4.22      | 5.6        | 1.4        | 5.1                                    |
|        | M3.5 x 0.6                | SMPP | M3.5           | 0.61                 | 0.64                    | 4.75                           | 4.73      | 6.4        | 1.4        | 5.5                                    |

The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.

**NOTE:** Occasionally, users of our self-clinching fasteners encounter thread binding issues when assembling fasteners made from stainless steel. This problem is typically related to galling. Technical paper, <u>PEM® REF/THREAD GALLING</u>, answers many of the typical questions that we receive surrounding this problem.


# A4™/LA4™ FLOATING SELF-CLINCHING FASTENERS

- Speeds assembly by compensating for mating hole misalignment.
- Permanent installation into stainless steel sheets as thin as .038"/0.97mm and greater.
- Provides high torque-out and pushout resistance in stainless panels.
- LA4 nut thread locking torque performance is equivalent to applicable NASM25027 specifications.<sup>(1)</sup>
- For use in stainless steel sheets HRB 88 / HB 183 or less.



Float - .015"/0.38mm minimum, in all directions from center, .030"/0.76mm total.

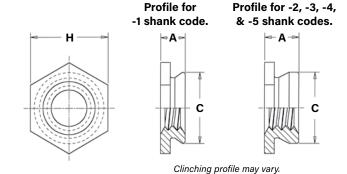
# PART NUMBER DESIGNATION



### All dimensions are in inches.

|   |                     | Ty          | ре           |                |               | _                    |                            | Hole                          | _         | _         | _           | _                      | _                      | Min. Dist.                  |
|---|---------------------|-------------|--------------|----------------|---------------|----------------------|----------------------------|-------------------------------|-----------|-----------|-------------|------------------------|------------------------|-----------------------------|
|   | Thread<br>Size      | Non-Locking | Self-Locking | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Size in<br>Sheet<br>+ .003000 | C<br>Max. | D<br>Max. | E<br>± .015 | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Max. | Hole<br><b>©</b> To<br>Edge |
| 2 | (#4-40)             | A4          | LA4          | 440            | 1             | .038                 | .038                       | .290                          | .289      | .290      | .360        | .130                   | .190                   | .30                         |
| N | (#6-32)             | A4          | LA4          | 632            | 1             | .038                 | .038                       | .328                          | .327      | .335      | .390        | .130                   | .200                   | .32                         |
|   | .164-32<br>(#8-32)  | A4          | LA4          | 832            | 1             | .038                 | .038                       | .368                          | .367      | .365      | .440        | .130                   | .210                   | .34                         |
|   | .190-32<br>(#10-32) | A4          | LA4          | 032            | 1             | .038                 | .038                       | .406                          | .405      | .405      | .470        | .170                   | .270                   | .36                         |

### All dimensions are in millimeters.


|     |                           | Ту          | ре           |                |               | _                    |                            | Hole                       | _         | _         | _           | _                      | _                      | Min. Dist.                  |
|-----|---------------------------|-------------|--------------|----------------|---------------|----------------------|----------------------------|----------------------------|-----------|-----------|-------------|------------------------|------------------------|-----------------------------|
| ٥   | Thread<br>Size x<br>Pitch | Non-Locking | Self-Locking | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Size in<br>Sheet<br>+ 0.08 | C<br>Max. | D<br>Max. | E<br>± 0.38 | T <sub>1</sub><br>Max. | T <sub>2</sub><br>Max. | Hole<br><b>©</b> To<br>Edge |
| T B | M3 x 0.5                  | A4          | LA4          | M3             | 1             | 0.97                 | 0.97                       | 7.37                       | 7.35      | 7.37      | 9.14        | 3.31                   | 4.83                   | 7.62                        |
| Z   | M4 x 0.7                  | A4          | LA4          | M4             | 1             | 0.97                 | 0.97                       | 9.35                       | 9.33      | 9.28      | 11.18       | 3.31                   | 5.34                   | 8.64                        |
|     | M5 x 0.8                  | A4          | LA4          | M5             | 1             | 0.97                 | 0.97                       | 10.31                      | 10.29     | 10.29     | 11.94       | 4.32                   | 6.86                   | 9.14                        |

The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.

(1) To meet national aerospace standards and to obtain testing documentation, product must be ordered to US NASM45938/11 specifications. Check our web site for a complete Military Specification and National Aerospace Standards Reference Guide (Bulletin NASM). Screws for use with PEM self-clinching locking fasteners should be Class 3A/4h fit or no smaller than Class 2A/6g.

# F4™ PEMSERT® SELF-CLINCHING FLUSH FASTENERS

- Can be installed into sheets as thin as .060"/1.53mm.
- Ideal for flush applications where a stainless steel sheet requires load-bearing threads.
- Can be installed before bending and forming to provide strong threads while still remaining flat with no protrusions on either surface.
- For use in stainless steel sheets HRB 88 / HB 183 or less.







PART NUMBER DESIGNATION

F4 - 440 - 1

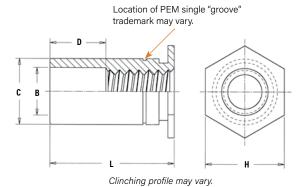
Type and Thread Shank Code Material Code

All dimensions are in inches.

|    | Thread<br>Size      | Туре | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | C<br>Max. | H<br>Nom. | Min. Dist. Hole |
|----|---------------------|------|----------------|---------------|----------------------|--------------------|-----------------------------------|-----------|-----------|-----------------|
|    | .086-56             | F4   | 256            | 1             | .060                 | .060090            | .172                              | .171      | .188      | .23             |
|    | (#2-56)             | 17   | 250            | 2             | .090                 | .091 Min.          | .172                              | .171      | .100      | .25             |
|    | .112-40             | F4   | 440            | 1             | .060                 | .060090            | .172                              | .171      | .188      | .23             |
| ED | (#4-40)             | 14   | 440            | 2             | .090                 | .091 Min.          | 1172                              | .171      | .100      | .23             |
| Ξ  | .138-32             | F4   | 632            | 1             | .060                 | .060090            | ,213                              | ,212      | ,250      | .27             |
| _  | (#6-32)             | 17   | 002            | 2             | .090                 | .091 Min.          | 1213                              | 1212      | 1230      | .21             |
|    | .164-32             | F4   | 832            | 1             | .060                 | .060090            | .290                              | .289      | .312      | .28             |
|    | (#8-32)             | 14   | 002            | 2             | .090                 | .091 Min.          | .230                              | .203      | JUL       | .20             |
|    | .190-32             | F4   | 032            | 1             | .060                 | .060090            | .312                              | .311      | .343      | .31             |
|    | (#10-32)            | Г4   | 032            | 2             | .090                 | .091 Min.          | .312                              | .311      | .343      | .31             |
|    | 050.00              |      |                | 3             | .120                 | .125155            |                                   |           |           |                 |
|    | .250-20<br>(1/4-20) |      | F4 0420        | 4             | .151                 | .156186            | .344                              | .343      | .375      | .34             |
|    | (1/4-20)            |      | 0420           | 5             | .182                 | .187 Min.          |                                   |           |           |                 |

# All dimensions are in millimeters.

|    | Thread<br>Size x<br>Pitch | Туре        | Thread<br>Code | Shank<br>Code | A<br>(Shank)<br>Max. | Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>Max. | H<br>Nom. | Min. Dist. Hole<br><b>©</b> To Edge |
|----|---------------------------|-------------|----------------|---------------|----------------------|--------------------|--------------------------------|-----------|-----------|-------------------------------------|
|    | TILON                     |             |                | _             |                      |                    | 70.00                          |           |           |                                     |
|    | M2 x 0.4                  | F4          | M2             | 1             | 1.53                 | 1.53-2.3           | 4.37                           | 4.35      | 4.8       | 6                                   |
|    | WIZ X O.T                 | 1.4         | IVIZ           | 2             | 2.3                  | 2.32 Min.          | 1.07                           | 4,00      | 4.0       | Ü                                   |
|    | M2.5 x 0.45               | F4          | M2.5           | 1             | 1.53                 | 1.53-2.3           | 4.37                           | 4,35      | 4.8       | 6                                   |
| ပ  | IVIZ.O X U.40             |             | IVIZ.3         | 2             | 2.3                  | 2.32 Min.          | 4.37                           | 4.30      | 4.0       | 0                                   |
| ~  | M3 v 0 5                  | EΛ          | M3             | 1             | 1.53                 | 1.53-2.3           | 4.37                           | 4,35      | 4.8       | 6                                   |
| ΕŢ | INIO X U.D                | M3 x 0.5 F4 | IVI3           | 2             | 2.3                  | 2.32 Min.          | 4.57                           | 4.55      | 4.0       | 0                                   |
| Ξ  | M4 x 0.7                  | F4          | M4             | 1             | 1.53                 | 1.53-2.3           | 7.37                           | 7.35      | 7.9       | 7.2                                 |
|    | IVI4 X U.7                | 14          | IVI-4          | 2             | 2.3                  | 2.32 Min.          | 1.51                           | 1.33      | 1.3       | 1.2                                 |
|    | M5 x 0.8                  | ΕΛ          | M5             | 1             | 1.53                 | 1.53-2.3           | 7.92                           | 7.9       | 8.7       | 8                                   |
|    | INIO X U.O                | F4          | IVIS           | 2             | 2.3                  | 2.32 Min.          | 1.32                           | 1.3       | 0.7       | O                                   |
|    |                           |             | F4 M6          | 3             | 3.05                 | 3.18-3.94          |                                |           |           |                                     |
|    | M6 x 1                    | F4          |                | 4             | 3.84                 | 3.96-4.72          | 8.74                           | 8.72      | 9.5       | 8.8                                 |
|    |                           | F4          |                | 5             | 4.63                 | 4.75 Min.          | 1                              |           |           |                                     |


The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.

# SO4™ THRU-HOLE THREADED STANDOFFS

- Ideal for stacking or spacing.
- Installed with head flush with one surface of the mounting sheet.
- For use in stainless steel sheets HRB 88 / HB 183 or less.

### **GENERAL DIMENSIONAL DATA**

All dimensions are in inches.



|                         | Thread<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003<br>000 | B<br>Counter-<br>Bore Dia.<br>±.005 | C<br>+.000<br>005 | H<br>Nom. | Min. Dist.<br>Hole <b>⊉</b><br>To Edge | D<br>±.010              |
|-------------------------|----------------|----------------------------|---------------------------------------|-------------------------------------|-------------------|-----------|----------------------------------------|-------------------------|
| ED                      | 440            | .040                       | .166                                  | .125                                | .165              | .187      | .23                                    |                         |
| $\overline{\mathbf{u}}$ | 6440           | .040                       | .213                                  | .125                                | .212              | .250      | .27                                    | Varies                  |
| IN D                    | 632            | .040                       | .213                                  | .156                                | .212              | .250      | .27                                    | according<br>to length. |
| _                       | 8632           | .050                       | .281                                  | .156                                | .280              | .312      | .31                                    | See length<br>charts    |
|                         | 832            | .050                       | .281                                  | .188                                | .280              | .312      | .31                                    | below.                  |
|                         | 032            | .050                       | .281                                  | .203                                | .280              | .312      | .31                                    |                         |

### All dimensions are in millimeters.

|     | PART NUMB            | ER DES         | SIGNATION      |
|-----|----------------------|----------------|----------------|
|     | <u>SO4</u> -         | 440            | - <u>8</u>     |
| (6) | <b>↓</b>             | $\downarrow$   | <b>↓</b>       |
|     | Type and<br>Material | Thread<br>Code | Length<br>Code |

|     | Thread<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | B<br>Counter-<br>Bore Dia.<br>±0.13 | C<br>-0.13 | H<br>Nom. | Min. Dist.<br>Hole <b>位</b><br>To Edge | D<br>±0.25               |
|-----|----------------|----------------------------|--------------------------------|-------------------------------------|------------|-----------|----------------------------------------|--------------------------|
| RIC | М3             | 1                          | 4.22                           | 3.25                                | 4.2        | 4.8       | 6                                      | Marian                   |
| H   | 3.5M3          | 1                          | 5.41                           | 3.25                                | 5.39       | 6.4       | 6.8                                    | Varies<br>according      |
| Σ   | M3.5           | 1                          | 5.41                           | 3.9                                 | 5.39       | 6.4       | 6.8                                    | to length.<br>See length |
|     | M4             | 1.27                       | 7.14                           | 4.8                                 | 7.12       | 7.9       | 8                                      | charts<br>below.         |
|     | M5             | 1.27                       | 7.14                           | 5.35                                | 7.12       | 7.9       | 8                                      | 2010111                  |

# THREAD SIZE AND LENGTH SELECTION DATA

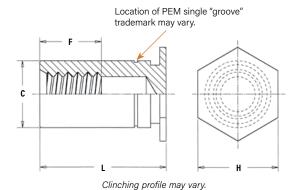
All dimensions are in inches.

|       | Thread              | Туре        | Thread                     |      |      |      |      | Leng      | th "L" +.0 | 02005 ( | Length Co | de in 32n | ds of an ir | nch) |      |      |      |      |       |
|-------|---------------------|-------------|----------------------------|------|------|------|------|-----------|------------|---------|-----------|-----------|-------------|------|------|------|------|------|-------|
|       | Size                | Турс        | Code                       | .125 | .187 | .250 | .312 | .375      | .437       | .500    | .562      | .625      | .687        | .750 | .812 | .875 | .937 | 1.00 | 1.062 |
| ED    | .112-40<br>(#4-40)  | S04         | 440<br>6440 <sup>(1)</sup> | 4    | 6    | 8    | 10   | 12        | 14         | 16      | 18        | 20        | 22          | 24   | -    | -    | _    | -    | -     |
| NIFIE | .138-32<br>(#6-32)  | S04         | 632<br>8632 <sup>(1)</sup> | 4    | 6    | 8    | 10   | 12        | 14         | 16      | 18        | 20        | 22          | 24   | 26   | 28   | 30   | 32   | 34    |
| Π     | .164-32<br>(#8-32)  | S04         | 832                        | 4    | 6    | 8    | 10   | 12        | 14         | 16      | 18        | 20        | 22          | 24   | 26   | 28   | 30   | 32   | 34    |
|       | .190-32<br>(#10-32) | S04         | 032                        | 4    | 6    | 8    | 10   | 12        | 14         | 16      | 18        | 20        | 22          | 24   | 26   | 28   | 30   | 32   | 34    |
|       | D D                 | imension ±. | 010                        |      | None |      |      | .187 .312 |            |         | .312 .437 |           |             |      |      |      |      |      |       |

### All dimensions are in millimeters.

|     | Thread<br>Size x<br>Pitch | Туре        | Thread<br>Code       |                                 |   |   |   |    | ngth "L" +0.05<br>h Code in mil |    |    |    |    |    |    |
|-----|---------------------------|-------------|----------------------|---------------------------------|---|---|---|----|---------------------------------|----|----|----|----|----|----|
| 2   | M3 x 0.5                  | S04         | M3                   | 3                               | 4 | 6 | 8 | 10 | 12                              | 14 | 16 | 18 | _  | _  | _  |
| H R | IVIO X U.U                | 304         | 3.5M3 <sup>(1)</sup> |                                 |   |   |   |    |                                 |    |    |    |    |    |    |
| Σ   | M3.5 x 0.6                | S04         | M3.5                 | 3                               | 4 | 6 | 8 | 10 | 12                              | 14 | 16 | 18 | 20 | 22 | 25 |
|     | M4 x 0.7                  | S04         | M4                   | 3                               | 4 | 6 | 8 | 10 | 12                              | 14 | 16 | 18 | 20 | 22 | 25 |
|     | M5 x 0.8                  | S04         | M5                   | 3 4 6 8 10 12 14 16 18 20 22 25 |   |   |   |    |                                 |    |    |    |    |    |    |
|     | D D                       | imension ±0 | .25                  | None 4 8 11                     |   |   |   |    |                                 |    |    |    |    |    |    |

(1) Standoffs with thread codes 6440, 8632, and 3.5M3 offer greater wall thickness for thread sizes 440, 632, and M3 respectively.


The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.

# BSO4™ BLIND THREADED STANDOFFS

- Ideal for stacking or spacing.
- Installed with closed end head flush with one surface of the mounting sheet.
- For use in stainless steel sheets HRB 88 / HB 183 or less.

# **GENERAL DIMENSIONAL DATA**

All dimensions are in inches.



|     | Thread<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003<br>000 | C<br>+.000<br>005 | H<br>Nom. | Min. Dist.<br>Hole <b>&amp;</b><br>To Edge | F<br>Min.                |
|-----|----------------|----------------------------|---------------------------------------|-------------------|-----------|--------------------------------------------|--------------------------|
| ΕD  | 440            | .040                       | .166                                  | .165              | .187      | .23                                        |                          |
| H   | 6440           | .040                       | .213                                  | .212              | .250      | .27                                        | Varies<br>according      |
| INO | 632            | .040                       | .213                                  | .212              | .250      | .27                                        | to length.<br>See length |
| 1   | 8632           | .050                       | .281                                  | .280              | .312      | .31                                        | charts<br>below.         |
|     | 832            | .050                       | .281                                  | .280              | .312      | .31                                        | below.                   |
|     | 032            | .050                       | .281                                  | .280              | .312      | .31                                        |                          |

All dimensions are in millimeters.

| PART NUM             | BER DES        | IGNATION       |
|----------------------|----------------|----------------|
| <b>BSO4</b>          | - <u>440</u>   | - <u>8</u>     |
| <b>↓</b>             | $\downarrow$   | <b>↓</b>       |
| Type and<br>Material | Thread<br>Code | Length<br>Code |

|    | Thread<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>-0.13 | H<br>Nom. | Min. Dist.<br>Hole <b>⊈</b><br>To Edge | F<br>Min.                |
|----|----------------|----------------------------|--------------------------------|------------|-----------|----------------------------------------|--------------------------|
| ၁  | М3             | 1                          | 4.22                           | 4.2        | 4.8       | 6                                      |                          |
| TR | 3.5M3          | 1                          | 5.41                           | 5.39       | 6.4       | 6.8                                    | Varies<br>according      |
| ME | M3.5           | 1                          | 5.41                           | 5.39       | 6.4       | 6.8                                    | to length.<br>See length |
|    | M4             | 1.27                       | 7.14                           | 7.12       | 7.9       | 8                                      | charts<br>below.         |
|    | M5             | 1.27                       | 7.14                           | 7.12       | 7.9       | 8                                      |                          |

# THREAD SIZE AND LENGTH SELECTION DATA

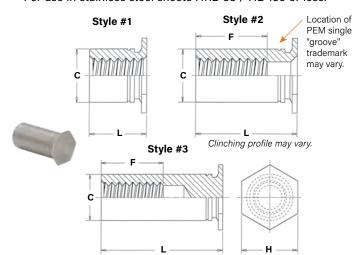
All dimensions are in inches.

|       | Thread              | Туре  | Туре                       | Thread |      |      |      | Lengt | h "L" +.002 - | .005 (Lengt | h Code in 32 | nds of an in | ch)  |      |      |       |  |
|-------|---------------------|-------|----------------------------|--------|------|------|------|-------|---------------|-------------|--------------|--------------|------|------|------|-------|--|
|       | Size                | 1,700 | Code                       | .312   | .375 | .437 | .500 | .562  | .625          | .687        | .750         | .812         | .875 | .937 | 1.00 | 1.062 |  |
| ED    | .112-40<br>(#4-40)  | BS04  | 440<br>6440 <sup>(1)</sup> | 10     | 12   | 14   | 16   | 18    | 20            | 22          | 24           | 26           | 28   | 30   | 32   | 34    |  |
| NIFIE | .138-32<br>(#6-32)  | BS04  | 632<br>8632 <sup>(1)</sup> | 10     | 12   | 14   | 16   | 18    | 20            | 22          | 24           | 26           | 28   | 30   | 32   | 34    |  |
| n     | .164-32<br>(#8-32)  | BS04  | 832                        | 10     | 12   | 14   | 16   | 18    | 20            | 22          | 24           | 26           | 28   | 30   | 32   | 34    |  |
|       | .190-32<br>(#10-32) | BS04  | 032                        | 10     | 12   | 14   | 16   | 18    | 20            | 22          | 24           | 26           | 28   | 30   | 32   | 34    |  |
|       | F Dimension Min.    |       | .156                       | i      | .187 |      | .250 |       |               |             |              | .375         |      |      |      |       |  |

### All dimensions are in millimeters.

|      | Thread<br>Size x<br>Pitch | Туре        | Thread<br>Code             |                             |   |    |    | ngth "L" +0.05 -<br>h Code in millim |    |    |    |    |    |
|------|---------------------------|-------------|----------------------------|-----------------------------|---|----|----|--------------------------------------|----|----|----|----|----|
| TRIC | M3 x 0.5                  | BS04        | M3<br>3.5M3 <sup>(1)</sup> | 6                           | 8 | 10 | 12 | 14                                   | 16 | 18 | 20 | 22 | 25 |
| Σ    | M3.5 x 0.6                | BS04        | M3.5                       | 6                           | 8 | 10 | 12 | 14                                   | 16 | 18 | 20 | 22 | 25 |
|      | M4 x 0.7                  | BS04        | M4                         | 6                           | 8 | 10 | 12 | 14                                   | 16 | 18 | 20 | 22 | 25 |
|      | M5 x 0.8                  | BS04        | M5                         | 6 8 10 12 14 16 18 20 22 25 |   |    |    |                                      |    |    |    |    |    |
|      | FC                        | Dimension M | in.                        | 3.2 4 5 6.5 9.5             |   |    |    |                                      |    |    |    |    |    |

(1) Standoffs with thread codes 6440, 8632, and 3.5M3 offer greater wall thickness for thread sizes 440, 632, and M3 respectively.


The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.

# TSO4™ STANDOFFS FOR INSTALLATION INTO ULTRA-THIN STAINLESS STEEL SHEETS

- For installation into ultra-thin stainless steel sheets as thin as .025"/0.63mm.
- Threads on barrel end eliminate the need for long screws.
- For use in stainless steel sheets HRB 88 / HB 183 or less.

# **GENERAL DIMENSIONAL DATA**

All dimensions are in inches.



| D   | Thread<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.003000 | C<br>+.000<br>005 | F Min.<br>Thread<br>Depth | H<br>Nom. | Min. Dist.<br>Hole <b>⊈</b><br>To Edge |
|-----|----------------|----------------------------|-----------------------------------|-------------------|---------------------------|-----------|----------------------------------------|
| #   | 256            | .025                       | .166                              | .165              | .200                      | .187      | .23                                    |
| Ξ   | 6256           | .025                       | .213                              | .212              | .200                      | .250      | .27                                    |
| N D | 440            | .025                       | .166                              | .165              | .220                      | .187      | .23                                    |
|     | 6440           | .025                       | .213                              | .212              | .220                      | .250      | .27                                    |
|     | 632            | .025                       | .213                              | .212              | .270                      | .250      | .27                                    |

All dimensions are in millimeters.

| ပ  | Thread<br>Code | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.08 | C<br>-0.13 | F Min.<br>Thread<br>Depth | H<br>Nom. | Min. Dist.<br>Hole <b>⊈</b><br>To Edge |
|----|----------------|----------------------------|--------------------------------|------------|---------------------------|-----------|----------------------------------------|
| R  | M25            | 0.63                       | 4.22                           | 4.2        | 5.2                       | 4.8       | 5.8                                    |
| ΕT | 6M25           | 0.63                       | 5.41                           | 5.39       | J.Z                       | 6.4       | 7.1                                    |
| Σ  | M3             | 0.63                       | 4.22                           | 4.2        | 6.2                       | 4.8       | 5.8                                    |
|    | 6M3            | 0.63                       | 5.41                           | 5.39       | U.Z                       | 6.4       | 7.1                                    |
|    | M35            | 0.63                       | 5.41                           | 5.39       | 7                         | 6.4       | 7.1                                    |

### THREAD SIZE AND LENGTH SELECTION DATA

All dimensions are in inches.

|    |                    | _    |                            |                    |                    |                    | For                | other lengths      |                    | n "L" ±.003<br>h data see cha | ırt at bottom o    | f page.            |                    |                    |                    |
|----|--------------------|------|----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|    | Thread<br>Size     | Туре | Thread<br>Code             | .090               | .125               | .187               | .250               | .312               | .375               | .437                          | .500               | .562               | .625               | .687               | .750               |
| ED | 3126               |      | coue                       |                    |                    |                    |                    | Length Code (      | Length "L" wit     | hout decimal                  | point)             |                    |                    |                    |                    |
| E  | .086-56<br>(#2-56) | TS04 | 256<br>6256 <sup>(4)</sup> | 090 <sup>(1)</sup> | 125 <sup>(1)</sup> | 187 <sup>(1)</sup> | 250 <sup>(1)</sup> | 312 <sup>(2)</sup> | 375 <sup>(2)</sup> | 437 <sup>(3)</sup>            | 500 <sup>(3)</sup> | 562 <sup>(3)</sup> | 625 <sup>(3)</sup> | 687 <sup>(3)</sup> | 750 <sup>(3)</sup> |
| N  | .112-40<br>(#4-40) | TS04 | 440<br>6440 <sup>(4)</sup> | 090 <sup>(1)</sup> | 125 <sup>(1)</sup> | 187 <sup>(1)</sup> | 250 <sup>(1)</sup> | 312 <sup>(2)</sup> | 375 <sup>(2)</sup> | 437 <sup>(2)</sup>            | 500 <sup>(3)</sup> | 562 <sup>(3)</sup> | 625 <sup>(3)</sup> | 687 <sup>(3)</sup> | 750 <sup>(3)</sup> |
|    | .138-32<br>(#6-32) | TS04 | 632                        | -                  | 125 <sup>(1)</sup> | 187 <sup>(1)</sup> | 250 <sup>(1)</sup> | 312 <sup>(1)</sup> | 375 <sup>(2)</sup> | 437 <sup>(2)</sup>            | 500 <sup>(2)</sup> | 562 <sup>(3)</sup> | 625 <sup>(3)</sup> | 687 <sup>(3)</sup> | 750 <sup>(3)</sup> |

### All dimensions are in millimeters.

|      | Thread<br>Size x | Туре | Thread                     |                    |                    |                    | For other          | lengths / threa    | Length "L" ±0.0<br>ad depth data se |                     | om of page.         |                     |                     |                     |
|------|------------------|------|----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|      | Pitch            | турс | Code                       | 2.00               | 3.00               | 4.00               | 6.00               | 8.00               | 10.00                               | 12.00               | 14.00               | 16.00               | 18.00               | 19.00               |
| ပ    |                  |      |                            |                    |                    |                    | Lenç               | jth Code (Leng     | th "L" without de                   | ecimal point)       |                     |                     |                     |                     |
| ETRI | M2.5 x 0.45      | TS04 | M25<br>6M25 <sup>(4)</sup> | 200 <sup>(1)</sup> | 300 <sup>(1)</sup> | 400 <sup>(1)</sup> | 600 <sup>(1)</sup> | 800 <sup>(2)</sup> | 1000 <sup>(3)</sup>                 | 1200 <sup>(3)</sup> | 1400 <sup>(3)</sup> | 1600 <sup>(3)</sup> | 1800 <sup>(3)</sup> | 1900 <sup>(3)</sup> |
| Σ    | M3 x 0.5         | TS04 | M3<br>6M3 <sup>(4)</sup>   | 200 <sup>(1)</sup> | 300 <sup>(1)</sup> | 400 <sup>(1)</sup> | 600 <sup>(1)</sup> | 800 <sup>(2)</sup> | 1000 <sup>(2)</sup>                 | 1200 <sup>(3)</sup> | 1400 <sup>(3)</sup> | 1600 <sup>(3)</sup> | 1800 <sup>(3)</sup> | 1900 <sup>(3)</sup> |
|      | M3.5 x 0.6       | TS04 | M35                        | -                  | 300 <sup>(1)</sup> | 400 <sup>(1)</sup> | 600 <sup>(1)</sup> | 800 <sup>(1)</sup> | 1000 <sup>(2)</sup>                 | 1200 <sup>(2)</sup> | 1400 <sup>(3)</sup> | 1600 <sup>(3)</sup> | 1800 <sup>(3)</sup> | 1900 <sup>(3)</sup> |

- (1) Style #1. Thru-threaded.
- (2) Style #2. Screw might not pass through unthreaded end. Tapped to minimum full thread depth shown. Incomplete threads on tap may allow screw to pass through.
- (3) Style #3. Blind.
- (4) Standoffs with thread codes 6256, 6440, 6M25 and 6M3 offer oversized body for increased bearing surface, wall thickness and performance.

Please contact your local PEM® distributor for availability, minimum quantity, and pricing information.

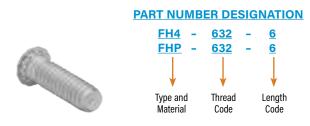
# LENGTH/STYLE DATA

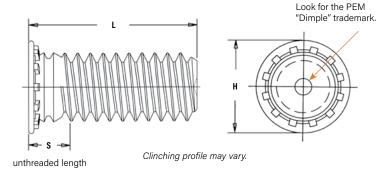
All dimensions are in inches. (Length can be specified in .001" increments.)

|         | Thread<br>Code | Length "L"<br>(Style #1) | Length "L"<br>(Style #2) | Length "L"<br>(Style #3) |
|---------|----------------|--------------------------|--------------------------|--------------------------|
| UNIFIED | 256<br>6256    | .090250                  | .251375                  | .376750                  |
| IND     | 440<br>6440    | .090280                  | .281450                  | .451750                  |
|         | 632            | .120350                  | .351540                  | .541750                  |

All dimensions are in millimeters. (Length can be specified in .02 mm increments.)

|        | Thread<br>Code | Length "L"<br>(Style #1) | Length "L"<br>(Style #2) | Length "L"<br>(Style #3) |
|--------|----------------|--------------------------|--------------------------|--------------------------|
| METRIC | M25<br>6M25    | 2.00 - 6.30              | 6.32 - 9.50              | 9.52 - 19.00             |
| ME     | M3<br>6M3      | 2.00 - 7.50              | 7.52 - 11.00             | 11.02 - 19.00            |
|        | M35            | 3.00 - 8.80              | 8.82 - 12.80             | 12.82 - 19.00            |


# **PART NUMBER DESIGNATION**




The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.

# FH4™/FHP™ FLUSH-HEAD STUDS

- Permanent installation into stainless steel sheets as thin as .040"/1mm.
- FHP studs offers highest corrosion resistance and ideal for medical, food service, and marine applications.
- For use in stainless steel sheets HRB 92 / HB 202 or less.



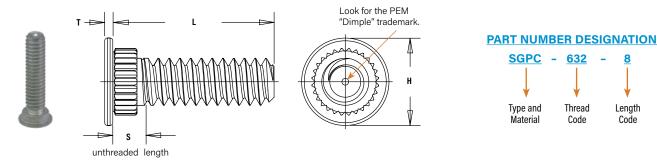


### All dimensions are in inches.

|     | Thread              | Тур | e   | Thread |      |      |      |      | h Code "L"<br>ode in 16th | ±.015<br>s of an incl | h)   |      |      |      | Sheet            | Hole<br>Size in<br>Sheet | Max.<br>Hole<br>in | H     | S           | Min.<br>Dist.<br>Hole <b>¢</b> |
|-----|---------------------|-----|-----|--------|------|------|------|------|---------------------------|-----------------------|------|------|------|------|------------------|--------------------------|--------------------|-------|-------------|--------------------------------|
|     | Size                |     |     | Code   | .250 | .312 | .375 | .500 | .625                      | .750                  | .875 | 1.00 | 1.25 | 1.50 | Thickness<br>(1) | +.003<br>000             | Attach.<br>Parts   | ±.015 | Max.<br>(2) | to Edge                        |
| E D | .112-40<br>(#4-40)  | FH4 | FHP | 440    | 4    | 5    | 6    | 8    | 10                        | 12                    | 14   | 16   | -    | -    | .040095          | .111                     | .131               | .176  | .085        | .219                           |
| NIF | .138-32<br>(#6-32)  | FH4 | FHP | 632    | 4    | 5    | 6    | 8    | 10                        | 12                    | 14   | 16   | 20   | 24   | .040095          | .137                     | .157               | .206  | .090        | .250                           |
| n   | .164-32<br>(#8-32)  | FH4 | FHP | 832    | 4    | 5    | 6    | 8    | 10                        | 12                    | 14   | 16   | 20   | 24   | .040095          | .163                     | .183               | .237  | .090        | .281                           |
|     | .190-32<br>(#10-32) | FH4 | FHP | 032    | -    | 5    | 6    | 8    | 10                        | 12                    | 14   | 16   | 20   | 24   | .040095          | .189                     | .209               | .256  | .100        | .281                           |
|     | .250-20<br>(1/4-20) | FH4 | -   | 0420   | -    | 1    | 6    | 8    | 10                        | 12                    | 14   | 16   | 20   | 24   | .062117          | .249                     | .269               | .337  | .135        | .312                           |

### All dimensions are in millimeters.

| RIC | Thread<br>Size x<br>Pitch | Туре | )   | Thread<br>Code |   |   |    |    | ngth Code<br>th Code in | "L" ±0.4<br>millimeter | s) |    |    |    | Sheet<br>Thickness<br>(1) | Hole<br>Size in<br>Sheet<br>+0.08 | Max.<br>Hole<br>in<br>Attach.<br>parts | H<br>±0.4 | S<br>Max.<br>(2) | Min.<br>Dist.<br>Hole <b>©</b><br>to Edge |
|-----|---------------------------|------|-----|----------------|---|---|----|----|-------------------------|------------------------|----|----|----|----|---------------------------|-----------------------------------|----------------------------------------|-----------|------------------|-------------------------------------------|
| ETF | M3 x 0.5                  | FH4  | FHP | М3             | 6 | 8 | 10 | 12 | 15                      | 18                     | 20 | 25 | _  | -  | 1 - 2.4                   | 3                                 | 3.3                                    | 4.6       | 2.1              | 5.6                                       |
| Σ   | M4 x 0.7                  | FH4  | FHP | M4             | 6 | 8 | 10 | 12 | 15                      | 18                     | 20 | 25 | 30 | 35 | 1 - 2.4                   | 4                                 | 4.7                                    | 5.9       | 2.4              | 7.2                                       |
|     | M5 x 0.8                  | FH4  | FHP | M5             | _ | 8 | 10 | 12 | 15                      | 18                     | 20 | 25 | 30 | 35 | 1 - 2.4                   | 5                                 | 5.3                                    | 6.5       | 2.7              | 7.2                                       |
|     | M6 x 1                    | FH4  | _   | M6             | _ | _ | 10 | 12 | 15                      | 18                     | 20 | 25 | 30 | 35 | 1.6 - 3                   | 6                                 | 6.8                                    | 8.2       | 3                | 7.9                                       |


<sup>(1)</sup> Performance may be reduced for studs installed into thicker sheets.

The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.

<sup>(2)</sup> Threads are gaugeable to within 2 pitches of the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.

# **SGPC™ SWAGING COLLAR STUDS**

- Installs into sheets as thin as .024"/0.6mm.
- Can be used to attach dissimilar materials.
- Can accommodate multiple panels as long as the total thickness does not exceed the maximum sheet thickness.<sup>(1)</sup>
- Can be installed into most panel materials, including stainless steel.
- Allows for close centerline-to-edge distance.

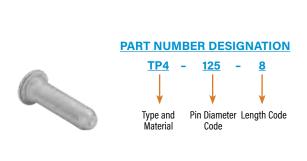


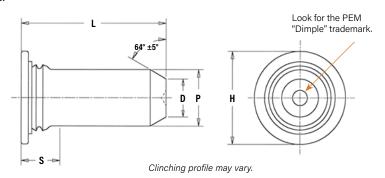
### All dimensions are in inches.

|      | Thread              | Type<br>Fastener<br>Material | Thread |      |      |      |      | ode "L" ±.<br>16ths of a |      |      |      |      | Sheet            | Hole<br>Size in<br>Sheet | Hole<br>Dia. of<br>Attached | Н     | s           | Т     | Min.<br>Dist.<br>Hole |
|------|---------------------|------------------------------|--------|------|------|------|------|--------------------------|------|------|------|------|------------------|--------------------------|-----------------------------|-------|-------------|-------|-----------------------|
|      | Size                | Stainless<br>Steel           | Code   | .312 | .375 | .500 | .625 | .750                     | .875 | 1.00 | 1.25 | 1.50 | Thickness<br>(2) | +.003<br>000             | Panel<br>+.005000           | ±.010 | Max.<br>(3) | ±.004 | to Edge               |
|      | .086-56<br>(#2-56)  | SGPC                         | 256    | 5    | 6    | 8    | 10   | 12                       | -    | -    | -    | -    | .024047          | .145                     | .182                        | .189  | .093        | .020  | .130                  |
| FIE  | .112-40<br>(#4-40)  | SGPC                         | 440    | 5    | 6    | 8    | 10   | 12                       | 14   | 16   | 20   | -    | .024047          | .171                     | .205                        | .228  | .101        | .024  | .160                  |
| IN O | .138-32<br>(#6-32)  | SGPC                         | 632    | 5    | 6    | 8    | 10   | 12                       | 14   | 16   | 20   | 24   | .024047          | .196                     | .229                        | .256  | .109        | .024  | .180                  |
|      | .164-32<br>(#8-32)  | SGPC                         | 832    | 5    | 6    | 8    | 10   | 12                       | 14   | 16   | 20   | 24   | .024047          | .223                     | .259                        | .279  | .109        | .024  | .200                  |
|      | .190-32<br>(#10-32) | SGPC                         | 032    | 5    | 6    | 8    | 10   | 12                       | 14   | 16   | 20   | 24   | .024047          | .249                     | .280                        | .307  | .109        | .024  | .210                  |
|      | .250-20<br>(1/4-20) | SGPC                         | 0420   | -    | 6    | 8    | 10   | 12                       | 14   | 16   | 20   | 24   | .024047          | .309                     | .343                        | .366  | .131        | .028  | .250                  |

### All dimensions are in millimeters.

| RIC | Thread<br>Size x<br>Pitch | Type Fastener Material Stainless Steel | Thread<br>Code |   |    |    | Length C<br>gth Code |    |    |    |    |    | Sheet<br>Thickness<br>(2) | Hole<br>Size in<br>Sheet<br>+0.08 | Hole<br>Dia. of<br>Attached<br>Panel<br>+0.13 | H<br>±0.25 | S<br>Max.<br>(3) | T<br>±0.1 | Min.<br>Dist.<br>Hole<br><b>&amp;</b><br>to Edge |
|-----|---------------------------|----------------------------------------|----------------|---|----|----|----------------------|----|----|----|----|----|---------------------------|-----------------------------------|-----------------------------------------------|------------|------------------|-----------|--------------------------------------------------|
| F   | M2.5 x 0.45               | SGPC                                   | M2.5           | 8 | 10 | 12 | 15                   | 18 | _  | _  | _  | _  | 0.6 - 1.2                 | 4                                 | 4.95                                          | 5          | 2.4              | 0.5       | 3.9                                              |
| N   | M3 x 0.5                  | SGPC                                   | M3             | 8 | 10 | 12 | 15                   | 18 | 20 | 25 | _  | _  | 0.6 - 1.2                 | 4.5                               | 5.45                                          | 6          | 2.5              | 0.6       | 4.3                                              |
|     | M4 x 0.7                  | SGPC                                   | M4             | 8 | 10 | 12 | 15                   | 18 | 20 | 25 | 30 | _  | 0.6 - 1.2                 | 5.5                               | 6.3                                           | 7          | 2.7              | 0.6       | 4.9                                              |
|     | M5 x 0.8                  | SGPC                                   | M5             | 8 | 10 | 12 | 15                   | 18 | 20 | 25 | 30 | 35 | 0.6 - 1.2                 | 6.5                               | 7.45                                          | 8          | 2.8              | 0.6       | 5.5                                              |
|     | M6 x 1                    | SGPC                                   | M6             | - | 10 | 12 | 15                   | 18 | 20 | 25 | 30 | 35 | 0.6 - 1.2                 | 7.5                               | 8.3                                           | 9          | 3                | 0.7       | 6.2                                              |


<sup>(1)</sup> When using the fastener to attach more than one sheet or panel, the stud may seem slightly loose after installation. This is a normal condition in some applications and will not affect the stud's performance.


<sup>(2)</sup> See installation data for tooling requirements. Contact Technical Support (techsupport@pemnet.com) for other thicknesses.

<sup>(3)</sup> Threads are gaugeable to within 2 pitches on the "S" Max. dimension. A class 3B/5H maximum material commercial nut shall pass up to the "S" Max. dimension.

# **TP4™ FLUSH-HEAD PINS**

- Permanent installation into stainless steel sheets as thin as .040"/1mm.
- Satisfies a wide range of positioning, pivot, and alignment applications.
- Chamfered end makes mating hole location easy.
- For use in stainless steel sheets HRB 92 / HB 202 or less.

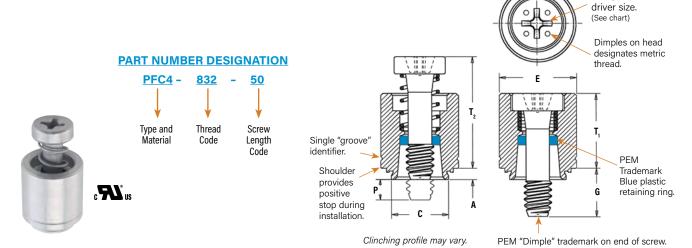




### All dimensions are in inches.

|          | Pin<br>Diameter | Туре     | Pin<br>Diameter |      |      | igth Code "L" ± .<br>Code in 16ths of |      |      | Min.<br>Sheet | Hole Size<br>in Sheet | D     | Н     | S<br>Max. | Min.<br>Distance         |
|----------|-----------------|----------|-----------------|------|------|---------------------------------------|------|------|---------------|-----------------------|-------|-------|-----------|--------------------------|
| <u> </u> | P ±.002         | <b>,</b> | Code            | .375 | .500 | .625                                  | .750 | 1.00 | Thickness     | +.003000              | ±.006 | ±.015 | (1)       | Hole <b>⊈</b><br>to Edge |
|          | .125            | TP4      | 125             | 6    | 8    | 10                                    | 12   | _    | .040          | .144                  | .090  | .205  | .090      | .250                     |
| 5        | .187            | TP4      | 187             | 6    | 8    | 10                                    | 12   | 16   | .040          | .205                  | .132  | .270  | .090      | .280                     |
|          | .250            | TP4      | 250             | ı    | 8    | 10                                    | 12   | 16   | .040          | .272                  | .177  | .335  | .090      | .310                     |

### All dimensions are in millimeters.


| ၁   | Pin<br>Diameter<br>P ±0.05 | Туре | Pin<br>Diameter<br>Code |   |    | ngth Code "L" ± (<br>h Code in millim |    |    | Min.<br>Sheet<br>Thickness | Hole Size<br>in Sheet<br>+0.08 | D<br>±0.15 | H<br>±0.4 | S<br>Max.<br>(1) | Min.<br>Distance<br>Hole <b>&amp;</b><br>to Edge |
|-----|----------------------------|------|-------------------------|---|----|---------------------------------------|----|----|----------------------------|--------------------------------|------------|-----------|------------------|--------------------------------------------------|
| T B | 3                          | TP4  | 3MM                     | 8 | 10 | 12                                    | 16 | -  | 1                          | 3.5                            | 2.05       | 5.2       | 2.29             | 6.4                                              |
| ME  | 4                          | TP4  | 4MM                     | 8 | 10 | 12                                    | 16 | -  | 1                          | 4.5                            | 2.82       | 6.12      | 2.29             | 7.1                                              |
|     | 5                          | TP4  | 5MM                     | ı | 10 | 12                                    | 16 | 20 | 1                          | 5.5                            | 3.53       | 7.19      | 2.29             | 7.6                                              |
|     | 6                          | TP4  | 6MM                     | ı | _  | 12                                    | 16 | 20 | 1                          | 6.5                            | 4.24       | 8.13      | 2.29             | 7.9                                              |

(1) Pin diameter may exceed max. in this region.

The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.

# PFC4™ CAPTIVE PANEL SCREWS

- Tool only access meets UL 1950 "service area access" requirements and provides fixed screw solutions for the EC Machinery Directive.
- Assorted screw lengths for most applications.
- For use in stainless steel sheets HRB 88 / HB 183 or less.



### All dimensions are in inches.

|    | Thread<br>Size      | Туре | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ .003<br>000 | C<br>Max. | E<br>± .010 | G<br>± .016 | P<br>±.025 | T,<br>Max. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min. Dist.<br>Hole <b>©</b><br>To Edge |
|----|---------------------|------|----------------|-------------------------|----------------------|----------------------------|----------------------------------------|-----------|-------------|-------------|------------|------------|------------------------|----------------|----------------------------------------|
|    | .112-40             | PFC4 | 440            | 40                      | .060                 | .060                       | .265                                   | .264      | .344        | .250        | .000       | .370       | .540                   | #1             | .25                                    |
|    | (#4-40)             | FFU4 | 440            | 62                      | .000                 | .000                       | .205                                   | .204      | .344        | .375        | .125       | .370       | .340                   | #1             | .20                                    |
| ED | 100.00              |      |                | 40                      |                      |                            |                                        |           |             | .250        | .000       |            |                        |                |                                        |
| Ξ  | .138-32<br>(#6-32)  | PFC4 | 632            | 62                      | .060                 | .060                       | .281                                   | .280      | .375        | .375        | .125       | .380       | .540                   | #2             | .28                                    |
| Ξ  | (#0-32)             |      |                | 84                      |                      |                            |                                        |           |             | .500        | .250       |            |                        |                |                                        |
| Π  | 10.4.00             |      |                | 50                      |                      |                            |                                        |           |             | .312        | .000       |            |                        |                |                                        |
|    | .164-32<br>(#8-32)  | PFC4 | 832            | 72                      | .060                 | .060                       | .312                                   | .311      | .406        | .437        | .125       | .480       | .705                   | #2             | .31                                    |
|    | (#0-32)             |      |                | 94                      |                      |                            |                                        |           |             | .562        | .250       |            |                        |                |                                        |
|    | 400.00              |      |                | 50                      |                      |                            |                                        |           |             | .312        | .000       |            |                        |                |                                        |
|    | .190-32<br>(#10-32) | PFC4 | 032            | 72                      | .060                 | .060                       | .344                                   | .343      | .437        | .437        | .125       | .490       | .705                   | #2             | .34                                    |
|    | (#10-32)            |      |                | 94                      |                      |                            |                                        |           |             | .562        | .250       |            |                        |                |                                        |

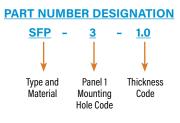
## All dimensions are in millimeters.

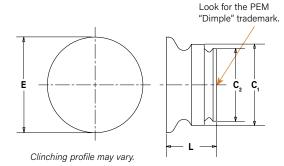
|     | Thread<br>Size x<br>Pitch | Туре | Thread<br>Code | Screw<br>Length<br>Code | A<br>(Shank)<br>Max. | Min.<br>Sheet<br>Thickness | Hole Size<br>In Sheet<br>+ 0.08 | C<br>Max. | E<br>± 0.25 | G<br>± 0.4 | P<br>±0.64 | T,<br>Max. | T <sub>2</sub><br>Nom. | Driver<br>Size | Min. Dist<br>Hole <b>⊈</b><br>To Edge |
|-----|---------------------------|------|----------------|-------------------------|----------------------|----------------------------|---------------------------------|-----------|-------------|------------|------------|------------|------------------------|----------------|---------------------------------------|
| ပ   | M3 x 0.5                  | PFC4 | M3             | 40                      | 1,53                 | 1,53                       | 6,73                            | 6.71      | 8.74        | 6.4        | 0          | 9,4        | 13.72                  | #1             | 6.35                                  |
| B . | INIO Y O'O                | 1104 | IVIO           | 62                      | 1,00                 | 1.33                       | 0.73                            | 0.71      | 0.74        | 9.5        | 3.2        | 3,4        | 13.72                  | #1             | 0.55                                  |
| ΕŢ  |                           |      |                | 50                      |                      |                            |                                 |           |             | 7.9        | 0          |            |                        |                |                                       |
| Σ   | M4 x 0.7                  | PFC4 | M4             | 72                      | 1.53                 | 1.53                       | 7.92                            | 7.9       | 10.31       | 11.1       | 3.2        | 12.19      | 17.91                  | #2             | 7.87                                  |
|     |                           |      |                | 94                      |                      |                            |                                 |           |             | 14.3       | 6.4        |            |                        |                |                                       |
|     |                           |      |                | 50                      |                      |                            |                                 |           |             | 7.9        | 0          |            |                        |                |                                       |
|     | M5 x 0.8                  | PFC4 | M5             | 72                      | 1.53                 | 1.53                       | 8.74                            | 8.72      | 11.1        | 11.1       | 3.2        | 12.45      | 17.91                  | #2             | 8.63                                  |
|     |                           |      |                | 94                      |                      |                            |                                 |           |             | 14.3       | 6.4        |            |                        |                |                                       |

The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.

Phillips

# SFP™ SPOTFAST® FASTENERS


- Allows permanent joining of two metal sections.
- Offers high corrosion resistance.
- Can be used as single flush-mounted pivot point.
- Installs smooth with top sheet and flush or sub-flush with the bottom sheet.






SpotFast® fastener used as a single flush-mounted pivot point. Top panel rotates about the SpotFast fastener.







|                     |                   |                       | Panel 1 | 1                         |      |     | Panel     | 2                          |      |         |                       |         |               |         |          |         |      |                      |     |
|---------------------|-------------------|-----------------------|---------|---------------------------|------|-----|-----------|----------------------------|------|---------|-----------------------|---------|---------------|---------|----------|---------|------|----------------------|-----|
| Type<br>and<br>Size | Thickness<br>Code | Thick<br>±0.08<br>±.0 | -       | Mounti<br>+0.08<br>+.003" |      | Mi  | in.<br>1) | Mountii<br>+0.08<br>+.003" | mm / | (<br>Ma | Ç <sub>ı</sub><br>ax. | (<br>Ma | )<br>2<br>ax. | l<br>Ma | E<br>ax. | I<br>Ma | IX.  | Min.<br>Hole<br>To E |     |
|                     |                   | mm                    | in.     | mm                        | in.  | mm  | in.       | mm                         | in.  | mm      | in.                   | mm      | in.           | mm      | in.      | mm      | in.  | mm                   | in. |
| SFP-3               | 1.0               | 1                     | .039    | 3                         | .118 | 1   | .039      | 2.5                        | .098 | 2.98    | .117                  | 2.48    | .097          | 3.76    | .148     | 1.9     | .075 | 2.54                 | .1  |
| SFP-3               | 1.2               | 1.2                   | .047    | 3                         | .118 | 1.2 | .047      | 2.5                        | .098 | 2.98    | .117                  | 2.48    | .097          | 3.76    | .148     | 2.31    | .091 | 2.54                 | .1  |
| SFP-3               | 1.6               | 1.6                   | .063    | 3                         | .118 | 1.6 | .063      | 2.5                        | .098 | 2.98    | .117                  | 2.48    | .097          | 3.76    | .148     | 3.12    | .123 | 2.54                 | .1  |
| SFP-5               | 1.0               | 1                     | .039    | 5                         | .197 | 1   | .039      | 4.5                        | .177 | 4.98    | .196                  | 4.47    | .176          | 5.56    | .219     | 1.9     | .075 | 3.6                  | .14 |
| SFP-5               | 1.2               | 1.2                   | .047    | 5                         | .197 | 1.2 | .047      | 4.5                        | .177 | 4.98    | .196                  | 4.47    | .176          | 5.56    | .219     | 2.31    | .091 | 3.6                  | .14 |
| SFP-5               | 1.6               | 1.6                   | .063    | 5                         | .197 | 1.6 | .063      | 4.5                        | .177 | 4.98    | .196                  | 4.47    | .176          | 5.56    | .219     | 3.12    | .123 | 3.6                  | .14 |

(1) Fastener will provide flush application at minimum sheet thickness.

The increased hardness of stainless steel panels requires careful consideration when installing self-clinching fasteners. Refer to "Dos and Don'ts" on page 251 for further information.

# MATERIAL AND FINISH SPECIFICATIONS

|                               |                                                     | Threads                                             | 3                                                                                                 | Fe                                                        | astener Mate                                         | rials                               |                                               | Finisl                                          | h                              | For                           | Use in Sheet                  | : Hardness (                  | )                             |                         |          |
|-------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-------------------------------------|-----------------------------------------------|-------------------------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------|----------|
| Туре                          | Internal,<br>ASME<br>B1.1 2B/<br>ASME<br>B1.13M, 6H | External,<br>ASME<br>B1.1 2A/<br>ASME<br>B1.13M, 6g | Internal, UNJ Class 3B<br>per ASME B1.15 /<br>MJ Class 4H6H per<br>ASME B1.2M<br>(M6 thread 4H5H) | Precipitation<br>Hardening<br>Grade<br>Stainless<br>Steel | Heat-<br>Treated<br>400 Series<br>Stainless<br>Steel | 300<br>Series<br>Stainless<br>Steel | Age<br>Hardened<br>A286<br>Stainless<br>Steel | Passivated<br>and/or<br>Tested per<br>ASTM A380 | Black<br>Dry-film<br>Lubricant | HRB 92 /<br>HB 202<br>or less | HRB 90 /<br>HB 192<br>or less | HRB 88 /<br>HB 183<br>or less | Any<br>Sheet<br>Hard-<br>ness | Corrosion<br>Resistance | Magnetic |
| SP                            |                                                     |                                                     |                                                                                                   |                                                           |                                                      |                                     |                                               |                                                 |                                |                               | •                             |                               |                               | Excellent               | No       |
| SMPP                          | •                                                   |                                                     |                                                                                                   |                                                           |                                                      |                                     | •                                             | •                                               |                                |                               | •                             |                               |                               | Excellent               | No       |
| A4                            | •                                                   |                                                     |                                                                                                   |                                                           | • (retainer)                                         | (insert)                            |                                               | •                                               |                                |                               |                               | -                             |                               | Fair                    | Yes      |
| LA4                           |                                                     |                                                     | •                                                                                                 |                                                           | • (retainer)                                         | (insert)                            |                                               | • (retainer)                                    | (insert)                       |                               |                               | •                             |                               | Fair                    | Yes      |
| F4                            | •                                                   |                                                     |                                                                                                   |                                                           | •                                                    |                                     |                                               | •                                               |                                |                               |                               | •                             |                               | Fair                    | Yes      |
| S04                           | •                                                   |                                                     |                                                                                                   |                                                           | •                                                    |                                     |                                               | •                                               |                                |                               |                               | <b>(2)</b>                    |                               | Fair                    | Yes      |
| BS04                          | •                                                   |                                                     |                                                                                                   |                                                           | •                                                    |                                     |                                               | •                                               |                                |                               |                               | <b>(2)</b>                    |                               | Fair                    | Yes      |
| TS04                          | •                                                   |                                                     |                                                                                                   |                                                           | •                                                    |                                     |                                               | •                                               |                                |                               |                               | <b>(2)</b>                    |                               | Fair                    | Yes      |
| FH4                           |                                                     |                                                     |                                                                                                   |                                                           | •                                                    |                                     |                                               |                                                 |                                |                               |                               |                               |                               | Fair                    | Yes      |
| FHP                           |                                                     | •                                                   |                                                                                                   |                                                           |                                                      |                                     | -                                             |                                                 |                                | -                             |                               |                               |                               | Excellent               | No       |
| SGPC                          |                                                     | •                                                   |                                                                                                   |                                                           |                                                      |                                     |                                               |                                                 |                                |                               |                               |                               |                               | Excellent               | No       |
| TP4                           |                                                     | Not threaded                                        |                                                                                                   |                                                           | -                                                    |                                     |                                               |                                                 |                                | •                             |                               |                               |                               | Fair                    | Yes      |
| PFC4<br>(Retainer)<br>(Screw) |                                                     | •                                                   |                                                                                                   |                                                           |                                                      |                                     |                                               |                                                 |                                |                               |                               | •                             |                               | Fair                    | Yes      |
| (Spring)<br>SFP               |                                                     | Not threaded                                        |                                                                                                   |                                                           |                                                      | •                                   |                                               |                                                 |                                |                               |                               | •                             |                               | Excellent               | Yes      |
| Part num                      | ber codes fo                                        | r finishes                                          |                                                                                                   |                                                           |                                                      |                                     |                                               | None                                            | MD                             |                               |                               |                               |                               |                         |          |

- (1) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (2) Also available, standoffs for installation into thinner, high strength, HSLA steel. See Innovation Brief "Standoffs For Hard Panels" on our website.

# A NOTE ABOUT 400 SERIES FASTENERS FOR STAINLESS STEEL PANELS

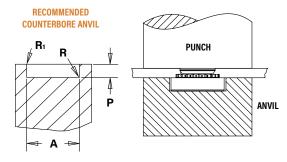
In order for self-clinching fasteners to work properly, the fastener must be harder than the sheet into which it is being installed. In the case of stainless steel panels, fasteners made from 300 Series Stainless Steel do not meet this hardness criteria. It is for this reason that 400 series fasteners are offered (A4, LA4, F4, SO4, BSO4, TSO4, FH4, TP4, and PFC4 fasteners). However, while these 400 Series fasteners install and perform well in 300 Series stainless sheets they should not be used if the end product:

- Will be exposed to any appreciable corrosive presence.
- · Requires non-magnetic fasteners.
- Will be exposed to any temperatures above 300°F (149°C)

If any of the these are issues, please contact  $\underline{\text{techsupport@pemnet.com}}$  for other options.

# INSTALLATION

# SP™/SMPP™NUTS(1)


- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into the recommended counterbore anvil hole and place the mounting hole (punch side) over the shank of the fastener as shown in diagram.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the head of the nut comes into contact with the sheet material.

# PEMSERTER® Installation Tooling

# SP NUTS

|   |                | Anv        | il Dimens      | ions (in.) | 1                       | Anvil          | Punch          |
|---|----------------|------------|----------------|------------|-------------------------|----------------|----------------|
| Q | Thread<br>Code | A<br>±.002 | P +.000<br>001 | R<br>Max.  | R <sub>1</sub><br>+.005 | Part<br>Number | Part<br>Number |
| ш | 440            | .255       | .064           | .010       | .005                    | 8012821        |                |
| 盂 | 632            | .286       | .064           | .010       | .005                    | 8012822        | 975200048      |
| = | 832            | .317       | .082           | .010       | .005                    | 8012823        | 373200040      |
| Z | 024/032        | .348       | .082           | .010       | .005                    | 8012824        |                |
| 7 | 0420           | .443       | .163           | .010       | .005                    | 8012825        |                |
|   | 0518           | .505       | .230           | .010       | .005                    | 8015359        | 8003076        |
|   | 0616/0624      | .570       | .263           | .010       | .005                    | 8015863        |                |

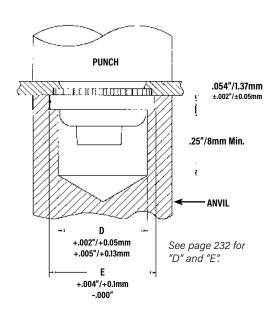
|   |                | Anvi       | l Dimensi  | ons (mm   | )                       | Anvil          | Punch          |
|---|----------------|------------|------------|-----------|-------------------------|----------------|----------------|
|   | Thread<br>Code | A<br>±0.05 | P<br>-0.03 | R<br>Max. | R <sub>1</sub><br>+0.13 | Part<br>Number | Part<br>Number |
|   | M2             | 6.48       | 1.63       | 0.25      | 0.13                    | 8012821        |                |
| ပ | M2.5-0         | 6.48       | 1.42       | 0.25      | 0.13                    | 8019477        |                |
| - | M2.5-1,-2      | 6.48       | 1.63       | 0.25      | 0.13                    | 8012821        |                |
| - | M3             | 6.48       | 1.63       | 0.25      | 0.13                    | 8012821        | 975200048      |
| ш | M3.5           | 7.26       | 1.63       | 0.25      | 0.13                    | 8012822        |                |
| Σ | M4             | 8.05       | 2.08       | 0.25      | 0.13                    | 8012823        |                |
|   | M5             | 8.84       | 2.08       | 0.25      | 0.13                    | 8012824        |                |
|   | M6             | 11.25      | 4.14       | 0.25      | 0.13                    | 8012825        |                |
|   | M8             | 12.83      | 5.41       | 0.25      | 0.13                    | 8015360        | 8003076        |
|   | M10            | 17.58      | 7.47       | 0.25      | 0.13                    | 8015886        |                |



# **SMPP NUTS**

| ٥ |                | Anv        | /il Dimens     | ions (in.) | )           | Anvil          | Punch          |  |
|---|----------------|------------|----------------|------------|-------------|----------------|----------------|--|
| 3 | Thread<br>Code | A<br>±.002 | P +.000<br>001 | R<br>Max.  | Rı<br>+.005 | Part<br>Number | Part<br>Number |  |
| = | 256            | .223       | .060           | .010       | .005        | 8020023        |                |  |
| Z | 440            | .233       | .060           | .010       | .005        | 8021386        | 975200048      |  |
| 7 | 632            | .255       | .060           | .010       | .005        | 8020024        |                |  |

| Γ,  |     |                | Anv        | il Dimens  | ions (mm  | )                       | Anvil          | Punch          |  |
|-----|-----|----------------|------------|------------|-----------|-------------------------|----------------|----------------|--|
| RIC | -   | Thread<br>Code | A<br>±0.05 | P<br>-0.03 | R<br>Max. | R <sub>1</sub><br>+0.13 | Part<br>Number | Part<br>Number |  |
| l   |     | M2.5           | 5.66       | 1.27       | 0.25      | 0.13                    | 8020025        |                |  |
|     | - 1 | M3             | 5.66       | 1.27       | 0.25      | 0.13                    | 8021474        | 975200048      |  |
| L   |     | M3.5           | 6.48       | 1.27       | 0.25      | 0.13                    | 8020026        |                |  |


(1) For best results, we recommend using the installation punch and anvil shown. Deviations from recommended installation tooling may result in sheet distortion and reduced performance.

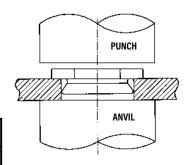
**NOTE:** Variations in hole preparation, installation tooling, installation force, and sheet material type, thickness, and hardness will affect both performance and tooling life.

# A4™/LA4™ NUTS

- Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into the anvil hole and place the mounting hole (punch side) over the shank of the fastener.
- **3.** With installation punch and anvil surfaces parallel, apply sufficient squeezing force until the flange contacts the sheet material.

| Thread<br>Code | Anvil Part<br>Number | Punch Part<br>Number |  |  |
|----------------|----------------------|----------------------|--|--|
| 440/M3         | 8013889              |                      |  |  |
| 632            | 8013890              | 975200048            |  |  |
| 832/M4         | 8013891              | 37 32 00 0 40        |  |  |
| 032/M5         | 8013892              |                      |  |  |



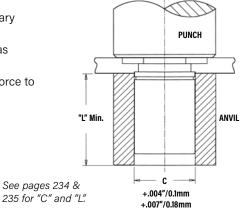

# **INSTALLATION**

### F4™ NUTS

- 1. Prepare properly sized round mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place shank of fastener into mounting hole (punch side) as show in the drawing.
- 3. With installation punch and anvil surfaces parallel, apply sufficient squeezing force only to embed hexagonal head flush in sheet. The metal displaced by the head flows evenly and smoothly around the backtapered shank of the fastener, securely locking it into place with high pullout resistance while at the same time, the embedded hexagonal head provides high torque resistance.

# **PEMSERTER® Installation Tooling**

| Thread<br>Code | Anvil Part<br>Number | Punch Part<br>Number |  |  |
|----------------|----------------------|----------------------|--|--|
| 256/M2/M2.5    | 8006193              |                      |  |  |
| 440/M3         | 975200040            |                      |  |  |
| 632            | 975200041            | 975200048            |  |  |
| 832/M4         | 975200042            | 373200040            |  |  |
| 1032/M5        | 975200043            |                      |  |  |
| 0420/M6        | 975200044            |                      |  |  |

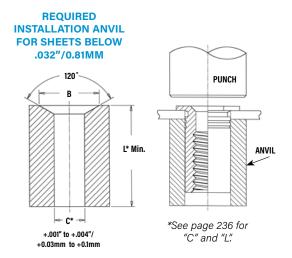



### SO4™/BSO4™ STANDOFFS

- 1. Prepare properly sized round mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert standoff barrel through mounting hole (punch side) in sheet and into anvil as
- 3. With installation punch and anvil surfaces parallel, apply only enough squeezing force to embed the standoff's head flush in the sheet.

# **PEMSERTER® Installation Tooling**

| Thread<br>Code      | Anvil Part<br>Number | Punch Part<br>Number |  |
|---------------------|----------------------|----------------------|--|
| 440/M3              | 970200487300         |                      |  |
| 632/6440/M3.5/3.5M3 | 970200012300         | 975200048            |  |
| 832/8632/M4         | 970200013300         | 373200040            |  |
| 032/M5              | 970200013300         |                      |  |




# **TSO4™ STANDOFFS**

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operation such as deburring.
- 2. Insert standoff through mounting hole (punch side) of sheet and into anvil as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply only enough squeezing force to embed the standoff's head flush in the sheet. Drawing at right shows required installation anvil for sheet thickness of .025" to .032"/0.63 to 0.81mm. A chamfered anvil is not required for sheets over .032"/0.81mm.

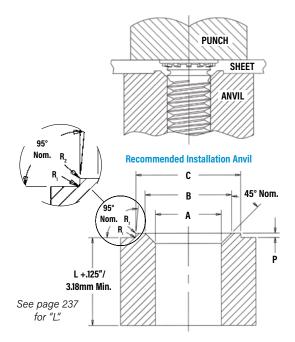
| IED: | Thread<br>Code |         | mensions (in.)<br>ets Below .032"<br>Anvil Part No. | Anvil Part No.<br>For Sheets<br>Over .032" | Punch Part<br>Number |  |
|------|----------------|---------|-----------------------------------------------------|--------------------------------------------|----------------------|--|
| H N  | 256/440        | .187194 | 8003291                                             | 970200487300 97520004                      |                      |  |
| _    | 6256/6440/632  | .250257 | 8003292                                             | 970200012300                               | 975200048            |  |

| ၁၂  | Thread       |             | nensions (mm)<br>s Below 0.63 mm | Anvil Part No.<br>For Sheets | Punch Part |
|-----|--------------|-------------|----------------------------------|------------------------------|------------|
| TRI | Code         | В           | Anvil Part No.                   | Over 0.63 mm                 | Number     |
| ΜE  | M2.5/M3      | 4.75 - 4.93 | 8003291                          | 970200487300                 | 975200048  |
| _   | 6M25/6M3/M35 | 6.35 - 6.53 | 8003292                          | 970200012300                 | 975200048  |



# INSTALLATION

# FH4™/FHP™ STUDS


- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert stud through mounting hole (punch side) of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force to embed the head of the stud flush in the sheet.

For FH4/FHP studs, a special anvil with a raised ring is required to create a proper installation. The raised ring acts as a second displacer of the stainless sheet material, thereby ensuring that the annular groove is filled. Please see page 10 for recommended sheet thickness range.

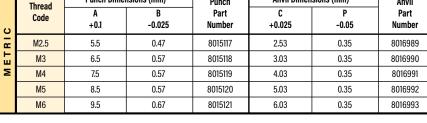
The special anvils are available from PEM stock or can be machined from suitable tool steel. A hardness of HRC 55 / HB 547 minimum is required to provide long anvil life. We recommend measuring the "P" dimension every 5000 installations to ensure that the anvil remains within specification.

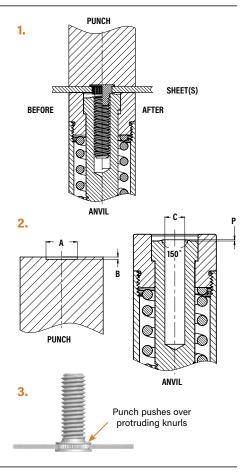
|   | Thread |               |            |            | Anvil Part | Punch Part |                        |         |           |
|---|--------|---------------|------------|------------|------------|------------|------------------------|---------|-----------|
| Q | Code   | A<br>+.003000 | B<br>±.002 | C<br>±.002 | P<br>±.001 | R,<br>Max. | R <sub>2</sub><br>Max. | Number  | Number    |
| 프 | 440    | .113          | .144       | .174       | .010       | .003       | .005                   | 8001645 |           |
| = | 632    | .140          | .170       | .200       | .010       | .003       | .005                   | 8001644 |           |
| N | 832    | .166          | .202       | .236       | .010       | .003       | .005                   | 8001643 | 975200048 |
|   | 032    | .191          | .235       | .275       | .010       | .003       | .005                   | 8001642 |           |
|   | 0420   | .252          | .324       | .360       | .020       | .003       | .005                   | 8002535 |           |

|        | Thread |            |            | Anvil Dimer | isions (mm) | )          |                        | Anvil Part | Punch Part<br>Number |
|--------|--------|------------|------------|-------------|-------------|------------|------------------------|------------|----------------------|
| METRIC | Code   | A<br>+0.08 | B<br>±0.05 | C<br>±0.05  | P<br>±.025  | R,<br>Max. | R <sub>2</sub><br>Max. | Number     |                      |
|        | М3     | 3.05       | 3.81       | 4.57        | 0.25        | 0.08       | 0.13                   | 8001678    | 975200048            |
|        | M4     | 4.04       | 4.95       | 5.82        | 0.25        | 0.08       | 0.13                   | 8001677    |                      |
|        | M5     | 5.08       | 6.15       | 7.16        | 0.25        | 0.08       | 0.13                   | 8001676    |                      |
|        | M6     | 6.05       | 7.87       | 8.79        | 0.51        | 0.08       | 0.13                   | 8002536    |                      |



# **INSTALLATION**


# **SGPC™ STUDS**


- 1. Prepare properly sized mounting hole in sheet.
- 2. Insert fastener through mounting hole (punch side) as shown in drawing.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the punch pushes over the protruding knurls of the stud.

# **PEMSERTER® Installation Tooling**

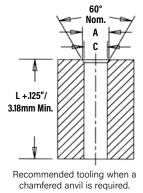
|     | Thread | Punch Dime    | ensions (in.) | Punch          | Anvil Dime | nsions (in.)  | Anvil          |
|-----|--------|---------------|---------------|----------------|------------|---------------|----------------|
|     | Code   | A<br>+.004000 | B<br>+.000001 | Part<br>Number | C<br>+.001 | P<br>+.000002 | Part<br>Number |
| E D | 256    | .209          | .019          | 8015111        | .087       | .014          | 8016983        |
| Ξ   | 440    | .248          | .022          | 8015112        | .113       | .014          | 8016984        |
| Z   | 632    | .276          | .022          | 8015113        | .139       | .014          | 8016985        |
| n   | 832    | .299          | .022          | 8015114        | .165       | .014          | 8016986        |
|     | 032    | .327          | .022          | 8015115        | .191       | .014          | 8016987        |
|     | 0420   | .386          | .026          | 8015116        | .251       | .014          | 8016988        |

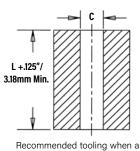
|    | Thread | Punch Dimensions (mm) |             | Punch          | Anvil Dimen | sions (mm) | Anvil          |
|----|--------|-----------------------|-------------|----------------|-------------|------------|----------------|
| ပ  | Code   | A<br>+0.1             | B<br>-0.025 | Part<br>Number | C<br>+0.025 | P<br>-0.05 | Part<br>Number |
| B. | M2.5   | 5.5                   | 0.47        | 8015117        | 2.53        | 0.35       | 8016989        |
| ET | М3     | 6.5                   | 0.57        | 8015118        | 3.03        | 0.35       | 8016990        |
| Σ  | M4     | 7.5                   | 0.57        | 8015119        | 4.03        | 0.35       | 8016991        |
|    | M5     | 8.5                   | 0.57        | 8015120        | 5.03        | 0.35       | 8016992        |
|    | M6     | 9.5                   | 0.67        | 8015121        | 6.03        | 0.35       | 8016993        |





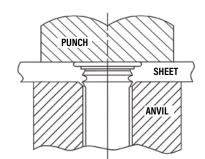
NOTE: For panel design information, go to http://www.pemnet.com/SGPC\_Panel\_Designs.pdf


### **TP4™ PINS**


- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place pin end through mounting hole in sheet (punch side) and into anvil as shown
- 3. With installation punch and anvil surfaces parallel, apply squeezing force to embed the pin's head flush in the sheet.

# **PEMSERTER® Installation Tooling**

|     | Pin Dia. | Test Sheet      | Anvil Dimer | Anvil Dimensions (in.) |         | Punch Part |  |
|-----|----------|-----------------|-------------|------------------------|---------|------------|--|
|     | Code     | Thickness (in.) | A ±.002     | C ±.002                | Number  | Number     |  |
| E D | 105      | .040060         | .160        | 120                    | 8003284 |            |  |
| Ξ   | 120      | Over .060       | (1)         | .130                   | 8003278 | 975200048  |  |
| Ξ   | 107      | .040065         | .220        | 100                    | 8003285 |            |  |
| 5   | 187      | Over .065       | (1)         | .192                   | 8003279 |            |  |
|     | 250      | .040075         | .285        | .255                   | 8003286 |            |  |
|     | 200      | Over .075       | (1)         | .200                   | 8003280 |            |  |


| t | Punch Part |     | Pin Dia. | Test Sheet     | Anvil Dimer | nsions (mm) | Anvil Part | Punch Part |
|---|------------|-----|----------|----------------|-------------|-------------|------------|------------|
|   | Number     |     | Code     | Thickness (mm) | A ±0.05     | C ±0.05     | Number     | Number     |
| 1 |            |     | 3MM      | 1 - 1.7        | 3.88        | 0.11        | 8008096    |            |
|   |            | (   |          | Over 1.7       | (1)         | 3.11        | 8008095    |            |
| , | 975200048  |     | œ        | 1 - 1.7        | 4.88        | 4.11        | 8003287    | 975200048  |
| 1 | 373200040  | L L |          | Over 1.7       | (1)         |             | 8003281    |            |
| ; |            | 2   | 5MM      | 1 - 1.8        | 5.89        |             | 8003288    |            |
| ) |            |     | SIVIIVI  | Over 1.8       | (1)         | 5.13        | 8003282    |            |
|   |            |     | 6MM      | 1 - 1.9        | 6.89        | 6.12        | 8003289    |            |
|   |            |     | OWN      | Over 1.9       | (1)         | 0.12        | 8003283    |            |



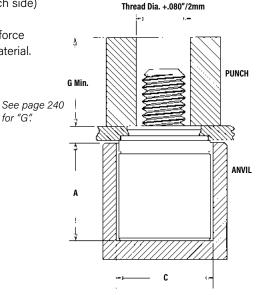


chamfered anvil is not required.

See page 239 for "L".



# INSTALLATION


# PFC4™ CAPTIVE PANEL SCREWS

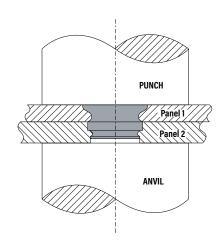
- Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- Place fastener into the anvil hole and place the mounting hole (punch side) over the shank of the fastener retainer.
- With installation punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

# **PEMSERTER® Installation Tooling**

|     |                | Anvil Dimensions (in.) |            |                      |                      |
|-----|----------------|------------------------|------------|----------------------|----------------------|
| E D | Thread<br>Code | A<br>±.002             | C<br>±.002 | Anvil Part<br>Number | Punch Part<br>Number |
| 표   | 440            | .345                   | .358       | 975200027            | 975200060            |
| Z   | 632            | .345                   | .390       | 975201243            | 975200061            |
| n   | 832            | .435                   | .421       | 975200029            | 975200062            |
|     | 032            | .435                   | .452       | 975201244            | 975200064            |

|     |                | Anvil Dimensions (mm) |            |                      |                      |  |
|-----|----------------|-----------------------|------------|----------------------|----------------------|--|
| RIC | Thread<br>Code | A<br>±0.05            | C<br>±0.05 | Anvil Part<br>Number | Punch Part<br>Number |  |
| ΕT  | M3             | 8.76                  | 9.09       | 975200027            | 975200060            |  |
| Σ   | M4             | 11.05                 | 10.69      | 975200029            | 975200062            |  |
|     | M5             | 11.05                 | 11.48      | 975201244            | 975200064            |  |




# **SFP™ FASTENERS**

- **1.** Prepare properly sized mounting hole in both panels. Do not perform any secondary operations such as deburring.
- 2. Place Panel 2 with smaller mounting hole on anvil and align Panel 1 mounting hole with the mounting hole of Panel 2. Place the smaller diameter end of the fastener through the mounting holes as shown in the drawing to the right.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the fastener is flush with the top of Panel 1.

NOTE: To use as a flush-mounted pivot point, for best results, install SpotFast® fastener into Panel 1 first, then place Panel 2 over fastener and squeeze again.

# **PEMSERTER®** Installation Tooling

| Size        | Anvil Part<br>Number | Punch Part<br>Number |
|-------------|----------------------|----------------------|
| SF-3 / SF-5 | 975200046            | 975200048            |



# **INSTALLATION NOTES**

- For best results we recommend using a Haeger® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.

# PERFORMANCE DATA(1)

# **SP™ NUTS**

|    | Туре | Thread<br>Code | Shank<br>Code | Test Sheet<br>Material | Installation<br>(lbs.) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) |
|----|------|----------------|---------------|------------------------|------------------------|-------------------|--------------------------|
|    |      |                | 0             | 304 Stainless          | 8000                   | 130               | 14                       |
|    | SP   | 256            | 1             | Steel                  | 9000                   | 165               | 17                       |
|    |      |                | 2             | Steel                  | 10000                  | 290               | 18                       |
|    |      |                | 0             | 004 04-1-1             | 8000                   | 130               | 14                       |
|    | SP   | 440            | 1             | 304 Stainless<br>Steel | 9000                   | 165               | 17                       |
|    |      |                | 2             | Steet                  | 10000                  | 290               | 18                       |
|    |      |                | 0             | 004 04-1-1             | 8500                   | 140               | 18                       |
|    | SP   | 632            | 1             | 304 Stainless<br>Steel | 9500                   | 170               | 24                       |
| Q  |      |                | 2             | Sieei                  | 10500                  | 340               | 28                       |
| ш. | SP   | 832            | 0             | 304 Stainless          | 9000                   | 145               | 30                       |
| ш. |      |                | 1             | Steel                  | 10000                  | 180               | 37                       |
| Ξ  |      |                | 2             | Steel                  | 11000                  | 360               | 45                       |
| 5  |      |                | 0             | 304 Stainless          | 9500                   | 180               | 35                       |
|    | SP   | 024/032        | 1             | Steel                  | 10500                  | 230               | 45                       |
|    |      |                | 2             | Steel                  | 11500                  | 400               | 60                       |
|    | SP   | 0420           | 1             | 304 Stainless          | 13500                  | 450               | 150                      |
|    | 34   | 0420           | 2             | Steel                  | 13500                  | 600               | 170                      |
|    | SP   | 0518           | 1             | 304 Stainless          | 14800                  | 470               | 170                      |
|    | JF.  | 0310           | 2             | Steel                  | 14800                  | 750               | 250                      |
|    | SP   | 0524           | 1             | 304 Stainless          | 14800                  | 470               | 170                      |
|    | JF.  | 0324           | 2             | Steel                  | 14800                  | 750               | 250                      |
|    | SP   | 0616/0624      | 1             | 304 Stainless          | 16000                  | 600               | 300                      |
|    | 5P   | 0616/0624      | 2             | Steel                  | 20000                  | 700               | 370                      |

|          |                |               |                      | Test Sheet Material |                     |
|----------|----------------|---------------|----------------------|---------------------|---------------------|
|          |                |               |                      | 304 Stainless Steel |                     |
|          | Thread<br>Code | Shank<br>Code | Installation<br>(kN) | Pushout<br>(N)      | Torque-out<br>(N•m) |
|          | M2             | 1             | 40                   | 725                 | 1.92                |
|          | IVIZ           | 2             | 44.5                 | 1290                | 2.03                |
|          |                | 0             | 35.6                 | 575                 | 1.58                |
|          | M2.5           | 1             | 40                   | 725                 | 1.92                |
|          |                | 2             | 44.5                 | 1290                | 2.03                |
| ပ        |                | 0             | 35.6                 | 575                 | 1.58                |
| I =      | M3             | 1             | 40                   | 725                 | 1.92                |
| ۳.       |                | 2             | 44.5                 | 1290                | 2.03                |
| <u> </u> |                | 0             | 40                   | 645                 | 3.38                |
| ΙΞ       | M4             | 1             | 44.5                 | 800                 | 4.18                |
| -        |                | 2             | 49                   | 1600                | 5.08                |
|          |                | 0             | 42.3                 | 800                 | 3.95                |
|          | M5             | 1             | 46.7                 | 1025                | 5.08                |
|          |                | 2             | 51.2                 | 1775                | 6.77                |
|          | M6             | 1             | 60                   | 2000                | 17                  |
|          | IVIO           | 2             | 60                   | 2600                | 19                  |
|          | M8             | 1             | 66                   | 2100                | 19                  |
|          | IVIO           | 2             | 80                   | 4500                | 23                  |
|          | M10            | 1             | 80                   | 2150                | 38                  |

### **SMPP™ NUTS**

| 4 1 | 2  | Thread<br>Code | Max. Nut<br>Tightening Torque<br>(in. lbs.) (2) (3) | Test Sheet Thickness<br>and Material<br>(in.) | Sheet<br>Hardness<br>HRB | Installation<br>(lbs.)<br>(4) | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Tensile<br>Strength<br>(lbs.) (2) (3) | Test Bushing<br>Hole Size For<br>Pull Thru Tests (in.) |
|-----|----|----------------|-----------------------------------------------------|-----------------------------------------------|--------------------------|-------------------------------|-------------------|--------------------------|---------------------------------------|--------------------------------------------------------|
| 4   | ١. | 256            | 7.5                                                 | .029" 304 Stainless Steel                     | 89                       | 4500                          | 50                | 10                       | 640                                   | .104                                                   |
| 2   |    | 440            | 13                                                  | .029" 304 Stainless Steel                     | 89                       | 4500                          | 75                | 15                       | 850                                   | .112                                                   |
|     |    | 632            | 20                                                  | .029" 304 Stainless Steel                     | 89                       | 6000                          | 75                | 20                       | 1020                                  | .138                                                   |

| RIC | Thread<br>Code | Max. Nut<br>Tightening Torque<br>(N-m) (2) (3) | Test Sheet Thickness<br>and Material<br>(mm) | Sheet<br>Hardness<br>HRB | Installation<br>(kN)<br>(4) | Pushout<br>(N) | Torque-out<br>(N-m) | Tensile<br>Strength<br>(kN) (2) (3) | Test Bushing<br>Hole Size For<br>Pull Thru Tests (mm) |
|-----|----------------|------------------------------------------------|----------------------------------------------|--------------------------|-----------------------------|----------------|---------------------|-------------------------------------|-------------------------------------------------------|
| Ë   | M2.5           | 1.05                                           | 0.7 mm 304 Stainless Steel                   | 89                       | 20                          | 200            | 1.35                | 3.05                                | 3                                                     |
| Ξ   | M3             | 1.5                                            | 0.7 mm 304 Stainless Steel                   | 89                       | 20                          | 300            | 1.85                | 3.63                                | 3.5                                                   |
|     | M3.5           | 2.1                                            | 0.7 mm 304 Stainless Steel                   | 89                       | 27                          | 300            | 1.9                 | 4.25                                | 4                                                     |

### A4™/LA4™ NUTS

|     |                | Test Sheet Material<br>300 Series Stainless Steel |                            |                                   |  |  |  |
|-----|----------------|---------------------------------------------------|----------------------------|-----------------------------------|--|--|--|
| ED  | Thread<br>Code | Installation<br>(lbs.)                            | Retainer Pushout<br>(lbs.) | Retainer Torque-out<br>(in. lbs.) |  |  |  |
| Ξ   | 440            | 9000                                              | 200                        | 85                                |  |  |  |
| IND | 632            | 10000                                             | 200                        | 85                                |  |  |  |
|     | 832            | 12000                                             | 200                        | 85                                |  |  |  |
|     | 032            | 13000                                             | 250                        | 125                               |  |  |  |

|     |        | Test Sheet Material  |                            |                              |  |  |  |  |  |
|-----|--------|----------------------|----------------------------|------------------------------|--|--|--|--|--|
|     | Thread |                      | 300 Series Stainless Steel |                              |  |  |  |  |  |
| RIC | Code   | Installation<br>(kN) | Retainer Pushout<br>(N)    | Retainer Torque-out<br>(N•m) |  |  |  |  |  |
| ET  | М3     | 40                   | 890                        | 9.6                          |  |  |  |  |  |
| Σ   | M4     | 53                   | 890                        | 9.6                          |  |  |  |  |  |
|     | M5     | 57                   | 1100                       | 14.1                         |  |  |  |  |  |

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.
- (2) Head size is adequate to ensure failure in threaded area when tested with industry standard tensile bushing diameter.
- (3) Tightening torque shown will induce preload of 70% of nut min axial strength with K or nut factor is equal to 0.20. In some applications tightening torque may need to be adjusted based on the actual K value. All tightening torques shown are based on 180 ksi/ Property Class 12.9 screws. For lower strength screws the tightening torque is proportionately less. For example, for 120 ksi screws, torque is 67% value shown. For 900 MPa screws (Property Class 9.8) torque value is 74% of value shown.
- (4) Installation controlled by proper cavity depth in punch.

# **PERFORMANCE DATA**

# F4™ NUTS

|      | Thread Shank |             | Axial<br>Tensile       | Max. Screw<br>Tightening            | Test Sheet<br>300 Series Sta |                   |
|------|--------------|-------------|------------------------|-------------------------------------|------------------------------|-------------------|
|      | Code         | Code        | Strength<br>(lbs.) (1) | Torque <sup>(2)</sup><br>(in. lbs.) | Installation<br>(lbs.)       | Pushout<br>(lbs.) |
|      | 256          | 1 2         | 130                    | 1.50                                | 7200                         | 270               |
| IED  | 440          | 1 2         | 165                    | 2.50                                | 7200                         | 270               |
| UNIF | 632          | 1 2         | 190                    | 3.50                                | 7200                         | 290               |
|      | 832          | 1 2         | 230                    | 5.25                                | 9000                         | 450               |
|      | 032          | 1 2         | 280                    | 7.50                                | 9000                         | 450               |
|      | 0420         | 3<br>4<br>5 | 1035                   | 36                                  | 14000                        | 1000              |

|      | Thread | Shank       | Axial<br>Tensile     | Max. Screw<br>Tightening       | Test Sheet<br>300 Series Sta |                |
|------|--------|-------------|----------------------|--------------------------------|------------------------------|----------------|
|      | Code   | Code        | Strength<br>(kN) (1) | Torque <sup>(2)</sup><br>(N-m) | Installation<br>(kN)         | Pushout<br>(N) |
|      | M2     | 1 2         | 0.57                 | 0.16                           | 32                           | 1200           |
| RIC  | M2.5   | 1 2         | 0.68                 | 0.23                           | 32                           | 1200           |
| METI | M3     | 1 2         | 0.85                 | 0.36                           | 32                           | 1200           |
|      | M4     | 1 2         | 1                    | 0.58                           | 40                           | 2000           |
|      | M5     | 1 2         | 1.3                  | 0.88                           | 40                           | 2000           |
|      | M6     | 3<br>4<br>5 | 4.5                  | 3.7                            | 65                           | 4500           |

# SO4™/BSO4™ STANDOFFS

|   |        | Max. Rec.                  |                        | Test Sheet I                     | Material                     |                         |  |  |  |
|---|--------|----------------------------|------------------------|----------------------------------|------------------------------|-------------------------|--|--|--|
|   | Thread |                            |                        | .050" 300 Series Stainless Steel |                              |                         |  |  |  |
| Q | Code   | Mating Screw<br>(in. lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.)                | Torque-out<br>(in. lbs.) (3) | Pull-thru<br>(lbs.) (3) |  |  |  |
| = | 440    | 4.75                       | 5500                   | 336                              | 17                           | 600                     |  |  |  |
| H | 6440   | 4.75                       | 9500                   | 647                              | 30                           | 680                     |  |  |  |
| N | 632    | 8.75                       | 9500                   | 647                              | 30                           | 680                     |  |  |  |
|   | 8632   | 8.75                       | 10500                  | 900                              | 71                           | 1392                    |  |  |  |
|   | 832    | 18                         | 10500                  | 900                              | 71                           | 1517                    |  |  |  |
|   | 032    | 32                         | 10500                  | 900                              | 71                           | 1368                    |  |  |  |

|         |        | Max. Rec.                | Test Sheet Material  |                                   |                         |                                 |  |  |  |
|---------|--------|--------------------------|----------------------|-----------------------------------|-------------------------|---------------------------------|--|--|--|
|         | Thread | Tightening<br>Torque For | 1.                   | 1.3 mm 300 Series Stainless Steel |                         |                                 |  |  |  |
| <u></u> | Code   | Mating Screw<br>(N-m)    | Installation<br>(kN) | Pushout<br>(N)                    | Torque-out<br>(N·m) (3) | Pull-thru<br>(N) <sup>(3)</sup> |  |  |  |
| TR      | М3     | 0.55                     | 24.5                 | 1493                              | 2.36                    | 2650                            |  |  |  |
| ME      | 3.5M3  | 0.55                     | 42.3                 | 2877                              | 3.06                    | 3025                            |  |  |  |
| _       | M3.5   | 0.91                     | 42.3                 | 2877                              | 3.06                    | 3025                            |  |  |  |
|         | M4     | 2                        | 46.7                 | 4003                              | 8.89                    | 6458                            |  |  |  |
|         | M5     | 3.6                      | 46.7                 | 4003                              | 8.89                    | 6226                            |  |  |  |

# **TSO4™ STANDOFFS**

|                           | Test Sheet Material                        |      |         |     |                |       |  |  |  |
|---------------------------|--------------------------------------------|------|---------|-----|----------------|-------|--|--|--|
| Standoff "C"<br>Dimension | .025" / 0.64 mm 300 series stainless steel |      |         |     |                |       |  |  |  |
|                           | Installation                               |      | Pushout |     | Torque-out (3) |       |  |  |  |
|                           | (lbs.)                                     | (kN) | (lbs.)  | (N) | (in. lbs.)     | (N-m) |  |  |  |
| .165" / 4.2 mm            | 5700                                       | 25.4 | 125     | 555 | 13             | 1.5   |  |  |  |
| .212" / 5.39 mm           | 6800                                       | 30.3 | 160     | 710 | 22             | 2.5   |  |  |  |

# FH4™ STUDS

|    | Thread | Recommended<br>Nut                                | Sheet           | Test Sheet Material<br>.060" Stainless Steel <sup>(4)</sup> |                   |                          |                     |
|----|--------|---------------------------------------------------|-----------------|-------------------------------------------------------------|-------------------|--------------------------|---------------------|
| ED | Code   | Tightening<br>Torque<br>(in. lbs.) <sup>(5)</sup> | Hardness<br>HRB | Installation<br>(lbs.)                                      | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Pull-thru<br>(lbs.) |
| Ξ  | 440    | 11                                                | 87              | 9000                                                        | 450               | 16                       | 800                 |
| Ξ  | 632    | 22                                                | 87              | 9500                                                        | 540               | 27                       | 1350                |
| n  | 832    | 35                                                | 86              | 11200                                                       | 780               | 58                       | 1800                |
|    | 032    | 51                                                | 86              | 12000                                                       | 800               | 95                       | 2250                |
|    | 0420   | 117                                               | 86              | 23000                                                       | 1600              | 156                      | 3900                |

|     | Recommended Nut Sheet |                                              | Test Sheet Material<br>1.5 mm Stainless Steel (4) |                      |                |                     |                  |
|-----|-----------------------|----------------------------------------------|---------------------------------------------------|----------------------|----------------|---------------------|------------------|
| RIC | Code                  | Tightening<br>Torque<br>(N·m) <sup>(5)</sup> | Hardness<br>HRB                                   | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N-m) | Pull-thru<br>(N) |
| ET  | M3                    | 1.3                                          | 87                                                | 40                   | 2220           | 1.8                 | 3500             |
| Z   | M4                    | 3.8                                          | 86                                                | 50                   | 3210           | 6.5                 | 8000             |
|     | M5                    | 6                                            | 86                                                | 53                   | 3560           | 10.7                | 10000            |
|     | M6                    | 11                                           | 86                                                | 100                  | 4200           | 15.9                | 14900            |

- (1) Failure occurs in screw stripping using a 60 ksi screw and the shortest shank length fastener.
- (2) Torque values shown will produce a preload of 70% of axial tensile strength with nut factor "k" equal to .2. Threads may strip or head of the nut may bend and/or fail if screw is over-torqued beyond these values or if actual k value is less than .2.
- (3) Joint failure in torque-out and pull-thru will depend on the strength and type of screw being used. In some cases the failure will be in the screw and not in the self-clinching standoff. Please contact our Applications Engineering group with any questions.
- (4) Performance may be reduced for studs installed into thicker sheets.
- (5) Tightening torque shown is a theoretical value calculated to induce a load of 75% of minimum axial yield strength of the stud with an assumed K.

# **PERFORMANCE DATA**

# **FHP™ STUDS**

|         | Recommended Nut Sheet |                                                   |                 | Test Sheet Material .060" Stainless Steel (1) |                   |                          |                     |  |
|---------|-----------------------|---------------------------------------------------|-----------------|-----------------------------------------------|-------------------|--------------------------|---------------------|--|
| UNIFIED | Code                  | Tightening<br>Torque<br>(in. lbs.) <sup>(2)</sup> | Hardness<br>HRB | Installation<br>(lbs.)                        | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Pull-thru<br>(lbs.) |  |
| H       | 440                   | 8.1                                               | 86              | 9000                                          | 520               | 10.6                     | 605                 |  |
|         | 632                   | 16                                                | 86              | 9500                                          | 670               | 19.5                     | 940                 |  |
|         | 832                   | 28                                                | 86              | 11200                                         | 785               | 37.5                     | 1415                |  |
|         | 032                   | 34                                                | 86              | 12000                                         | 800               | 59.5                     | 1500                |  |

|      |        | Recommended                                  |                 | Test Sheet Material  |                |                     |                  |  |
|------|--------|----------------------------------------------|-----------------|----------------------|----------------|---------------------|------------------|--|
|      | Thread | Nut                                          | Sheet           | 1.5 mm (for          | M4&M5) 2 mm    | (for M3) Stainle    | ess Steel (1)    |  |
| TRIC | Code   | Tightening<br>Torque<br>(N-m) <sup>(2)</sup> | Hardness<br>HRB | Installation<br>(kN) | Pushout<br>(N) | Torque-out<br>(N•m) | Pull-thru<br>(N) |  |
| ш    | M3     | 1.3                                          | 86              | 40                   | 2500           | 1.6                 | 3500             |  |
| Σ    | M4     | 2.9                                          | 86              | 50                   | 3000           | 3.9                 | 6000             |  |
|      | M5     | 4.4                                          | 86              | 53                   | 3560           | 7.35                | 7320             |  |

# **SGPC™ STUDS**

|    | ·              | Max. Rec.<br>Tightening                | Sheet           | Test Sheet Material<br>Single sheet of .039" 300 Series Stainless Steel |                   |                          |                     |  |
|----|----------------|----------------------------------------|-----------------|-------------------------------------------------------------------------|-------------------|--------------------------|---------------------|--|
| D  | Thread<br>Code | Torque For<br>Mating Nut<br>(in. lbs.) | Hardness<br>HRB | Installation<br>(lbs.)                                                  | Pushout<br>(lbs.) | Torque-out<br>(in. lbs.) | Pull-thru<br>(lbs.) |  |
| Ξ  | 256            | 2.3                                    | 92              | 4000                                                                    | 425               | 5.2                      | 415                 |  |
| Ξ. | 440            | 5                                      | 92              | 5000                                                                    | 450               | 8                        | 512                 |  |
| NO | 632            | 9                                      | 92              | 5500                                                                    | 460               | 15.8                     | 811                 |  |
|    | 832            | 17                                     | 92              | 6500                                                                    | 480               | 29.3                     | 1133                |  |
|    | 032            | 27                                     | 92              | 7300                                                                    | 545               | 42.8                     | 1273                |  |
|    | 0420           | 58                                     | 92              | 10000                                                                   | 565               | 76.7                     | 1721                |  |

|     | Max. Rec. Tightening Sheet Torque For Hardness |      |                 | Test Sheet Material Single sheet of 1 mm 300 Series Stainless Steel |                |                     |                  |  |
|-----|------------------------------------------------|------|-----------------|---------------------------------------------------------------------|----------------|---------------------|------------------|--|
| 2   | Code                                           |      | Hardness<br>HRB | Installation<br>(kN)                                                | Pushout<br>(N) | Torque-out<br>(N•m) | Pull-thru<br>(N) |  |
| T.B | M2.5                                           | 0.41 | 92              | 20.1                                                                | 2546           | 0.86                | 2561             |  |
| E.  | М3                                             | 0.74 | 92              | 21.8                                                                | 2051           | 1.35                | 2851             |  |
| 2   | M4                                             | 1.7  | 92              | 28.5                                                                | 2396           | 2.66                | 4000             |  |
|     | M5                                             | 3.5  | 92              | 35.6                                                                | 3200           | 5.96                | 4284             |  |
|     | M6                                             | 5.9  | 92              | 42.3                                                                | 3262           | 9.19                | 6311             |  |

# **TP4™ PINS**

|      | Pin              | Test Sheet Material<br>300 Series Stainless Steel |                   |  |  |  |
|------|------------------|---------------------------------------------------|-------------------|--|--|--|
| FIED | Diameter<br>Code | Installation<br>(lbs.)                            | Pushout<br>(lbs.) |  |  |  |
| Ξ    | 125              | 8000                                              | 350               |  |  |  |
|      | 187              | 12000                                             | 570               |  |  |  |
|      | 250              | 14000                                             | 650               |  |  |  |

|     |                  | Test Sheet Material        |                |  |
|-----|------------------|----------------------------|----------------|--|
| 2   | Pin              | 300 Series Stainless Steel |                |  |
|     | Diameter<br>Code | Installation<br>(kN)       | Pushout<br>(N) |  |
| T.B | ЗММ              | 35                         | 1556           |  |
| Σ   | 4MM              | 45                         | 2335           |  |
| -   | 5MM              | 54                         | 2535           |  |
|     | 6MM              | 60                         | 2891           |  |

# PFC4™ CAPTIVE PANEL SCREWS

|    |                | Test Sheet Material        |                            |  |  |
|----|----------------|----------------------------|----------------------------|--|--|
|    | Thread         | 300 Series Stainless Steel |                            |  |  |
| ED | Thread<br>Code | Installation<br>(lbs.)     | Retainer Pushout<br>(Ibs.) |  |  |
| Ξ. | 440            | 9100                       | 350                        |  |  |
| Z  | 632            | 10300                      | 400                        |  |  |
|    | 832            | 10800                      | 450                        |  |  |
|    | 032            | 11800                      | 550                        |  |  |

|  |     |                | Test Sheet Material<br>300 Series Stainless Steel |                         |  |
|--|-----|----------------|---------------------------------------------------|-------------------------|--|
|  | RIC | Thread<br>Code | Installation<br>(kN)                              | Retainer Pushout<br>(N) |  |
|  | ΕT  | M3             | 40.5                                              | 1557                    |  |
|  | Σ   | M4             | 48                                                | 2002                    |  |
|  |     | M5             | 52.5                                              | 2447                    |  |

# **SFP™ FASTENERS**

| Type and | Thickness<br>Code | Test Sheet Material<br>Stainless Steel |      |                        |      |
|----------|-------------------|----------------------------------------|------|------------------------|------|
| Size     |                   | Installation                           |      | Pushout of Panel 2 (3) |      |
|          |                   | kN                                     | lbs. | N                      | lbs. |
| SFP-3    | 1.0               | 13.5                                   | 3000 | 620                    | 140  |
| SFP-3    | 1.2               | 20                                     | 4500 | 830                    | 186  |
| SFP-3    | 1.6               | 22                                     | 5000 | 1500                   | 340  |
| SFP-5    | 1.0               | 18                                     | 4000 | 990                    | 222  |
| SFP-5    | 1.2               | 27                                     | 6000 | 1158                   | 260  |
| SFP-5    | 1.6               | 33                                     | 7500 | 3117                   | 701  |

- (1) Performance may be reduced for studs installed into thicker sheets.
- (2) Tightening torque shown is a theoretical value calculated to induce a load of 75% of minimum axial yield strength of the stud with an assumed K.
- (3) In most applications, pullout strength of the SpotFast® fastener in Panel 1 exceeds pushout strength of Panel 2.

# OTHER FASTENERS FOR CONSIDERATION TO USE IN STAINLESS STEEL SHEETS

# PF11MW™ CAPTIVE PANEL SCREWS



Floating captive panel screw with unique flaremount feature allows fastener to "float" in mounting hole and compensate for mating thread alignment. (See PEM® Bulletin PF)

# PF11MF™ CATIVE PANEL SCREWS



Flare-mounted captive panel screw that installs into any panel material and is flush on back side of panel.

(See PEM® Bulletin PF)

# MPP™ PINS



Self-clinching microPEM® pins that can be installed into stainless steel sheets as thin as .02"/0.5mm. (See PEM® Bulletin MPF)

# MSO4™ STANDOFFS



Self-clinching microPEM® standoffs that can be installed into stainless steel sheets as thin as .016"/0.4mm.

(See PEM® Bulletin MPF)

# **T4™ TACKPIN® FASTENERS**



microPEM® TackPin® fasteners enable sheetto-sheet attachment in stainless steel sheets in applications where disassembly is not required. (See PEM® Bulletin MPF)

# **WN/WNS WELD NUTS**



Designed to overcome many problems such as burn-outs, complicated electrodes and pilots, indexing and re-tapping to remove weld spatter. (See PEM® Bulletin WN)

# **ATLAS® BLIND THREADED INSERTS**



Attach to panels of any hardness and provide strong and reusable permanent threads in sheet materials where only one side is accessible.

(See ATLAS® Catalog)



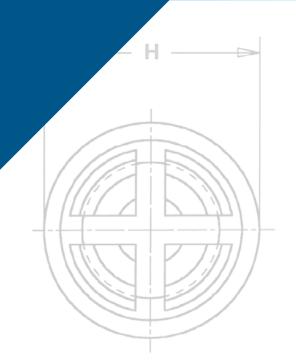
# INSTALLATION INTO STAINLESS STEEL SHEETS DOS AND DON'TS

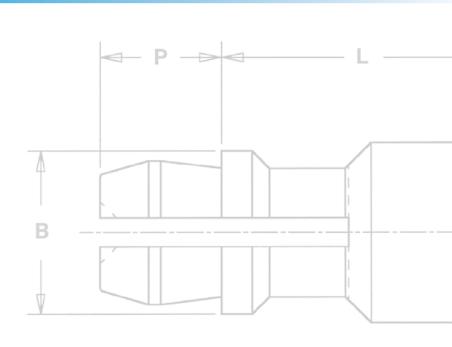
### "Dos"

- **DO** select the proper fastener material to meet corrosion requirements.
- **DO** make certain that panel material is in the annealed condition.
- **DO** make certain that hole punch is kept sharp to minimize work hardening around hole.
- **DO** provide mounting hole of specified size for each fastener.
- DO maintain the hole punch diameter to no greater than +.001"/.025 mm over the minimum recommended mounting hole.
- **DO** make certain that fastener is properly positioned within hole before applying installation force.
- DO make certain that fastener is not installed adjacent to bends or other highly cold-worked areas.
- DO apply squeezing force between parallel surfaces.
- **DO** utilize recommended installation tooling when installing fasteners.
- **DO** install fastener in punched side of hole.
- DO apply sufficient force to totally embed clinching ring (where applicable) around entire circumference and to bring shoulder squarely in contact with sheet. For all other fasteners, installation will be complete when the head is flush with the panel surface.

### "Don'ts"

- DON'T attempt to install any self-clinching fastener other than types SP, SMPP, A4, LA4, F4, S04, BS04, TS04, FH4, FHP, SGPC, TP4, PFC4, and SFP into a stainless steel sheet.
- DON'T deburr mounting holes on either side of sheet before installing fasteners deburring will remove metal required for clinching fastener into sheet.
- DON'T install fastener closer to edge of sheet than minimum edge distance unless a special fixture is used to restrict bulging of sheet edge.
- DON'T install fastener near bends or other highly cold worked areas where sheet hardness may be greater than the limit for the fastener.
- DON'T over-squeeze. It will crush the head, distort threads, and buckle the sheet. Be certain to determine optimum installation force by test prior to production runs.
- DON'T attempt to insert fastener with a hammer blow under any circumstances. A hammer blow won't permit the sheet metal to flow and develop an interlock with the fastener's contour.
- DON'T install screw in the head side of fastener. Install from opposite side so that the fastener load is toward sheet. The clinching force is designed only to hold the fastener during handling and to resist torque during assembly.



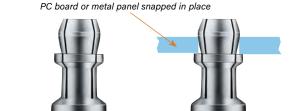


PEM® brand SNAP-TOP® standoffs are designed for permanent installation into metal panels or PC Boards



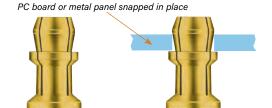
**SSA**<sup>TM</sup>

SNAP-TOP® STANDOFFS

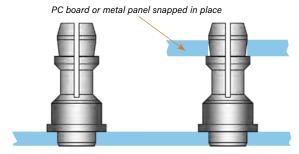





# PEM® SNAP-TOP® Standoffs are designed for permanent installation into metal panels or PC boards.


- Spring action to hold PC Boards and subassemblies securely.
- Allows for quick removal.
- Eliminates screws and other threaded hardware.
  - Less parts to handle during assembly.
  - Less risk of damaging delicate circuitry because of loose parts falling into your equipment.
- Available in three different mounting styles:
  - Self-clinching for installation into ductile materials
  - Broaching for installation into PC Board and brittle material.
  - Surface mount for installation to PC Board
- Permanently installed in the panel.

Installation forces, pushout and snap forces are listed on page 256.





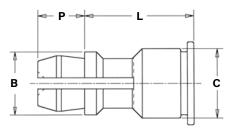

SSA™/SSS™/SSC™ standoffs clinched into a metal panel

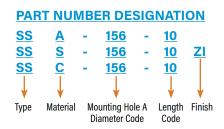


KSSB™ standoffs broached into a PC board



SMTSSS™ standoffs surface mounted to PC Board




# SSA™/SSS™/SSC™ STANDOFFS FOR CLINCHING INTO METAL SHEETS









#### **FASTENER MATERIAL:**

#### FINISH:

SSA: Aluminum

SSA: Natural

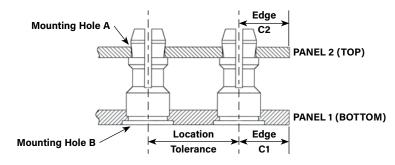
SSS: Carbon Steel

SSS: ZI - Zinc plated per ASTM B633, SC1 (5µm), Type III, colorless, plus clear chromate (1)

SSC: 400 Series Stainless Steel

SSC: Passivated and/or tested per ASTM A380

#### All dimensions are in inches.


| I E D | Fas<br>Aluminum | Type<br>tener Mate<br>Carbon | rial<br>Stainless | Panel 2 (Top)<br>Mounting Hole |      |      |      |      | Length Co<br>th Code in |      |      |      |      |                   | B<br>±.005 | C<br>Max. | H<br>±.005 | P<br>±.005 |
|-------|-----------------|------------------------------|-------------------|--------------------------------|------|------|------|------|-------------------------|------|------|------|------|-------------------|------------|-----------|------------|------------|
| 쁘     | Alullillulli    | Steel                        | Steel             | Diameter Code                  | .250 | .312 | .375 | .437 | .500                    | .562 | .625 | .750 | .875 | 1.00              | 2.000      |           |            |            |
| NO    | SSA             | SSS                          | SSC               | 156                            | 8    | 10   | 12   | 14   | 16                      | 18   | 20   | 24   | 28   | 32 <sup>(2)</sup> | .188       | .212      | .250       | .141       |

#### All dimensions are in millimeters.

| TRIC | Fas: | Type<br>tener Mate<br>Carbon<br>Steel | rial<br>Stainless<br>Steel | Panel 2 (Top)<br>Mounting Hole<br>Diameter Code |   |    |    |    | gth Code "L"<br>Code in mill |    |    |    |                   | B<br>±0.13 | C<br>Max. | H<br>±0.13 | P<br>±0.13 |
|------|------|---------------------------------------|----------------------------|-------------------------------------------------|---|----|----|----|------------------------------|----|----|----|-------------------|------------|-----------|------------|------------|
| M    | SSA  | SSS                                   | SSC                        | 4MM                                             | 8 | 10 | 12 | 14 | 16                           | 18 | 20 | 22 | 25 <sup>(2)</sup> | 4.78       | 5.39      | 6.35       | 3.58       |

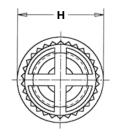
- (1) See PEM Technical Support section of our web site for related plating standards and specifications.
- (2) This length not available for Type SSA aluminum fasteners.

# **APPLICATION DATA**

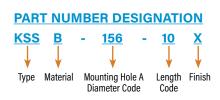


#### All dimensions are in inches.

|          |      |                         |                                          | Panel 1           |                   |                             |                       |                  |                                       | Panel 2              |                           |                                         |
|----------|------|-------------------------|------------------------------------------|-------------------|-------------------|-----------------------------|-----------------------|------------------|---------------------------------------|----------------------|---------------------------|-----------------------------------------|
| FIED     | Туре | Hardness<br>Max.<br>(2) | Bottom<br>Mounting<br>Hole B<br>+.003000 | Panel<br>Material | Thickness<br>Min. | Edge<br>Distance<br>C, Min. | Location<br>Tolerance | Hardness<br>Max. | Top<br>Mounting<br>Hole A<br>+.003000 | Panel<br>Material    | Thickness<br>Range<br>(3) | Edge<br>Distance<br>C <sub>2</sub> Min. |
| ΞI       | SSA  | HRB 50 / HB 82          |                                          |                   |                   |                             |                       |                  |                                       |                      |                           |                                         |
| <b>-</b> | SSS  | HRB 60 / HB 107         | .213                                     | Metal             | .040              | .260                        | ±.005                 | No Limit         | .156                                  | PC Board<br>or Metal | .040070                   | .100                                    |
|          | SSC  | HRB 70 / HB 125         |                                          |                   |                   |                             |                       |                  |                                       | OI WIELAI            |                           |                                         |


#### All dimensions are in millimeters.


|   |     |      |                         |                                       | Panel 1           |                   |                             |                       |                  |                                    | Panel 2              |                           |                             |
|---|-----|------|-------------------------|---------------------------------------|-------------------|-------------------|-----------------------------|-----------------------|------------------|------------------------------------|----------------------|---------------------------|-----------------------------|
| ŀ | RIC | Туре | Hardness<br>Max.<br>(2) | Bottom<br>Mounting<br>Hole B<br>+0.08 | Panel<br>Material | Thickness<br>Min. | Edge<br>Distance<br>C, Min. | Location<br>Tolerance | Hardness<br>Max. | Top<br>Mounting<br>Hole A<br>+0.08 | Panel<br>Material    | Thickness<br>Range<br>(3) | Edge<br>Distance<br>C, Min. |
| ı | ш   | SSA  | HRB 50 / HB 82          |                                       |                   |                   |                             |                       |                  |                                    |                      |                           |                             |
| ľ | Σ   | SSS  | HRB 60 / HB 107         | 5.41                                  | Metal             | 1                 | 6.6                         | ±0.13                 | No Limit         | 4                                  | PC Board<br>or Metal | 1 - 1.8                   | 2.54                        |
|   |     | SSC  | HRB 70 / HB 125         |                                       |                   |                   |                             |                       |                  |                                    | oi wetai             |                           |                             |


- (2) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (3) Available for thicker boards on special order.

## KSSB™ STANDOFFS FOR BROACHING INTO PC BOARDS









**FASTENER MATERIAL:** 

FINISH:

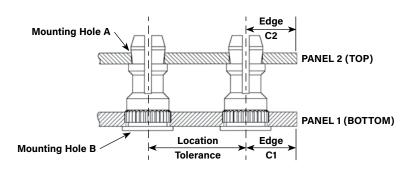
Brass

Standard: X - Plain

Optional: ET - Electro-plated Tin, ASTM B545 Class B ( $5\mu m$ ) with preservative coating, annealed  $^{(1)}$ 

(Optional ET finish is available on special order with additional charge.)

#### All dimensions are in inches.


| £ | E D | Туре | Panel 2 (Top)<br>Mounting Hole |      |      |      | (Len | •    | de "L" ±.005<br>32nds of an |      |      |      |      | B<br>±.005 | C<br>±.003 | H<br>±.005 | P<br>±.005 | T<br>±.005 |
|---|-----|------|--------------------------------|------|------|------|------|------|-----------------------------|------|------|------|------|------------|------------|------------|------------|------------|
| L | ΞĮ  |      | Diameter Code                  | .250 | .312 | .375 | .437 | .500 | .562                        | .625 | .750 | .875 | 1.00 | ±.003      | 1.003      | ±.003      | ±.003      | ±.005      |
|   | 2   | KSSB | 156                            | 8    | 10   | 12   | 14   | 16   | 18                          | 20   | 24   | 28   | 32   | .188       | .226       | .250       | .141       | .020       |

#### All dimensions are in millimeters.

| TRIC | Ţ | Гуре | Panel 2 (Top)<br>Mounting Hole<br>Diameter Code |   |    |    |    | gth Code "L"<br>Code in milli |    |    |    |    | B<br>±0.13 | C<br>±0.08 | H<br>±0.13 | P<br>±0.13 | T<br>±0.13 |
|------|---|------|-------------------------------------------------|---|----|----|----|-------------------------------|----|----|----|----|------------|------------|------------|------------|------------|
| 2    | V | (SSB | 4MM                                             | 8 | 10 | 12 | 14 | 16                            | 18 | 20 | 22 | 25 | 4.78       | 5.74       | 6.35       | 3.58       | 0.51       |

(1) See PEM Technical Support section of our web site for related plating standards and specifications.

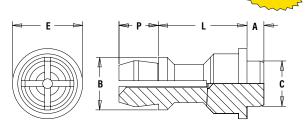
#### **APPLICATION DATA**

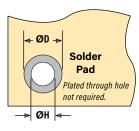


#### All dimensions are in inches.

|       |      |                         |                                          | Panel 1           |                   |                             |                       |                  |                                       | Panel 2              |                           |                             |
|-------|------|-------------------------|------------------------------------------|-------------------|-------------------|-----------------------------|-----------------------|------------------|---------------------------------------|----------------------|---------------------------|-----------------------------|
| IFIED | Туре | Hardness<br>Max.<br>(2) | Bottom<br>Mounting<br>Hole B<br>+.003000 | Panel<br>Material | Thickness<br>Min. | Edge<br>Distance<br>C, Min. | Location<br>Tolerance | Hardness<br>Max. | Top<br>Mounting<br>Hole A<br>+.003000 | Panel<br>Material    | Thickness<br>Range<br>(3) | Edge<br>Distance<br>C, Min. |
| N O   | KSSB | HRB 65 / HB 116         | .213                                     | PC Board          | .050              | .220                        | ±.005                 | No Limit         | .156                                  | PC Board<br>or Metal | .040070                   | .100                        |

#### All dimensions are in millimeters.


|   |      |      |                         |                                       | Panel 1           |                   |                             |                       |                  |                                    | Panel 2              |                           |                             |
|---|------|------|-------------------------|---------------------------------------|-------------------|-------------------|-----------------------------|-----------------------|------------------|------------------------------------|----------------------|---------------------------|-----------------------------|
|   | TRIC | Туре | Hardness<br>Max.<br>(2) | Bottom<br>Mounting<br>Hole B<br>+0.08 | Panel<br>Material | Thickness<br>Min. | Edge<br>Distance<br>C, Min. | Location<br>Tolerance | Hardness<br>Max. | Top<br>Mounting<br>Hole A<br>+0.08 | Panel<br>Material    | Thickness<br>Range<br>(3) | Edge<br>Distance<br>C, Min. |
| ١ | Z    | KSSB | HRB 65 / HB 116         | 5.41                                  | PC Board          | 1.27              | 5.59                        | ±0.13                 | No Limit         | 4                                  | PC Board<br>or Metal | 1 - 1.8                   | 2.54                        |


- (2) HRB Hardness Rockwell "B" Scale. HB Hardness Brinell.
- (3) Available for thicker boards on special order.

## SMTSSS™ REELFAST® SNAP-TOP® STANDOFFS



**NOTE: REELFAST®** SNAP-TOP® SMTSSS™ standoffs are for on-only applications. For removal applications, mounting hole A can be increased to reduce removal force.





**Stencil Masking Examples** 0000

#### **FASTENER MATERIAL:** FINISH:

Carbon Steel

ET - Electro-plated Tin, ASTM B545 Class A with clear preservative coating, annealed (1)(2)

- (1) See <u>PEM Technical Support</u> section of our web site for related plating standards and specifications.
- (2) Optimal solderability life noted on packaging.

#### All dimensions are in inches.

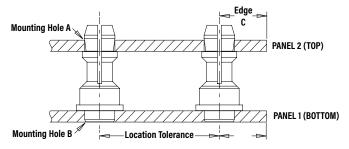
| FIED | Top Board<br>Mounting Hole A<br>Diameter Code | Type and<br>Material |   | le "L" ±.005<br>32nds of an inch)<br>.375 | Min.<br>Sheet<br>Thickness | A<br>Max. | C<br>Max. | E<br>±.005 | B<br>±.005 | P<br>±.005 | ØH Hole<br>Size in Sheet<br>+.003000 | ØD<br>Min.<br>Solder Pad |
|------|-----------------------------------------------|----------------------|---|-------------------------------------------|----------------------------|-----------|-----------|------------|------------|------------|--------------------------------------|--------------------------|
| N    | 156                                           | SMTSSS               | 8 | 12                                        | .060                       | .060      | .161      | .250       | .188       | .141       | .166                                 | .276                     |


#### All dimensions are in millimeters.

| 7 1 0 1 | 2   | Top Board<br>Mounting Hole A<br>Diameter Code | Type and<br>Material |   | gth Code "L" :<br>Code in mill |    | Min.<br>Sheet<br>Thickness | A<br>Max. | C<br>Max. | E<br>±0.13 | B<br>±0.13 | P<br>±0.13 | ØH Hole<br>Size in Sheet<br>+0.08 | ØD<br>Min.<br>Solder Pad |
|---------|-----|-----------------------------------------------|----------------------|---|--------------------------------|----|----------------------------|-----------|-----------|------------|------------|------------|-----------------------------------|--------------------------|
| 2       | 5 I | 4MM                                           | SMTSSS               | 6 | 8                              | 10 | 1.53                       | 1.53      | 4.09      | 6.35       | 4.8        | 3.58       | 4.22                              | 7                        |

#### **NUMBER OF PARTS PER REEL**

| Type, Material and Size | Length Code | / Numi | oer of P | arts per Reel |
|-------------------------|-------------|--------|----------|---------------|
| SMTSSS-156              | -8 / 280    | )      | -1       | 2 / 220       |
| SMTSSS-4MM              | -6 / 300    | -8 /   | 250      | -10 / 200     |


Packaged on 330 mm recyclable reels. Tape width is 24 mm. Supplied with polyimide patch for vacuum pick up. Reels conform to EIA-481.

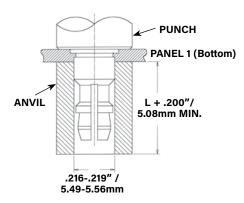




Type Material Mounting Hole A Length Finish Diameter Code

#### **APPLICATION DATA**



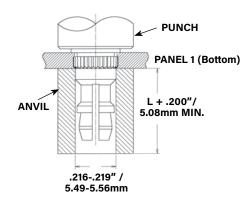

#### All dimensions are in inches

|         |                      | All ullilelisions are | in inches.                               |                   |                   |                       |                  |                                       |                     |                    |                            |
|---------|----------------------|-----------------------|------------------------------------------|-------------------|-------------------|-----------------------|------------------|---------------------------------------|---------------------|--------------------|----------------------------|
|         |                      |                       |                                          | Panel 1           |                   |                       |                  |                                       | Panel 2             |                    |                            |
| 0 1 1 1 | Type and<br>Material | Hardness<br>Max.      | Bottom<br>Mounting<br>Hole B<br>+.003000 | Panel<br>Material | Thickness<br>Min. | Location<br>Tolerance | Hardness<br>Max. | Top<br>Mounting<br>Hole A<br>+.003000 | Panel<br>Material   | Thickness<br>Range | Edge<br>Distance<br>C Min. |
| =       | SMTSSS               | No Limit              | .166                                     | P.C. Board        | .060              | ±.005                 | No Limit         | .156                                  | P.C. Board or Metal | .040070            | .100                       |

#### All dimensions are in millimeters.

| Panel 1 |                      |                  |                                       |                   |                   |                       | Panel 2          |                                    |                     |                    |                            |  |
|---------|----------------------|------------------|---------------------------------------|-------------------|-------------------|-----------------------|------------------|------------------------------------|---------------------|--------------------|----------------------------|--|
| ETRIC   | Type and<br>Material | Hardness<br>Max. | Bottom<br>Mounting<br>Hole B<br>+0.08 | Panel<br>Material | Thickness<br>Min. | Location<br>Tolerance | Hardness<br>Max. | Top<br>Mounting<br>Hole A<br>+0.08 | Panel<br>Material   | Thickness<br>Range | Edge<br>Distance<br>C Min. |  |
| M       | SMTSSS               | No Limit         | 4.22                                  | P.C. Board        | 1.53              | ±0.13                 | No Limit         | 4                                  | P.C. Board or Metal | 1 - 1.8            | 2.54                       |  |

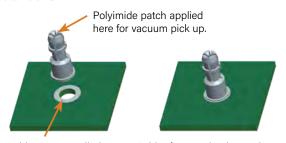
#### **INSTALLATION**




# SSA™/SSS™/SSC™ Standoffs

- 1. Prepare properly sized mounting hole in Panel 1 (Bottom).
- 2. Place the fastener through the mounting hole (preferably the punch side) of the panel and into the anvil as shown in the drawing.
- With punch and anvil surfaces parallel, apply only enough squeezing force to embed the head flush with the panel.

## **PEMSERTER® Installation Tooling**


| Туре                | Anvil Part<br>Number | Punch Part<br>Number |
|---------------------|----------------------|----------------------|
| SSA, SSS, SSC, KSSB | 970200015300         | 975200048            |



#### **KSSB™ Standoffs**

- 1. Prepare properly sized mounting hole in Panel 1 (Bottom).
- 2. Place the fastener through the mounting hole of the board and into the anvil as shown in the drawing.
- With punch and anvil surfaces parallel, apply only enough squeezing force to bring the head into contact with the board.

#### SMTSSS™ Standoffs



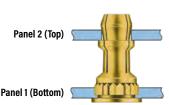
Solder paste applied to pad on PCB.

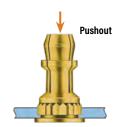
Solder fastener in place using standard surface mount techniques.

#### **INSTALLATION NOTES**

- For best results we recommend using a HAEGER® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please check our website for more information.
- Visit the Animation Library on our website to view the installation process for select products.

## PERFORMANCE DATA(1)

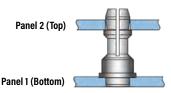

#### SSA™/SSS™/SSC™ Standoffs - Self-clinching

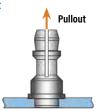







#### KSSB™ Standoffs - Broaching




|   |      |                     | Panel 1 (Bottom)       |                   |                                    | Panel 2 (Top) (Removable)           |                                    |
|---|------|---------------------|------------------------|-------------------|------------------------------------|-------------------------------------|------------------------------------|
|   | Туре | Test Sheet Material | Installation<br>(Ibs.) | Pushout<br>(lbs.) | Max. First on Snap Force<br>(lbs.) | Min. First off Snap Force<br>(lbs.) | Min. 15th off Snap Force<br>(lbs.) |
|   | SSA  | Aluminum            | 1500                   | 200               | 13                                 | 3                                   | 1                                  |
| ш | SSS  | Aluminum            | 1500                   | 200               | 20                                 | 6                                   | 2                                  |
| Е | SSC  | Aluminum            | 1500                   | 200               | 20                                 | 6                                   | 2                                  |
| 2 | SSS  | Cold-rolled Steel   | 3600                   | 400               | 20                                 | 6                                   | 2                                  |
|   | SSC  | Cold-rolled Steel   | 3600                   | 400               | 20                                 | 6                                   | 2                                  |
|   | KSSB | FR-4 Fiberglass     | 500                    | 110               | 13                                 | 3                                   | 1                                  |

|          |      |                     | Panel 1 (Bottom)     |                | Panel 2 (Top) (Removable)       |                                  |                                 |  |  |  |
|----------|------|---------------------|----------------------|----------------|---------------------------------|----------------------------------|---------------------------------|--|--|--|
|          | Туре | Test Sheet Material | Installation<br>(kN) | Pushout<br>(N) | Max. First on Snap Force<br>(N) | Min. First off Snap Force<br>(N) | Min. 15th off Snap Force<br>(N) |  |  |  |
| ပ        | SSA  | Aluminum            | 6.7                  | 890            | 58                              | 13                               | 4                               |  |  |  |
| <u> </u> | SSS  | Aluminum            | 6.7                  | 890            | 89                              | 27                               | 9                               |  |  |  |
| ET       | SSC  | Aluminum            | 6.7                  | 890            | 89                              | 27                               | 9                               |  |  |  |
| Σ        | SSS  | Cold-rolled Steel   | 16                   | 1780           | 89                              | 27                               | 9                               |  |  |  |
|          | SSC  | Cold-rolled Steel   | 16                   | 1780           | 89                              | 27                               | 9                               |  |  |  |
|          | KSSB | FR-4 Fiberglass     | 2.2                  | 484            | 58                              | 13                               | 4                               |  |  |  |

#### **SMTSSS™ Standoffs - Surface Mount**





|                            | Panel 1 (Botton           | n)                     | Panel 2 (Top)         |                              |  |  |
|----------------------------|---------------------------|------------------------|-----------------------|------------------------------|--|--|
| Type, Material<br>and Size | Test Sheet Material       | Pullout <sup>(2)</sup> | Max. Snap-on<br>Force | Min. Snap<br>Retention Force |  |  |
| SMTSSS-156                 | .062" Single Layer FR-4   | 113 lbs.               | 20 lbs.               | 6 lbs.                       |  |  |
| SMTSSS-4MM                 | 1.58 mm Single Layer FR-4 | 500 N                  | 89 N                  | 27 N                         |  |  |

#### **TESTING CONDITIONS**

0ven Quad ZCR convection oven with 4 zones

473°F / 245°C **High Temp Board Finish** 62% Sn, 38% Pb

**Board** .062" / 1.58 mm thick, Single Layer FR-4

**Screen Printer** Ragin Manual Printer Vias None

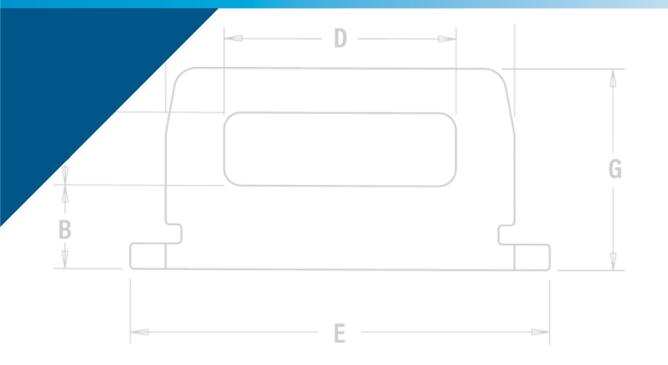
**Spokes** 2 Spoke Pattern

**Paste** Alpha CVP-390 Sn96.5/3.0Ag/0.5Cu (SAC305)

.0067" / 0.17 mm thick Stencil

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.
- (2) With lead-free paste. Average values of 30 test points. The data presented here is for general comparison purposes only. Actual performance is dependent upon application variables. We will be happy to provide samples for you to install. If required, we can also test your installed hardware and provide you with the performance data specific to your application.




PEM® TY-D® hardware provides secure metal attachment points for mounting wires to electronic chassis.



# **TD**<sup>TM</sup>



# SELF-CLINCHING TY-D® CABLE TIE-MOUNTS





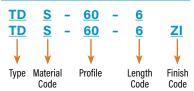
PEM® TY-D® self-clinching tie-mounts provide secure metal attachment points for mounting wires to electronic chassis or enclosures. TY-D® hardware can be a great improvement over traditional mounting methods. They can be placed with assurance at designed locations and angles to remain secure for the life of the assembly.

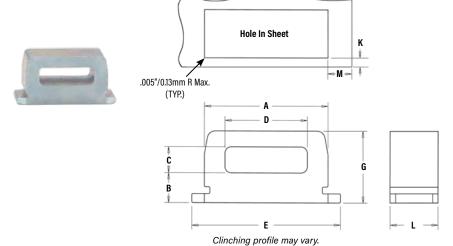
- Installs quickly and permanently without screws
- Eliminates the use of adhesives that typically fail over time and temperature cycling
- Will not protrude on the reverse side, panel remains flush
- Fasteners ensure wire placement in desired location

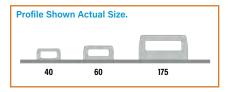


TDS™ cable tie-mounts allow users to easily slide ties through the hardware's "eye" for fast cable mounting.







Depending on placement of the fastener within the mounting hole, on the reverse side of the sheet, a slight gap may be noticeable along the nonclinching edges of the fastener after installation. If gap is not acceptable in your application, check with techsupport for a solution.




# TDS™ CABLE TIE-MOUNTS

#### PART NUMBER DESIGNATION







#### All dimensions are in inches.

| IED | Type<br>Stainless Steel | Profile (1) | Length<br>Code | Length<br>L<br>±.003 | Sheet<br>Thickness | Hole Size<br>In Sheet<br>+.002001 | A<br>±.003 | B<br>±.006 | C<br>±.006 | D<br>±.006 | E<br>±.006 | Height<br>G<br>±.006 | Min. Hole<br>Edge To<br>Sheet Edge<br>K | Min. Hole<br>Edge To<br>Sheet Edge<br>M |
|-----|-------------------------|-------------|----------------|----------------------|--------------------|-----------------------------------|------------|------------|------------|------------|------------|----------------------|-----------------------------------------|-----------------------------------------|
| F   | TDS                     | 40          | 4              | .121                 | .040050            | .250 x .125                       | .246       | .055       | .065       | .160       | .308       | .150                 | .040                                    | .147                                    |
| Π   | TDS                     | 60          | 6              | .184                 | .040070            | .312 x .187                       | .308       | .075       | .065       | .205       | .370       | .180                 | .040                                    | .196                                    |
|     | TDS                     | 175         | 12             | .371                 | .040125            | .500 x .375                       | .496       | .130       | .095       | .360       | .562       | .285                 | .040                                    | .262                                    |

#### All dimensions are in millimeters.

| RIC | Type<br>Stainless Steel | Profile (1) | Length<br>Code | Length<br>L<br>±0.08 | Sheet<br>Thickness | Hole Size<br>In Sheet<br>+0.05 -0.03 | A<br>±0.08 | B<br>±0.15 | C<br>±0.15 | D<br>±0.15 | E<br>±0.15 | Height<br>G<br>±0.15 | Min. Hole<br>Edge To<br>Sheet Edge<br>K | Min. Hole<br>Edge To<br>Sheet Edge<br>M |
|-----|-------------------------|-------------|----------------|----------------------|--------------------|--------------------------------------|------------|------------|------------|------------|------------|----------------------|-----------------------------------------|-----------------------------------------|
| ET  | TDS                     | 40          | 4              | 3.07                 | 1.02 - 1.27        | 6.35 x 3.18                          | 6.25       | 1.4        | 1.65       | 4.06       | 7.82       | 3.81                 | 1.02                                    | 3.73                                    |
| Σ   | TDS                     | 60          | 6              | 4.67                 | 1.02 -1.78         | 7.93 x 4.75                          | 7.82       | 1.91       | 1.65       | 5.21       | 9.4        | 4.57                 | 1.02                                    | 4.98                                    |
|     | TDS                     | 175         | 12             | 9.42                 | 1.02 - 3.18        | 12.7 x 9.53                          | 12.6       | 3.3        | 2.4        | 9.14       | 14.28      | 7.24                 | 1.02                                    | 6.65                                    |

(1) Reference to typical load rating (in pounds) for appropriate size nylon cable tie.

# **MATERIAL AND FINISH SPECIFICATIONS**

Material: 17-4 Stainless Steel

Standard Finish: Passivated and/or tested per ASTM A380

Optional Finish: ZI - Zinc plated 8µm, Colorless, over Nickel Strike (2)(3)

For use in Sheet Hardness: HRB 70 / HB 125 or Less (4)

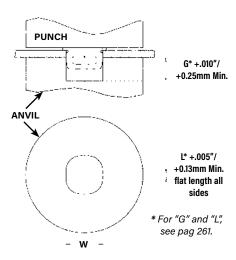
(2) See PEM Technical Support section of our web site for related plating standards and specifications.

(3) When applied to stainless steel base metal a nickel strike is used under the zinc for improved adhesion

(4) HRB - Hardness Rockwell "B" Scale. HB - Hardness Brinell.

#### **INSTALLATION**

- 1. Punch a properly sized rectangular mounting hole in the sheet. Do not perform any secondary operations such as deburring.
- Place the fastener through the mounting hole (preferably the punch side) and into the anvil.
- **3.** With the installation punch and anvil surfaces parallel, apply a squeezing force until the bottom of the fastener becomes flush with the sheet.


## **PEMSERTER® Installation Tooling**

#### All dimensions are in inches.

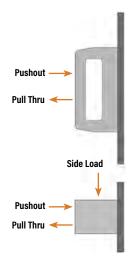
| ED | Part<br>Number | W<br>±.001 | Anvil Part<br>Number | Punch Part<br>Number |
|----|----------------|------------|----------------------|----------------------|
| Ξ  | TDS-40-4       | .251       | 8006136              |                      |
| NO | TDS-60-6       | .313       | 8006137              | 8003076              |
|    | TDS-175-12     | .501       | 8006138              |                      |

#### All dimensions are in millimeters.

| 10 | Part<br>Number | W<br>±0.03 | Anvil Part<br>Number | Punch Part<br>Number |  |
|----|----------------|------------|----------------------|----------------------|--|
| TR | TDS-40-4       | 6.36       | 8006136              |                      |  |
| ME | TDS-60-6       | 7.95       | 8006137              | 8003076              |  |
|    | TDS-175-12     | 12.73      | 8006138              |                      |  |



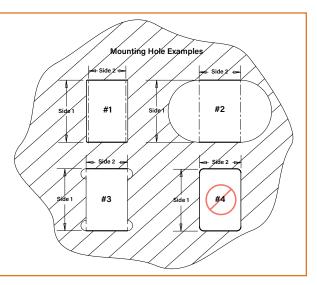
**NOTE:** The punch must be large enough to cover the entire base of the fastener to ensure proper installation.


#### **INSTALLATION NOTES**

- For best results we recommend using a HAEGER® or PEMSERTER® machine for installation of PEM® self-clinching fasteners. Please e-mail installationmachineinfo@pemnet.com for more information.
- Visit the Animation Library on our website to view the installation process for this product.

#### PERFORMANCE DATA(1)

|       |             | Test Sheet Material    |                   |                     |                     |                        |                   |                     |                     |  |
|-------|-------------|------------------------|-------------------|---------------------|---------------------|------------------------|-------------------|---------------------|---------------------|--|
|       |             |                        | Cold-rol          | led Steel           |                     |                        | 5052-H34 Aluminum |                     |                     |  |
| IFIED | Part Number | Installation<br>(lbs.) | Pushout<br>(lbs.) | Pull Thru<br>(lbs.) | Side Load<br>(lbs.) | Installation<br>(lbs.) | Pushout<br>(lbs.) | Pull Thru<br>(lbs.) | Side Load<br>(lbs.) |  |
| N     | TDS-40-4    | 1800                   | 175               | 100                 | 90                  | 1000                   | 90                | 100                 | 90                  |  |
|       | TDS-60-6    | 2500                   | 260               | 160                 | 100                 | 1500                   | 140               | 160                 | 100                 |  |
|       | TDS-175-12  | 4000                   | 350               | 175                 | 140                 | 3000                   | 235               | 175                 | 140                 |  |


|       |            |                      | Test Sheet Material |                  |                  |                      |                   |                  |                  |  |  |
|-------|------------|----------------------|---------------------|------------------|------------------|----------------------|-------------------|------------------|------------------|--|--|
|       |            |                      | Cold-roll           | led Steel        |                  |                      | 5052-H34 Aluminum |                  |                  |  |  |
| ETRIC |            | Installation<br>(kN) | Pushout<br>(N)      | Pull Thru<br>(N) | Side Load<br>(N) | Installation<br>(kN) | Pushout<br>(N)    | Pull Thru<br>(N) | Side Load<br>(N) |  |  |
| Σ     | TDS-40-4   | 8                    | 780                 | 445              | 400              | 4.5                  | 400               | 445              | 400              |  |  |
|       | TDS-60-6   | 11                   | 1160                | 712              | 445              | 6.7                  | 620               | 712              | 445              |  |  |
|       | TDS-175-12 | 17.7                 | 1560                | 780              | 620              | 13.3                 | 1040              | 780              | 620              |  |  |



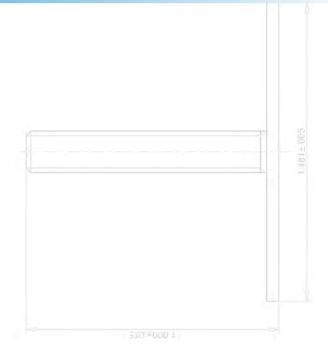
(1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.

## **MOUNTING HOLE EXAMPLES**

The mounting hole is defined by two dimensions. The two thick lines shown must be straight for the entire length defined by "Side 2" and must be separated by the distance shown as "Side 1" (Side 1 and Side 2 are the two dimensions given for the mounting hole on pages 3 and 4). The illustration shows three examples (#1, #2, and #3) of how it can be achieved. Example #4 in the lower right side will not work.






PEM® VariMount® bonding fasteners are assemblies comprised of standard PEM® fasteners mounted permanently into base plates.



# **VM**<sup>TM</sup>

# PEM® VARIMOUNT® BONDING FASTENERS





The PEM® VariMount® fastening system eliminates issues associated with welding. The assembly is comprised of a standard PEM® nut, stud or standoff mounted permanently into a base plate. The assembly can then be fastened or bonded to assorted panel types in a variety of ways:

#### **Mounting Methods:**

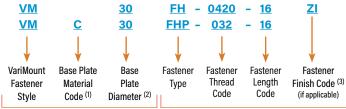
- Mold-in
- Laminate within composite layers
- Surface bonding
- Rivets
- Loose hardware (nuts, bolts, screws)
- Self-clinching fasteners
- Blind threaded rivets
- Adhesives or adhesive tape
- Hollow wall anchors
- Spot welding

#### Mounts on or in:

- Composites (Carbon fiber, fiberglass)
- Plastics
- Metal
- Wall board
- Any rigid material or panel

VariMount® assemblies are available with either steel or stainless steel base plates depending on the fastener that is selected. The VariMount® base plate's radial holes provide various mounting options.

Base plates can also be purchased separately. See page 267 for dimensional data and part numbers.


#### **VARIMOUNT® ASSEMBLY USING SELF-CLINCHING TECHNOLOGY**



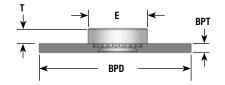
#### TYPICAL MOUNTING METHODS



#### **ASSEMBLY PART NUMBER DESIGNATION**



Base plate prefix


PEM® fastener part number

A VariMount® assembly part number includes a base plate prefix paired with a standard PEM® fastener part number.

- (1) "Blank" equals steel base plate and "C" equals stainless steel base plate.
- (2) See page 5 for complete dimensional information.
- (3) Required on steel assemblies.

The charts below show PEM® fastener types/sizes that are offered as standard VariMount® assemblies.

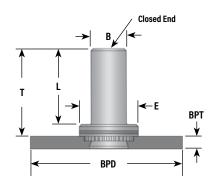






#### **STANDARD NUTS**

#### All dimensions are in inches.


|   | Thread   | Type and | Material        | Thread | Shank | BPD    | BPT          | E     | T     |
|---|----------|----------|-----------------|--------|-------|--------|--------------|-------|-------|
|   | Size     | Steel    | Stainless Steel | Code   | Code  | ±.0165 | ±.004        | ±.010 | ±.010 |
|   | .112-40  | VM20S    | VMC20SP         | 440    | 1     | .787   | .048         | .250  | .070  |
| ш | (#4-40)  | VM30S    | VMC30SP         | 110    | ·     | 1.181  | 10 10        |       | 1070  |
| 正 | .138-32  | VM20S    | VMC20SP         | 632    | 1     | .787   | .048         | .280  | .070  |
| = | (#6-32)  | VM30S    | VMC30SP         |        |       | 1.181  |              |       | 1070  |
| 5 | .164-32  | VM20S    | VMC20SP         | 832    | 1     | .787   |              | .310  | .090  |
|   | (#8-32)  | VM30S    | VMC30SP         | 002    | •     | 1.181  | 1040         | 1010  | .000  |
|   | .190-32  | VM20SS   | VMC20SP         | 032    | 2     | .787   | .071<br>.063 | .340  | .090  |
|   | (#10-32) | VM30SS   | VMC30SP         | 002    |       | 1.181  |              | .540  | .030  |

#### All dimensions are in millimeters.

|   | Thread Size | Type and                                | l Material      | Thread | Shank | BPD   | ВРТ  | E     | Ţ     |
|---|-------------|-----------------------------------------|-----------------|--------|-------|-------|------|-------|-------|
|   | x Pitch     | Steel                                   | Stainless Steel | Code   | Code  | ±0.42 | ±0.1 | ±0.25 | ±0.25 |
| 4 | 140 05      | VM20S                                   | VMC20SP         | M3     | 1     | 20    | 12   | 6.35  | 15    |
| ٥ |             | * * * * * * * * * * * * * * * * * * * * | VMC30SP         | IVIS   | '     | 30    | 1.2  | 0.55  | 1.0   |
|   |             | VM20S                                   | VMC20SP         | M4     | 1     | 20    | 1.2  | 7.87  | 2     |
| 2 | W4 X U.7    | VM30S                                   | VMC30SP         | IVIT   | '     | 30    |      | 1.01  | 2     |
|   | M5 x 0.8    | VM20SS                                  | VMC20SP         | M5     | 2     | 20    | 1.8  | 8.64  | 2     |
|   | MO X O.O    | VM30SS                                  | VMC30SP         | INIO   | 2     | 30    | 1.6  | 0.04  | Z     |

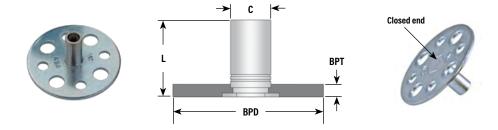
For more information on PEM® standard nuts, see <u>Bulletin CL</u> on our website.





#### **BLIND NUTS**

#### All dimensions are in inches.


|   | Thread<br>Size | Type and Material<br>Steel | Thread<br>Code | Shank<br>Code | BPD<br>±.0165 | BPT<br>±.004 | B<br>Max. | E<br>±.010 | L<br>Max. | T<br>±.010 |
|---|----------------|----------------------------|----------------|---------------|---------------|--------------|-----------|------------|-----------|------------|
|   | .112-40        | VM20B                      | 440            | 1             | .787          | .048         | .150      | .250       | .335      | .380       |
| ш | (#4-40)        | VM30B                      | 110            |               | 1.181         | 10 10        | 1100      | 1200       | 1000      | 1000       |
| 盂 | .138-32        | VM20B                      | 632            | 1             | .787          | .048         | .169      | .280       | .335      | .380       |
| = | (#6-32)        | VM30B                      | 002            | ·             | 1.181         | 10.10        |           | 1200       | 1000      |            |
| 5 | .164-32        | VM20B                      | 832            | 1             | .787          | .048         | .204      | .310       | .385      | .440       |
|   | (#8-32)        | VM30B                      | 002            |               | 1.181         | 10+0         | 1204      | .510       | 1000      | 1110       |
|   | .190-32        | VM20B                      | 032            | 2             | .787          | .071         | .235      | .340       | .385      | .440       |
|   | (#10-32)       | VM30B                      | 032            |               | 1.181         | .063         | .200      | .570       | 1000      | 1-1-10     |

#### All dimensions are in millimeters.

|   |   | Thread Size<br>x Pitch | Type and Material<br>Steel | Thread<br>Code | Shank<br>Code | BPD<br>±0.42 | BPT<br>±0.1 | B<br>Max. | E<br>±0.25 | L<br>Max. | T<br>±0.25 |
|---|---|------------------------|----------------------------|----------------|---------------|--------------|-------------|-----------|------------|-----------|------------|
| 2 | 2 | M3 x 0.5               | VM20B                      | M3             | 1             | 20           | 1.2         | 3,84      | 6.35       | 8.5       | 9.6        |
| ٥ | _ | IVIS A U.S             | VM30B                      | WIO            | · ·           | 30           | 112         | 0.01      | 0.00       | 0.0       | 3.0        |
|   |   | M4 x 0.7               | VM20B                      | M4             | 1             | 20           | 1.2         | 5.2       | 7.95       | 9.8       | 11.2       |
| Σ | Ξ |                        | VM30B                      |                |               | 30           |             |           | 1.33       |           | 11.2       |
|   | _ | M5 v 0 Q               | VM20B                      | ME             | 2 -           | 20           | 1.8         | 6.02      | 8.75       | 9,8       | 11.2       |
|   |   | M5 x 0.8               | VM30B                      | M5             |               | 30           | 1.6         | 0.02      | 8.75       | 9.8       | 11.2       |

For more information on PEM® blind nuts, see <u>Bulletin B</u> on our website.

The charts below show PEM® fastener types/sizes that are offered as standard VariMount® assemblies.



#### **STANDOFFS**

All dimensions are in inches.

|    | Thread  | Type and Material | Thread |      | Length Cod | le "L" +.00200 | )5 (Length code | e in 32nds of a | n inch) |      | BPD    | BPT   | C        |
|----|---------|-------------------|--------|------|------------|----------------|-----------------|-----------------|---------|------|--------|-------|----------|
| Ω. | Size    | Steel             | Code   | .375 | .437       | .500           | .562            | .625            | .687    | .750 | ±.0165 | ±.004 | +.000005 |
| Ξ  | .112-40 | VM20BS0           | 440    | 12   | 14         | 16             | 18              | 20              | 22      | 24   | .787   | .048  | .165     |
| Ξ. | (#4-40) | VM30BS0           | 770    | 1L   | T          | 10             | 10              | 20              | LL      | 24   | 1.181  | .0    | .103     |
| 5  | .138-32 | VM20BS0           | 632    | 12   | 14         | 16             | 18              | 20              | 22      | 24   | .787   | .048  | .212     |
|    | (#6-32) | VM30BS0           | 032    | ıΖ   | 14         | 10             | 10              | 20              |         | 24   | 1.181  | .040  | .212     |

## All dimensions are in millimeters.

| ပ    | Thread Size<br>x Pitch | Type and Material<br>Steel | Thread<br>Code |    | Length Code "L" -<br>(Length code in n |    |    | BPD<br>±0.42 | BPT<br>±0.1 | C<br>-0.13 |
|------|------------------------|----------------------------|----------------|----|----------------------------------------|----|----|--------------|-------------|------------|
| ETRI | M3 x 0.5               | VM20BS0<br>VM30BS0         | M3             | 12 | 14                                     | 16 | 18 | 20<br>30     | 1.2         | 4.2        |
| Σ    | M3.5 x 0.6             | VM20BS0<br>VM30BS0         | M3.5           | 12 | 14                                     | 16 | 18 | 20<br>30     | 1.2         | 5.39       |

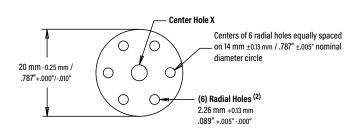
For more information on PEM® standoffs, see <u>Bulletin SO</u> on our website.



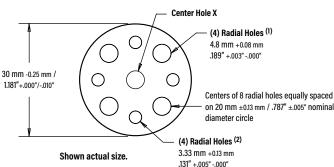
#### **STUDS**

All dimensions are in inches.

|   | Thread   | Type an | nd Material     | Thread |      | Length C | Code "L" ±.015 (Lei | ngth code in 16ths | of an inch) |      | BPD    | BPT   |
|---|----------|---------|-----------------|--------|------|----------|---------------------|--------------------|-------------|------|--------|-------|
|   | Size     | Steel   | Stainless Steel | Code   | .500 | .625     | .750                | .875               | 1.00        | 1.25 | ±.0165 | ±.004 |
| G | .164-32  | VM20FH  | VMC20FHP        | 832    | ρ    | 10       | 12                  | 14                 | 16          | 20   | .787   | .048  |
| = | (#8-32)  | VM30FH  | VMC30FHP        | 032    | 0    | 10       | 12                  | 14                 | 10          | 20   | 1.181  | .040  |
| = | .190-32  | VM20FH  | VMC20FHP        | 032    | 0    | 10       | 12                  | 14                 | 16          | 20   | .787   | .048  |
| 5 | (#10-32) | VM30FH  | VMC30FHP        | 032    | 0    | 10       | IZ.                 | 14                 | 10          | 20   | 1.181  | .040  |
|   | .250-20  | VM20FH  | _               | 0420   | 8    | 10       | 12                  | 14                 | 16          | 20   | .787   | .071  |
|   | (1/4-20) | VM30FH  | _               | 0420   | 0    | 10       | 12                  | 14                 | 10          | 20   | 1.181  | .063  |


#### All dimensions are in millimeters.

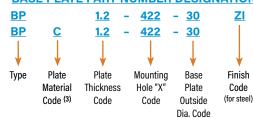
|    | Thread Size |        | nd Material     | Thread |    |    | Length Code     |              |    |    | BPD   | BPT  |
|----|-------------|--------|-----------------|--------|----|----|-----------------|--------------|----|----|-------|------|
|    | x Pitch     | Steel  | Stainless Steel | Code   |    |    | (Length code in | millimeters) |    |    | ±0.42 | ±0.1 |
| ပ  | M4 x 0.7    | VM20FH | VMC20FHP        | M4     | 10 | 12 | 15              | 18           | 20 | 25 | 20    | 1,2  |
| ~  | W4 X U.7    | VM30FH | VMC30FHP        | IVI+   | 10 | IZ | 10              | 10           | 20 | 25 | 30    | 1,2  |
| ╽┕ | M5 x 0.8    | VM20FH | VMC20FHP        | M5     | 10 | 12 | 15              | 18           | 20 | 25 | 20    | 1,2  |
| Σ  | O.U X CIVI  | VM30FH | VMC30FHP        |        |    |    |                 |              |    | 20 | 30    | 1.2  |
|    | M6 x 1      | VM20FH | -               | M6     | 10 | 12 | 15              | 10           | 20 | 25 | 20    | 1.8  |
|    | IVIOXI      | VM30FH | -               | IVIO   | 10 |    |                 | 18           | 20 | 20 | 30    | 1.6  |


For more information on PEM\* studs, see  $\underline{\textit{Bulletin FH}}$  on our website.

#### **BASE PLATE PART NUMBER, DIMENSIONS AND MATERIAL GUIDE**

#### 20 mm Diameter Base Plate



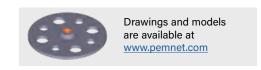

# 30 mm Diameter Base Plate



|                | Base Plate Pa     | rt Number <sup>(4)</sup> |                      |                               | A                                               |
|----------------|-------------------|--------------------------|----------------------|-------------------------------|-------------------------------------------------|
| Ste            | el <sup>(5)</sup> | Stainless                | Steel <sup>(6)</sup> | Thickness<br>±0.1 mm / ±.004" | Center Hole X Diameter<br>+0.08 mm / +.003"000" |
| 20 mm Dia.     | 30 mm Dia.        | 20 mm Dia.               | 30 mm Dia.           |                               |                                                 |
| BP1.2-422-20ZI | BP1.2-422-30ZI    | BPC1.2-422-20            | BPC1.2-422-30        | 1.2 mm / .048"                | 4.22 mm / .166"                                 |
| BP1.2-480-20ZI | BP1.2-480-30ZI    | BPC1.2-480-20            | BPC1.2-480-30        | 1.2 mm / .048"                | 4.8 mm / .189"                                  |
| BP1.2-541-20ZI | BP1.2-541-30ZI    | BPC1.2-541-20            | BPC1.2-541-30        | 1.2 mm / .048"                | 5.41 mm / .213"                                 |
| _              | BP1.6-635-30ZI    | -                        | BPC1.6-635-30        | 1.6 mm / .063"                | 6.35 mm / .250"                                 |
| BP1.2-400-20ZI | BP1.2-400-30ZI    | BPC1.2-400-20            | BPC1.2-400-30        | 1.2 mm / .048"                | 4 mm / .1575"                                   |
| BP1.2-500-20ZI | BP1.2-500-30ZI    | BPC1.2-500-20            | BPC1.2-500-30        | 1.2 mm / .048"                | 5 mm / .1969"                                   |
| _              | BP1.6-600-30ZI    | -                        | BPC1.6-600-30        | 1.6 mm / .063"                | 6 mm / .2362"                                   |
| BP1.8-600-20ZI | -                 | BPC1.8-600-20            | _                    | 1.8 mm / .071"                | 6 mm / .2362"                                   |
| BP1.8-635-20ZI | BP1.8-635-20ZI –  |                          | _                    | 1.8 mm / .071"                | 6.35 mm / .250"                                 |

- (1) Accepts standard M3.5 / #6-32 self-clinching nuts. Also flush-head studs #10-24 / #10-32 sizes. May also accept 4.8 mm / 3/16" rivet.
- (2) 30mm OD parts include standard holes sized for 3.2 mm / 1/8" rivets. 20mm OD parts include standard holes sized for 2 mm / 5/64" rivets
- (3) "Blank" equals steel base plate and "C" equals stainless steel base plate.
- (4) Use this part number if ordering base plate separately. Minimum quantities may apply.
- (5) Base plate is carbon steel, zinc plated per ASTM B633, SC1, Type III.
- (6) Base plate is 300 series stainless steel, passivated and/or tested per ASTM A380.


#### **BASE PLATE PART NUMBER DESIGNATION**




#### **NOTE ABOUT PERFORMANCE**

General performance of PEM® fasteners in thin metal panels can be found in their respective PEM® Bulletins. Performance of the assembly (fastener and base plate) mounted to your specific material, in your application will have to be determined by testing. We recommend that you perform testing to be sure it is ideally suited to your application. We will be happy to provide technical assistance and/or samples to you for this purpose.

Look for the trademarks to identify genuine PEM® fasteners.





#### OTHER PEM® FASTENER TYPES AND SIZES AVAILABLE \*

While we have listed the standard offering of assemblies on the charts (pages 265 and 266), other PEM® fasteners can be provided pre-installed into one of the base plates listed on page 5. The charts below give a review of these fastener types. To choose an assembly using one of these fasteners, simply create a part number as described on page 264.

| PEM® Fastener Types  | Standard Size Codes                  |
|----------------------|--------------------------------------|
| Self-clinching Nuts  |                                      |
| BS                   | 440 / 632 / 832 / 032 / M3 / M4 / M5 |
| CLS                  | 256 / 348 / 440 / 632 / 832 /        |
|                      | M2 / M2.5 / M3 / M3.5 / M4           |
| CLSS                 | 024 / 032 / M5                       |
| LK, LKS              | 440 / M3                             |
| PL, PLC              | M3                                   |
| S                    | 256 / 348 / M2 / M2.5 / M3.5         |
| SL                   | 440 / 632 / 832 / 032 /              |
|                      | M3 / M3.5 / M4 / M5                  |
| SP                   | 256/ 024                             |
| SS                   | 024                                  |
| Self-clinching Studs |                                      |
| FH                   | 024 / Non-threaded                   |
| FH4                  | 832 / 032 / 0420 / M4 / M5 / M6      |
| FHS                  | 832 / 024 / 032 / 0420               |
|                      | M4 / M5 / M6 / Non-threaded          |
| HFE                  | 032 / 0420 / M5 / M6                 |
| HFH, HFHS            | 0420 / M6                            |

| PEM® Fastener Types                | Standard Size Codes                  |
|------------------------------------|--------------------------------------|
| Self-clinching Standoffs           | •                                    |
| BSO, BSOS, <b>BSO4</b>             | 440 / 632 / 6440 / M3 / 3.5M3 / M3.5 |
| DSO, DSOS                          | 440 / M3                             |
| S0, <b>S04</b>                     | 6440 / 3.5M3 / M3.5 / Non-threaded   |
| SOS                                | 440 / 632 / 6440 /                   |
|                                    | 3.5M3 / M3 / M3.5 / Non-threaded     |
| SOSG                               | 6440 / 3.5M3                         |
| SSC, SSS                           | 156 / 4MM                            |
| Panel Fasteners                    |                                      |
| N10                                | 440 / 632 / 832 / M3                 |
| PF11, PF12, PF11M, PF12M           | 632                                  |
| PF11MF, PF12MF                     | 440 / M3                             |
| PF11MW, PF12MW                     | 440 / M3                             |
| PF11PM                             | 632                                  |
| PF30                               | 832                                  |
| PF31, PF32                         | 832 / M4                             |
| PF50, PF51, PF52, PF60, PF61, PF62 | 832 / M4                             |
| PF7M                               | 632                                  |
| PF7MF                              | 440 / M3                             |
| SCB, SCBJ                          | M4                                   |
| SCBR                               | 832 / M4                             |

Types shown in bold italics can be installed into stainless steel base plates. Other types are not recommended for installation into stainless steel base plates.

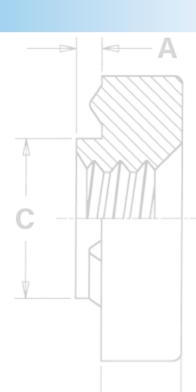




**Micro Sized Options Available** 

<sup>\*</sup> Other fasteners, base plate configurations and assemblies are available on special order. For questions, please contact our global technical support team using the contact information listed at the bottom of this page. Appropriate minimum quantities may apply.




PEM® brand self-locating weld nuts feature engineered projections, round head design and a self-locating shank



# **WN**<sup>TM</sup>

# SELF-LOCATING PROJECTION WELD NUTS

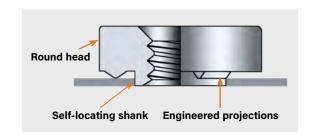




# **SELF-LOCATING PROJECTION WELD NUTS**

PEM® brand WN™/WNS™ weld nuts are designed to be welded onto another metal surface into properly sized holes. The PEM® weld nut design helps overcome many problems associated with other welded nuts:

## Engineered projections


- Prevent burn-outs in thin sheets
- Help keep the nut from warping while welding in high current

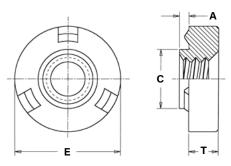
#### Round head design

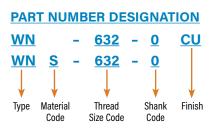
- Eliminates tedious time-consuming indexing
- Speeds production using standard equipment
- Compact design fits on narrow flanges

### Self-locating shank

- Eliminates the need for complex electrodes with pilots
- Properly positions weld nuts
- Protects threads from weld spatter




A variety of welding equipment is suitable for installation of PEM® weld nuts. Best results have been obtained with a 50KVA press-type, spot-welding machine whose upper welding head moves vertically in a straight line with the lower electrode. Flat-faced electrodes with tip diameters .125" / 3.2 mm larger than the "E" dimension of the PEM® weld nut should be used.


PEM® weld nuts are available in steel (WN™) or stainless steel (WNS™). Stainless steel nuts offer the added advantage of corrosion resistance.





# **SELF-LOCATING PROJECTION WELD NUTS**





All dimensions are in inches.

|     | Thusand             | Ту    | ре                 | Thursd         | Chaul         | A               | Min.               | Hole Size            | 0    | F        |       | Min. Dist.               |
|-----|---------------------|-------|--------------------|----------------|---------------|-----------------|--------------------|----------------------|------|----------|-------|--------------------------|
|     | Thread<br>Size      | Steel | Stainless<br>Steel | Thread<br>Code | Shank<br>Code | (Shank)<br>Max. | Sheet<br>Thickness | In Sheet<br>+.004000 | Max. | +.000010 | ±.004 | Hole <b>©</b><br>To Edge |
|     | .112-40<br>(#4-40)  | WN    | WNS                | 440            | 0             | .030            | .030               | .173                 | .172 | .308     | .065  | .154                     |
| IED | .138-32<br>(#6-32)  | WN    | WNS                | 632            | 0             | .030            | .030               | .193                 | .192 | .341     | .094  | .171                     |
| NIF | .164-32<br>(#8-32)  | WN    | WNS                | 832            | 0             | .030            | .030               | .218                 | .217 | .371     | .108  | .186                     |
|     | .190-24<br>(#10-24) | WN    | WNS                | 024            | 0             | .030            | .030               | .250                 | .249 | .440     | .156  | .220                     |
|     | .190-32<br>(#10-32) | WN    | WNS                | 032            | 0             | .030            | .030               | .250                 | .249 | .440     | .156  | .220                     |
|     | .250-20<br>(1/4-20) | WN    | WNS                | 0420           | 0             | .048            | .048               | .316                 | .315 | .522     | .186  | .261                     |

#### All dimensions are in millimeters.

|      | Thread          | Ту    | ре                 | Thunad         | Chank         | A               | Min.               | Hole Size        | C    | -     | -    | Min. Dist.               |
|------|-----------------|-------|--------------------|----------------|---------------|-----------------|--------------------|------------------|------|-------|------|--------------------------|
|      | Size x<br>Pitch | Steel | Stainless<br>Steel | Thread<br>Code | Shank<br>Code | (Shank)<br>Max. | Sheet<br>Thickness | In Sheet<br>+0.1 | Max. | -0.25 | ±0.1 | Hole <b>©</b><br>To Edge |
| .BIC | M3 x 0.5        | WN    | WNS                | М3             | 0             | 0.77            | 0.77               | 4.39             | 4.36 | 7.82  | 1.49 | 3.91                     |
| MET  | M4 x 0.7        | WN    | WNS                | M4             | 0             | 0.77            | 0.77               | 5.53             | 5.5  | 9.42  | 2.58 | 4.71                     |
|      | M5 x 0.8        | WN    | WNS                | M5             | 0             | 0.77            | 0.77               | 6.35             | 6.32 | 11.17 | 3.78 | 5.59                     |
|      | M6 x 1          | WN    | WNS                | M6             | 0             | 1.22            | 1.24               | 8.04             | 8.01 | 13.25 | 4.56 | 6.63                     |

#### MATERIAL AND FINISH SPECIFICATIONS

|                  | Threads                                     | Fastener                                   | Materials | Standard Finishes                         |                     |  |
|------------------|---------------------------------------------|--------------------------------------------|-----------|-------------------------------------------|---------------------|--|
| Туре             | Internal, ASME B1.1, 2B/<br>ASME B1.13M, 6H | Carbon 300 Series<br>Steel Stainless Steel |           | Passivated and/or<br>Tested Per ASTM A380 | Copper Flash<br>(1) |  |
| WN               | •                                           | •                                          |           |                                           | •                   |  |
| WNS -            |                                             |                                            | •         | •                                         |                     |  |
| Part Number Code | For Finishes                                | None                                       | CU        |                                           |                     |  |

<sup>(1)</sup> Copper Flash plating prevents surface rust, facilitates automatic feeding, and requires no preparation before painting or finishing.

#### **INSTALLATION**

- 1. With a PEM® weld nut inserted in the properly sized hole (see above), bring the electrode force up sufficiently to clamp the projections of the fastener firmly against the sheet without embedding any portion of the projections. Be sure the electrodes are centered, and that the electrode faces are flat so that the force is applied evenly to all three projections.
- 2. Set the current or heat regulator on the low side and adjust along with the weld time until a good weld is produced. For mild steel, which has a medium electrical resistance, there is a wide range of adjustments possible. For austenitic stainless steel, which has a high electrical resistance, the range is narrow at low heat.
- 3. Adjust squeeze time so that there is adequate time for the electrodes to close and develop proper forces (suggested initial setting 35 cycles). The weld period should be established by starting with the settings suggested in the tables on page 4. As indicated above for current adjustments, a wide range of time is possible with mild steel, but there is a limited range with stainless steel. If weld time starts too soon, and proper welding is not achieved, the squeeze time should be lengthened. Also, the electrodes should be moved closer together so that they require less travel time to close on the work. Longer squeeze times will have no effect on the quality of the weld. However, they do affect productivity and decrease the number of weld nuts that can be installed per hour. Hold time is set long enough to permit cooling and solidification of the weld before removing the electrodes. Start with 15 cycles and lengthen if necessary.

#### PERFORMANCE DATA(1)

|     |      | Thread<br>Code | Test Sheet Material |                          |                           |                          |  |  |
|-----|------|----------------|---------------------|--------------------------|---------------------------|--------------------------|--|--|
|     | Туре |                | .060" Cold-         | rolled Steel             | .060" 302 Stainless Steel |                          |  |  |
|     |      |                | Pushout<br>(lbs.)   | Torque-out<br>(in. lbs.) | Pushout<br>(lbs.)         | Torque-out<br>(in. lbs.) |  |  |
|     | WN   | 440            | 500                 | 13                       | N/A                       | N/A                      |  |  |
| E D |      | 632            | 640                 | 22                       | N/A                       | N/A                      |  |  |
| Ξ.  |      | 832            | 760                 | 33                       | N/A                       | N/A                      |  |  |
| Ξ   |      | 032            | 880                 | 56                       | N/A                       | N/A                      |  |  |
|     |      | 0420           | 1000                | 185                      | N/A                       | N/A                      |  |  |
|     | WNS  | 440            | N/A                 | N/A                      | 680                       | 13                       |  |  |
|     |      | 632            | N/A                 | N/A                      | 800                       | 28                       |  |  |
|     |      | 832            | N/A                 | N/A                      | 850                       | 45                       |  |  |
|     |      | 032            | N/A                 | N/A                      | 900                       | 110                      |  |  |
|     |      | 0420           | N/A                 | N/A                      | 1000                      | 200                      |  |  |

|          |      | Thread<br>Code | Test Sheet Material |                     |                            |                     |  |  |
|----------|------|----------------|---------------------|---------------------|----------------------------|---------------------|--|--|
|          | Туре |                | 1.5 mm Cold         | -rolled Steel       | 1.5 mm 302 Stainless Steel |                     |  |  |
|          |      |                | Pushout<br>(N)      | Torque-out<br>(N-m) | Pushout<br>(N)             | Torque-out<br>(N•m) |  |  |
| ၁        | WN   | M3             | 2220                | 1.4                 | N/A                        | N/A                 |  |  |
| <u>~</u> |      | M4             | 3380                | 3.7                 | N/A                        | N/A                 |  |  |
| ΕŢ       |      | M5             | 3910                | 6.3                 | N/A                        | N/A                 |  |  |
| Σ        |      | M6             | 4445                | 20.9                | N/A                        | N/A                 |  |  |
|          | WNS  | M3             | N/A                 | N/A                 | 3020                       | 1.4                 |  |  |
|          |      | M4             | N/A                 | N/A                 | 3780                       | 5                   |  |  |
|          |      | M5             | N/A                 | N/A                 | 4000                       | 12.4                |  |  |
|          |      | M6             | N/A                 | N/A                 | 4445                       | 22.5                |  |  |

# SETTING GUIDES FOR PEM® WELD NUTS IN .030"/0.77 MM TO .063"/1.6 MM SHEETS

| UNIFIED | Туре | Thread<br>Code | Test Sheet Material                             |                                                  |                                            |                                                 |                                                  |                                            |  |
|---------|------|----------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------|--|
|         |      |                | Cold-rolled Steel                               |                                                  |                                            | 302 Stainless Steel                             |                                                  |                                            |  |
|         |      |                | Electrode <sup>(A)</sup><br>Ram Force<br>(lbs.) | Secondary <sup>(B)</sup><br>Current<br>Amps ±500 | Weld <sup>(C)</sup><br>Time<br>Cycles/Sec. | Electrode <sup>(A)</sup><br>Ram Force<br>(lbs.) | Secondary <sup>(B)</sup><br>Current<br>Amps ±500 | Weld <sup>(C)</sup><br>Time<br>Cycles/Sec. |  |
|         | WN   | 440            | 450-500                                         | 17,000                                           | 6 / 0.10                                   | N/A                                             | N/A                                              | N/A                                        |  |
|         |      | 632            | 450-500                                         | 17,000                                           | 6 / 0.10                                   | N/A                                             | N/A                                              | N/A                                        |  |
|         |      | 832            | 450-500                                         | 17,000                                           | 6 / 0.10                                   | N/A                                             | N/A                                              | N/A                                        |  |
|         |      | 032            | 500-550                                         | 18,000                                           | 10 / 0.17                                  | N/A                                             | N/A                                              | N/A                                        |  |
|         |      | 0420           | 550-600                                         | 20,000                                           | 10 / 0.17                                  | N/A                                             | N/A                                              | N/A                                        |  |
|         | WNS  | 440            | N/A                                             | N/A                                              | N/A                                        | 450-500                                         | 16,500                                           | 6 / 0.10                                   |  |
|         |      | 632            | N/A                                             | N/A                                              | N/A                                        | 450-500                                         | 16,500                                           | 6 / 0.10                                   |  |
|         |      | 832            | N/A                                             | N/A                                              | N/A                                        | 500-550                                         | 16,500                                           | 6 / 0.10                                   |  |
|         |      | 032            | N/A                                             | N/A                                              | N/A                                        | 550-600                                         | 18,500                                           | 6 / 0.10                                   |  |
|         |      | 0420           | N/A                                             | N/A                                              | N/A                                        | 650-700                                         | 20,000                                           | 6 / 0.10                                   |  |

| METRIC |      | Thread<br>Code | Test Sheet Material                          |                                                  |                                            |                                              |                                                  |                                            |  |
|--------|------|----------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------|--|
|        | Туре |                | Cold-rolled Steel                            |                                                  |                                            | 302 Stainless Steel                          |                                                  |                                            |  |
|        |      |                | Electrode <sup>(A)</sup><br>Ram Force<br>(N) | Secondary <sup>(B)</sup><br>Current<br>Amps ±500 | Weld <sup>(C)</sup><br>Time<br>Cycles/Sec. | Electrode <sup>(A)</sup><br>Ram Force<br>(N) | Secondary <sup>(B)</sup><br>Current<br>Amps ±500 | Weld <sup>(C)</sup><br>Time<br>Cycles/Sec. |  |
|        | WN   | M3             | 2000-2220                                    | 17,000                                           | 6 / 0.10                                   | N/A                                          | N/A                                              | N/A                                        |  |
|        |      | M4             | 2000-2220                                    | 17,000                                           | 6 / 0.10                                   | N/A                                          | N/A                                              | N/A                                        |  |
|        |      | M5             | 2220-2440                                    | 18,000                                           | 10 / 0.17                                  | N/A                                          | N/A                                              | N/A                                        |  |
|        |      | M6             | 2440-2670                                    | 20,000                                           | 10 / 0.17                                  | N/A                                          | N/A                                              | N/A                                        |  |
|        | WNS  | M3             | N/A                                          | N/A                                              | N/A                                        | 2000-2220                                    | 16,500                                           | 6 / 0.10                                   |  |
|        |      | M4             | N/A                                          | N/A                                              | N/A                                        | 2220-2440                                    | 16,500                                           | 6 / 0.10                                   |  |
|        |      | M5             | N/A                                          | N/A                                              | N/A                                        | 2440-2670                                    | 18,500                                           | 6 / 0.10                                   |  |
|        |      | M6             | N/A                                          | N/A                                              | N/A                                        | 2890-3110                                    | 20,000                                           | 6 / 0.10                                   |  |

#### N/A Not Applicable.

- (1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Other performance values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.
- (A) Electrode Force is the force exerted by the electrodes on the fastener and sheet to clamp them together and ensure good electrical contact. Electrode force also sets the weld nut down flush on the sheet as the projections melt during the welding period. Insufficient electrode force may result in flashing, spitting, burning, spatter, and discoloration. On the other hand, excessive electrode force may flatten the fastener projections before proper welding temperature is reached or may embed the projections of the cold fastener into the sheet. Excessive electrode force can also distort threads during the weld cycle.
- (B) Secondary Current determines the heat applied to the PEM® weld nut and sheet. Heat is in direct proportion to weld time, resistances of the materials, and the square of the current. Current should not be set so high as to cause flashing or spattering or excessive heat which will distort the threads. Low currents may produce good looking welds but pushout and torque-out strengths will not be satisfactory.
- (C) Timing Cycle for projection welding comprises four periods; 1) the squeeze time in which the electrodes move into position and develop the required force; 2) the weld time when the current is applied; 3) the hold time while the weld congeals and cools; and 4) the off time for positioning the work for the next weld nut.

NOTE: The setting guides shown in the above charts are for reference only and may differ for your welding equipment.

Axial Strength and Mating Screw Recommended Tightening Torque data is available at: www.pemnet.com/design\_info/tightening-torque/

#### **GUIDES TO BETTER WELDING**

Electrodes, weld nuts, and panels must be clean and free of grease, rust, and metal burrs. When welds appear satisfactory on installed nut, but pushout values are low, one or more of the following may be the cause:

- 1) Ram pressure too high. 2) Current too low. 3) Panel not clean. 4) Weld nuts not centered under electrodes.
- 5) Hold time not long enough to allow proper cooling. 6) Pressure regulator on welding equipment drifts.

If installed threads are distorted, one or more of the following may be the cause:

1) Weld time too long. 2) Current too high. 3) Ram pressure too high.

Should it be impossible to produce a proper weld because weld time starts before electrodes close on the work, shorten the gap between the electrodes so that they take less time to move into position and/or lengthen the squeeze time.

All PEM® products meet our stringent quality standards. If you require additional industry or other specific <u>quality certifications</u>, special procedures and/or part numbers are required. Please contact your local sales office or representative for further information.

Regulatory <u>compliance information</u> is available in Technical Support section of our website. Specifications subject to change without notice. See our website for the most current version of this bulletin.





North America: Danboro, Pennsylvania USA • E-mail: <a href="mailto:info@pemnet.com">info@pemnet.com</a> • Tel: +1-215-766-8853 • 800-237-4736 (USA)

Europe: Galway, Ireland • E-mail: <a href="mailto:europe@pemnet.com">europe@pemnet.com</a> • Tel: +353-91-751714

Asia/Pacific: Singapore = E-mail: singapore@pemnet.com = Tel: +65-6-745-0660 Shanghai, China = E-mail: china@pemnet.com = Tel: +86-21-5868-3688

Visit our PEMNET™ Resource Center at www.pemnet.com • Technical support e-mail: techsupport@pemnet.com