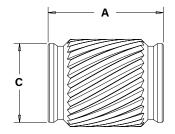


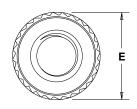
CK™ PRESS-IN INSERTS FOR CASTINGS AND SOFT METALS

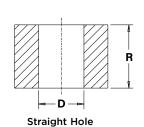
PEM® CASTSERT™ PRESS-IN INSERTS

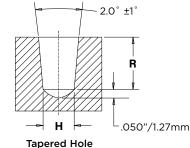
For Castings and Soft Metals HRB 70 / HB 125 or less

PEM® 300 Series Stainless Steel CASTSERT™ inserts provide strong, durable metal threads in soft metals and die-cast alloys. The simple press-in and rapid installation process for these inserts uses a flat punch and anvil to install all sizes and lengths, approximately 80% faster than other methods.


- Designed for flush installation with flat punch and anvil into blind holes or thru-holes
- Process cost savings vs. coil inserts or thread tapping
- Installed into drilled holes or as-cast holes with low draft angle
- Pilot for rapid seating and self-alignment
- · Symmetric for auto-feed capability




Patent Pending


Fastener drawings and models are available at www.pemnet.com.

Custom sizes are available on special order. Contact us for more information.

All dimensions are in inches.

		Туре		Length Code	Length After Knurl A E ±.005 Nom.	After Verrel	Dilet	Min. Sheet	Hole Size in Material ⁽¹⁾		
	Thread Size	Stainless Steel	Thread Code			E	Pilot C Max.	Thickness R	Straight Hole Dia. D +.003000	Min. Dia. H of Tapered Hole ⁽²⁾ at Length R	Min. Dist. Hole C/L to Edge ⁽³⁾
	.086-56	CKS	256	1	.125	.196	.179	.130	.188	.180	.151
	(#2-56)	2-56) CKS	256	2	.250	.190		.255	.188	.100	
-	.112-40		3 440	1	.175	.228	.209	.180	.219	.210	.175
ified	(#4-40)			2	.300			.305			
n if	.138-32	CKS 632	622	1	.200	.259	.240 .205	.205	.250	.241	.198
Un	(#6-32)		032	2	.375	.259	.240	.380	,200	.241	'130
	.164-32	.164-32 (#8-32) CKS	832	1	.250	.295	.266	.255	.281	.267	.225
	(#8-32)			2	.475	.295	.200	.480	،201	.207	.223
	.190-32	CKS	S 032	1	.300	.358	.329	.305	.344	200	.272
	(#10-32)	CV2	032	2	.525		.329	.480	،344	.330	.212
	.250-20	CKS	0420	1	.375	.452	.423	.380	.438	424	.343
	(1/4-20)	CV2	0420	2	.625	.432	.423	.630		.424 .34	.343

All dimensions are in millimeters.

	Thread	Туре	Thread Code		Length	After Knurl Pilot		Min. Sheet	Hole Size in Material ⁽¹⁾		
	Size x Pitch	Stainless Steel			A ±0.13	E Nom.	C Max.	Thickness R	Straight Hole Dia. D +0.08	Min. Dia. H of Tapered Hole ⁽²⁾ at Length R	Min. Dist. Hole C/L to Edge ⁽³⁾
	M0 F v 0 4F	CKS	Мог	1	3.18	4.98	455 3	3.3	4.76	4,57	3.83
4.	M2.5 x 0.45		M2.5	2	6.35		4.55	6.48	4.70	4.07	ა.ია
<u>:</u>	M3 x 0.5	CKS	M3	1	4.45	5.79	5,31	4.57	5.56	5.33	4.44
Metric				2	7.62		5.31	7.75	5.50		
2	M4 x 0.7	CKS	M4	1	6.35	7.49	6.76	6.48	7.15	6.78	5.70
				2	12.07		0.70	12.19	7.10	0.70	5.72
	M5 x 0.8	CKS	ME	1	7.62	9.09	8.37	7.75	0.70	0.00	4.44 5.72 6.92
	8.U X CIVI		M5	2	13.34		0.37	13.46	8.73	8.38	
	M6 x 1	CNC	M6	1	9.53	11 40	10.74	9.65	11.11	10.77	8.71
	IVIOXI	CKS		2	15.88	11.48	10.74	16		10.77	0./1

- 1) Blind holes to include .050"/1.27mm min. of hole clearance for material build up during install.
- 2) Draft hole performance will vary greatly depending on length of engagement of the knurl over the installed length. For best results, recommend use of 3 degree or less total draft and design hole as close to H as possible at depth R to optimize length and depth of knurl engagement.
- 3) Centerline to edge constraints are highly dependent on panel material and may have different failure modes depending on panel ductility. It is highly recommended to test for center-line to edge constraints in your specific application.

Custom sizes are available on special order. Contact us for more information.

Part Number Designation

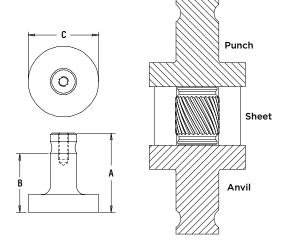
Material and Finish Specifications

	Threads	Fastener Material	Standard Finish	For Use in Castings and Soft Metals: (1)
Туре	International, ASME B1.1, 2B / ASME B1.13M, 6H	300 Series Stainless Steel	Passivated and/or Tested per ASTM A360	HRB 70 / HB 125 or less
CKS				
	Part Number Code for	Finishes	None	

(1) HRB - Hardness Rockwell "B" Scale. HB - Hardness Brinell.

Installation

- 1. Prepare properly sized mounting hole in the sheet or leave as-cast tapered holes with low draft angle within the requirements shown on page 2.
- 2. Set the fastener into the mounting hole, seating the fastener using the pilot.
- 3. With installation punch and anvil surfaces parallel, apply squeezing force until the head of the insert contacts the sheet material.


Installation Tooling

þ	Туре	Anv	il Dimensions	(in.)	HAEGER® Part Number		
ified		A	В	С	Anvil	Punch	
Un	CKS	3	2.5	1	H-108-0020L	H-108-0020L	

ic	Tuno	Anvi	l Dimensions (mm)	HAEGER® Part Number		
etri	Туре	A	В	С	Anvil	Punch	
M	CKS	76.2	63.5	25.4	H-108-0020L	H-108-0020L	

Installation Note

For best results we recommend using a HAEGER® machine using a flat punch and anvil to install all CastSert™ inserts due to the required high force stroke equal to the part length.

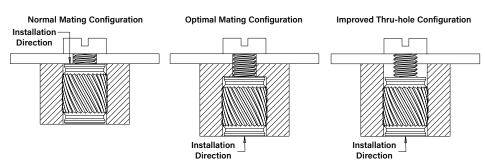
For Additional HAEGER® and PEMSERTER® Tooling Information / Part Numbers

Performance Data(1)

			Test Sheet Material						
	Thread	Length	ADC12 Die Cast Aluminum (A383 Equivalent)						
	Code	Code	Installation (lbs.)	Pullout (lbs.)	Torque-out (in. lbs.)				
	256	1	920	65	19				
	200	2	1415	135	19				
b	440	1	1100	75	36				
Unified		2	1615	145	30				
5	632	1	1700	180	54				
		2	2200	280	54				
	000	1	1820	220	74				
	832	2	3415	530	74				
	022	1	2810	250	144				
	032	2	4114	670	144				
	0420	1	5010	570	272				
	0420	2	6710	1345	273				


			Test Sheet Material						
	Thread	Length	ADC12 Die Cast Aluminum (A383 Equivalent)						
	Code	Code	Installation (kN)	Pullout (N)	Torque-out (N-m)				
	M2.5	1	4.1	300	2,2				
<u>ပ</u>	C.ZIVI	2	6.3	600	2.2				
Metric	M3	1	4.9	340	4.1				
ğ	IVIO	2	7.2	660	4.1				
	M4	1	8.1	800	8.4				
	M4	2	15.2	2100	0.4				
	ME	1	12.5	1120	16.3				
	M5	2	18.3	3000	10.3				
	M6	1	22.3	2550	30.8				
	IVID	2	30.3	6000	30.8				

(1) Published installation forces are for general reference. Actual set-up and confirmation of complete installation should be made by observing proper seating of fastener as described in the installation steps. Installation force and torque-out values reported are averages when all proper installation parameters and procedures are followed. Variations in mounting hole size, sheet material, and installation procedure may affect performance. Performance testing this product in your application is recommended. We will be happy to provide technical assistance and/or samples for this purpose.


Notes:

- Performance data in drilled straight hole condition with recommended hole tolerances in JIS H 5302 Grade ADC12 Die-cast Aluminum.
- ADC12 material hardness recorded at Hardness 70 HB (Hardness Brinell 70).
- Performance data collected from a sample size of 28 pieces from production lot.
- Grade 12.9 Socket Head Cap Screws failed in Torque for all samples. Torque-out data shown is average bolt breakage.
- · Pullout data varies greatly part to part as common with cast metals. Published data is the minimum force to pull insert out of sheet in the 28 piece sample.

To prevent jack-out, it is very important that the clearance hole of the mating component is sized correctly. The clearance hole should be larger than the assembly screw, yet smaller than the outside diameter of the insert so that the insert, not the host panel, carries the compressive load. CastSert inserts can also jack-out when mating hardware bottoms out in a blind application. To ensure bottoming out does not occur, the proper length of mating hardware must be selected.

All pullout tests were conducted as shown in the diagram labeled "normal mating configuration". If possible in application, mating from the side opposite of installation such as shown in the "optimal mating configuration" will increase pullout performance. For additional pull-out performance in thru-hole applications, loading the joint opposite the side of installation would essentially provide pull-out equal to the installation force.

All PEM® products meet our stringent quality standards. If you require additional industry or other specific quality certifications, special procedures and/or part numbers are required. Please contact your local sales office or representative for further information.

Regulatory compliance information is available in Technical Support section of our website. Specifications subject to change without notice. See our website for the most current version of this bulletin.

North America: Danboro, Pennsylvania USA | E-mail: info@pemnet.com | Tel: +1-215-766-8853 | 800-237-4736 (USA)

Europe: Galway, Ireland | E-mail: europe@pemnet.com | Tel: +353-91-751714 Asia/Pacific: Singapore | E-mail: singapore@pemnet.com | Tel: +65-6-745-0660

Shanghai, China: E-mail: china@pemnet.com Tel: +86-21-5868-3688

Visit our PEMNET™ Resource Center at www.pemnet.com • Technical support e-mail: techsupport@pemnet.com